
DDPIn -
Distance and Density Based Protein Indexing

David Hoksza

Abstract— Protein structure similarity and classification
methods have many applications in protein function prediction
and associated fields (e.g. drug discovery). In this paper,
we propose a new protein structure representation method
enabling fast and accurate classification. In our approach, each
protein structure is represented by number of vectors (based
on histogram of distances) equivalent to the number of its
Cα residues. Each Cα residue represents a viewpoint from
which the distances to each of the other residues are computed.
Consequently, we use several methods to convert these distances
into a n-dimensional feature vector which is indexed using a
metric indexing structure (M-tree is the structure of our choice).
While searching, we use single or multi-step approach which
provides us with classification accuracy and speed comparable
to the best contemporary classification methods.

I. INTRODUCTION

Proteins consist of chains of building blocks called amino-
acids and play important role in many biological processes.
One of the basic tasks in proteomics is to find out similarity
between a pair of proteins since similar (sequentially or struc-
turally) proteins are considered to secure similar functions.
Hence, by finding a similar protein to a newly discovered
one, the function of the investigated one can be concluded.
Originally, protein similarity was based on sequence, hence
proteins with similar sequence were believed to be function-
ally similar. However, it had been shown later that sequence
similarity does not necessarily conclude structural (and hence
functional) similarity [8][5]. In general, since the protein
function is derived from its three dimensional structure,
structure is closer to the function than sequence.

The algorithms for determination structure similarity of
a query and database of proteins are classifiable into three
categories1. Firstly, pairwise structural alignment can be
based on the level of Cα (or other amino-acids’ representative
atom) coordinates. Second type of algorithms combines a
prefiltering based on secondary structure elements (SSE)
followed by a more detailed step based on similar principles
as the previous class of algorithms. And finally, the third type
of algorithms rely on database indexing where feature vectors
are extracted from the structure and indexed. In the retrieval
step, feature vectors of the query protein are exploited for
querying the indexing structure.

The similarity in protein structural databases is usually
expressed by a matching (alignment) of pairs of protein

This work was supported by GAUK grant under project code 57907 and
GACR grant under project code 201/09/0683

1Although this is not the only possible ’taxonomy’ of algorithms for
determination protein similarity. Our presented taxonomy is more speed-
oriented, in contrast to other that can classify algorithms based on their
inner algorithmic behavior.

structures. The goal of the matching is to determine mutual
mapping (equivalence) of atoms in both structures. Such a
mapping is then forwarded to an algorithm being able to
compute the optimal superposition2 of the two structures in
a linear time [10]. Such a superposition is considered to
be optimal, which minimizes a given distance function. In
most cases, similarity measures based on a root mean square
deviation (RMSD) are utilized.

The methods exploiting Cα coordinates only to match
protein structures emerged first. Most well known examples
belonging to this group of algorithms are DALI [9], CE [15],
SAP [19][20][18], and others. DALI uses a matrix of inter-
residual distances (distances within pairs of atoms of the
opposite structures) and employs an observation that similar
structures have similar distance matrices (or submatrices).
Hence similar submatrices (contact patterns) are identified
and stored in a list of pairs. An alignment is started with a
pair from the list and is then refined by adding or removing
contact patterns. CE, on the other hand, uses intra-residual
distances (distances within atoms of a single structure). It
identifies similar portions of substructures in proteins to
be aligned (AFP - aligned fragment pairs) and these are
further extended to minimize one of three ad-hoc defined
measures. Final match is optimized by applying a dynamic
programming (DP) algorithm. SAP is interesting by extensive
use of the idea of Smith-Waterman [16] algorithm. Each
residue is represented as a vector of distances (view) to the
remaining residues. For each pair of views in the compared
proteins, DP matrix is created and optimal path is recognized.
In the second step, all the optimal paths from step one are
aggregated into a top-level DP matrix and final iteration
of DP is applied to get the resulting alignment. Further
examples are PROSUP [11] or STRUCTAL [7][17] which
both identify initial seeds and further iteratively extend them
(both use DP).

Faster (not necessarily more accurate) methods bene-
fit from a filtration prestep based on SSEs. For example
VAST [12] is similar to CE, however it uses SSEs as vertices
of a bipartite graph and algorithm for finding maximal clique
is used to find the initial alignment.

To handle increasing sizes of databases, methods based
on indexing were discovered. These methods store features
learned from the 3D structure and/or sequence. Since al-
gorithms in this group exploit features, they usually give
out similarity of the proteins based on their features rather

2Translation and rotation of one protein (proteins are seen as rigid bodies)
to spatially mount it on the other one.

than the mapping itself. Mapping is not indispensable for
classification3 purposes and therefore such algorithms find
use in the classification area. Techniques in this group can
be further divided into two categories depending on the type
of indexing methodology they use. In one category reside
algorithms using indexing trees to speed-up the querying
such as PSI [3] and PSIST [6] and in the other algorithms
using geometric hashing [21] - ProGreSS [1] or CTSS [2].
Since our paper introduces a method falling into the group
of algorithms exploiting feature vectors, we describe these
algorithms a bit more thoroughly in the following section.

II. INDEX-BASED APPROACHES TO PROTEIN
CLASSIFICATION

A. Existing Methods

All methods presented in this section use some kind of
feature extraction to get feature vectors representing 3D
structure of the protein as accurately as possible. These
vectors can be viewed as points in a n-dimensional space
(where n is the dimension of the vectors) and as such handled
by a universal indexing method.

As stated earlier, PSI [3] and PSIST [6] employ trees for
storing their vectors. PSI uses SSEs as fundamental objects.
Each SSE is represented by its center of mass. For each,
the distance to each other SSE is computed. Residues near
the investigated residue are then used for creating the feature
vector. Finally, vectors are stored in a R∗-tree. Unlike PSI,
PSIST utilizes suffix tree to store its features. It slides a
moving window along the backbone of the protein and at
each position it encodes distance and torsion angle to all the
following residues in the window. These representations are
encoded as sequences of natural numbers and used as strings
for the suffix tree.

Progress [1] and CTSS [2] take advantage of geometric
hashing [22]. CTSS understands protein structure as a spline
in 3D space and applies techniques of differential geometry
to it. First, it smooths the spline and then for each Cα

it records curvature and torsion angle into a hash table.
Progress is, as far as we know, the only tool of this kind
that combines 3D and 1D (sequence) characteristics into one
feature. As PSIST, also Progress uses a sliding window to
capture position and sequence difference among the starting
residue and content of the window. To these two vectors,
Haar wavelet transformation is applied and resulting 2n-
dimensional vector is hashed.

B. DDPIn

We introduce a fast novel method called DDPIn - Distance
and Density based Protein Indexing. Similarly to methods
mentioned in the previous section, also our approach employs
a feature extraction. We use Cα atoms as the fundamental
particles (although any other atom can be used for amino-
acids’ representation) and operate on distances among them.
We get one feature vector for each Cα residue (hence for

3Determination to which category in SCOP [13] or CATH [14] classifi-
cations an unknown protein should be classified.

a protein with n amino-acids we get n feature vectors). In
section III-A, we present several semantics of these vectors.
All of them are based on clustering the distances/residues
into spheres with the center in the examined residue. Some
of them make use of radii of those spheres whereas others
compute density of Cα residues in the spheres. Further
detailed explanation of the feature extraction techniques can
be found in section III-A.

After obtaining feature vectors for all the amino-acids in
a protein, we deposit them into an indexing structure. In
this paper, we employ M-tree although any metric indexing
method can be utilized instead, since we use several distance
functions which all form metric. Each inserted object consists
of the feature vector and the ID of the protein from which
the extraction was carried out.

When finding similar proteins to a query protein, feature
vectors of the query are extracted and each of them is used as
a k-nearest neighbor (kNN) query to the indexing structure.
Hence, for a query protein with n amino-acid we get n
resultsets of size k. These are then merged to get the most
similar proteins to the query one.

The main goal of DDPIn in this paper is to provide an
efficient classification. As the determinant of accuracy of
our method we use the SCOP classification [13] which is
widely accepted as the gold standard for classification since
it is generated by human experts. Thus, after finding similar
proteins to the query one, a ranking scheme takes place
(based on the nearest neighbors) to obtain the correct SCOP
category (usually superfamily).

To increase the accuracy of the classification process, we
add so called healing step. In this phase, cross-reference
query into another indexing structure is used (another feature
extraction type), the protein is ranked considering this result
and resultsets of both scans are merged. Proteins not having
unambiguous classification are than “healed” by another
method and acquired classification is considered to be the
final and correct one.

Hence, searching is divided into two steps - simple search
and so called healing. Accuracy of the first step is up to
93% for classifying a protein into the SCOP superfamily.
Resulting accuracy after inclusion of the healing step rises
up to 99%, which is an outcome comparable to the best up
to date methods.

III. PROTEIN INDEXING

The indexing runs in two steps - first of all, feature
vector is created for each amino-acid of each protein and
subsequently the vector is inserted into a metric indexing
structure. Both steps, together with metrics used for comput-
ing distance between objects (feature vectors), are described
in this section.

A. Protein Representation Methods

DDPIn is based on the principle of nested three-
dimensional balls. For each Cα residue r (called viewpoint),
set of balls having their centers in r is created (Fig. 1). In this
way, set of 3D rings arises, each ring containing Cα residues

being in the “appropriate” distance from r. We suggest a few
ways how to acquire proteins’ features based on perimeters
of the balls (which is equivalently definable with the help of
widths of the rings) and how to extract features from these
representations. Vector of features acquired in this way is
called viewpoint tag (VPT) because it is a blueprint of the
protein according to a viewpoint (it is similar idea to the
notion of view in SAP).

Let vp represent a particular viewpoint, then vp[i] stands
for the ith ring, rad(vp[i]) for the distance from the view-
point to the further edge of the ith ring, width(vp[i]) =
rad(vp[i])−rad(vp[i−1]) (width(vp[0]) = rad(vp[0])) and
let dens(vp[i]) be the density (sum) of the residues in the ith

ring (see Fig. 1). Finally, let V PT [i] be the ith coordinate
of the feature vector (viewpoint tag). Based on these terms,
we propose several VPT semantics.

1) sRad: For sRad (radius based semantics) holds:

• ∀i, j : dens(vp[i]) = dens(vp[j]) = p
• ∀i : V PT [i] = rad(vp[i])

where p is a user-defined parameter representing per-
centage of amino-acids in the protein.

2) sRadNorm: For sRadNorm (radius based semantics)
holds:

• ∀i, j : dens(vp[i]) = dens(vp[j]) = p
• ∀i : V PT [i] = rad(vp[i])/|pt|

where p is a user-defined parameter representing per-
centage of amino-acids in the protein, and |pt| is
number of amino-acids in a protein pt (for which VPT
is being computed).

3) sRadSSE: sRadSSE is identical to sRad except for
semantics of vp which slightly differs. Only residues
belonging into an α helix or a β sheet are taken
into account when defining viewpoints and moreover
residues from distinct SSE types are stored separately.
Hence dimension of the VPT increases twice. ith

ring is represented by V PT [2i] (α type residues) and
V PT [2i + 1] (β type residues). V PT [i] is defined
equivalently to the sRad VPT semantics.

4) sDens: For sDens (density based semantics) holds:

• ∀i, j : width(vp[i]) = width(vp[j]) = w
• ∀i : V PT [i] = dens(vp[i])

where w is a user-defined parameter representing width
of the rings in Å.

5) sDensSSE: sDensSSE is a density based equivalent of
the sRadSSE.

6) sDir: For sDir (direction based semantics) holds:

• ∀i, j : width(vp[i]) = width(vp[j]) = w
• ∀i : V PT [i] =

∑
(pairs of consequent residues in

the ith ring with the orientation from the vp)

where w is a user-defined parameter representing width
of the rings in Å. sDir semantics aims to detect shape
of the curve within the bounds of the density/distance
approach.

Fig. 1. DDPIn visualization of a protein with PDB ID 1apc in 2D
(vertices on the curve correspond to Cα residues of individual amino-acids
(dens(vp[2]) equals number of dots in ring2).

B. Indexing Structures

To speed-up the search for similar VPTs, we build an
indexing structure upon the database of VPTs. Selected
indexing structure of our choice is the M-tree [4], but any
metric indexing structure can be used instead. M-tree, which
resembles R-tree, belongs to the class of so called metric
access methods (MAMs4). However, in contrast to R-tree’s
MBRs M-tree uses n-dimensional spherical regions. Each
inner node represents number of routing entries each of
which is defined by its center (which is one of the indexed
objects), perimeter of the ball covering all the descendant
objects in the tree and pointer to its subtree. Leaf nodes
consist of ground entries (VPTs).

Most abundant query types for the M-tree are range and
kNN queries. For the range query, one enters a query object
and radius (range) and all DB objects in the distance within
the range from the query object are returned. M-tree can
effectively handle such queries in logarithmic time by virtue
of metric properties. Its nodes are traversed hierarchically
from the root node and such a descendants are taken into
account, which have nonempty intersection with the query
ball (query object and its range). kNN queries are processed
similarly but the query radius is not known in advance, hence
it is being adjusted (decreasing from the initial value infinity)
interactively as the query traverses the tree.

C. Metrics

We are to apply metric indexing methods to the VPTs,
thus we need to utilize distances that fulfill metric properties

4MAMs employ metric functions to handle objects. In this approach, a
metric is used as a black box which accepts a pair of objects as its input and
outputs distance of these objects. Hence the methods are independent on the
choice of distance function to the extent that it fulfills metric properties.

(non-negativity, identity of indiscernibles, symmetry, triangle
inequality). The metrics we tried to use in DDPIn follow.

1) L2 Distance: The fundamental metric function is the
Euclidean distance also known as L2 distance. In its gener-
alized form, it is usable for n-dimensional space where n is
dimension of the VPTs.

2) Weighted L2 Distance: Since we suppose that direct
structural neighborhood of the viewpoints is more predicative
for similarity determination, we use weighted Euclidean
distance as the similarity function. In this approach, each
partial difference in the distance computation is multiplied
by a respective weight. We try various weights with the
emphasis on favoring first few coordinates (see section V-
B.3).

IV. QUERYING

DDPIn can answer two types of queries - ’find the most
similar protein in the DB to the query one’ and ’classify
a query protein into a group of proteins’ (the classification
query is built atop the similarity query). These queries can
be answered by our two-step search. First step represents
a simple scan, while the second plays the role of a cross-
validation process where probably wrong predictions are
identified and possibly corrected.

A. One-step search/classification

First of all, we extract VPTs from the query protein in
the same way indexing is done. Then we take each of the
VPTs and run kNN query against the database of VPTs (VPT
semantics of the query and the DB objects has to be the
same) where k is the object of the experimental evaluation
(but in general, best results were obtained with k going from
20 to 40 depending on the feature extraction type and its
parameters). In the resultset, we obtain k most similar VPTs.
In order to sort the proteins (those whose VPTs appear in
the resultset), we came out with the ranking scheme where
ith VPT in the result contributes with value k− log(i) to the
overall score of the protein it represents. Hence, the overall
similarity score for a query (q) and indexed (p) protein is:

s(p, q) =
|q|−1∑
i=0

|p|−1∑
j=0

k − log(z), z ∈ {1 . . . k},

if V PT p
j ∈ NN(V PT q

i),

0, otherwise
(1)

where VPTa
b stands for ath VPT in protein b, NN(x) for

nearest neighbor set of VPT x and z for position of the given
VPT in the NN set.

Finally, the protein with the highest similarity score ac-
cording to the query protein is evaluated as the most similar
to the query one. If our goal is to classify the protein, we
append the classification step. We approached the problem
in the most straightforward fashion - we consider the nearest
neighbor’s group as the resulting group. Other alternatives
did not turn out to be noticeably more effective.

B. Two-step search/classification

Solution described in the previous section reaches up to
93% accuracy in classifying a protein into SCOP superfam-
ilies5. We realized that sets of proteins not being classified
correctly are not always identical for various VPT semantics
or miscellaneous parameters of the same semantics. If we are
able to distinguish the correctly classified proteins we might
be able to reclassify the rest. Such a reclassification is called
healing in DDPIn’s terminology.

For recognizing wrongly classified proteins, we use cross
validation. We execute two one-phase scans with differ-
ent VPT semantics (two different indexing structures) and
according to the results we decide, whether the resulting
protein is classified correctly or should undergo healing. The
workflow of the whole process is schematically depicted in
Fig. 2.

Fig. 2. General workflow of the DDPIn method.

Let’s define S1 and S2 as index scans one and two
and p(Si) as the classification obtained from Si. Then
if p(S1) = p(S2) we suppose the prediction is correct.
Otherwise, we employ the healing process. Since the only

5The SCOP classification divides proteins hierarchically into classes,
folds, superfamilies and families.

piece of information we have in that case is that p(S1) and
p(S2) differ, we can not conclude whether p(S1) is correct
or whether p(S2) is correct or whether even both are wrong.
So we apply an entirely different method to pick up the final
classification - Smith-Waterman alignment [16]. It operates
purely on primary structure of the proteins. Hence, we take
the query and align it with set of DB sequences D. Proteins
in D can be chosen from the partial results of S1 or S2, from
their fusion, or even they can represent the whole database.
Size of D has a serious impact on the resulting time, since
Smith-Waterman is of quadratic complexity according to the
sequence length.

Experiments have shown that the healing phase can se-
riously increase accuracy. Determinants of the accuracy are
the semantics of S1, S2 and the parameters of the healing
process. Suitability of using a pair of VPT semantics (which
defines the pair of indexing structures for S1 and S2) can be
found out by studying pivot tables based on Tab. I.

p(S1) or p(S2) p(S1) and p(S2)

correct wrong
P

p(S1) = p(S2) Q1 Q2 Q1 + Q2

p(S1) 6= p(S2) Q3 Q4 Q3 + Q4P
Q1 + Q3 Q2 + Q4

TABLE I
PIVOT TABLE FOR DECISION WHETHER TO HEAL.

Q1 represents number of queries that are correctly pre-
dicted by both searches and do not need to be healed.
Problematic query proteins are those contributing to Q2. We
can not heal these proteins since p(S1) = p(S2) but they are
determined incorrectly. Hence Q2 is a value contributing to
the inaccuracy and we head toward using such a combination
of VPT semantics that would decrease this value. And finally,
Q3 and Q4 are proteins to be healed. Hence, in general we
are trying to use such pairs of VPT semantics with high Q1

and low Q2.

C. Multi-step search/classification

Generalizing the idea of the two step classification leads
us to multi-step classification. We can use multiple VPT
semantics for mutual cross-validation. The idea can be to
accept a prediction arising from a scan S if at least further
(n − 1)/2 scans from the overall number of n scans (n-
step classification) classify the query into the identical group.
Considering Tab. I, Q1 might rise significantly, but on the
other hand Q2, which we try to minimize, will probably rise
too. In the experimental evaluation we present a pivot table
showing the influence of adding further scans into the process
of classification.

V. EXPERIMENTAL EVALUATION

In order to experimentally verify the concept of DDPIn and
to evaluate the influence of various parameters mentioned
in the sections above, we carried out thorough tests. The
testing platform was based on 2.66 GHz Intel Core(TM)2

Duo CPU, with 2GB of RAM, running Windows XP. To
compare our method with the previously released ones, we
reused the testbed presented also in [6]. It includes proteins
from superfamilies (each having at least 10 proteins) coming
from four SCOP classes (all α, all β, α + β and α/β).
Since version 1.65 of SCOP is used in these experiments
and from each superfamily 10 representatives were chosen,
the total number of proteins in the database was 1810 (181
superfamilies). When querying, we used two query sets.
To be able to compare the classification’s accuracy with
other methods, we used the query set occurring in their
experiments - each superfamily contributes with 1 protein
to the query set, hence the set contains 181 proteins. But
to thoroughly examine effects of the various parameters, we
used the whole database as the query set for experiments
focusing on inner settings of DDPIn.

The main object of our tests was the classification accuracy
when using single and multi-step approaches. Within the
individual approaches we tested the influence of VPT seman-
tics, metric distance measures and healing VPT semantics’
combinations on the overall accuracy. Since the multi-step
approach consists of multiple single-step scans, we use these
to present characteristics of individual VPT semantics. But
we precede that the accuracy of the single-step approach
alone is far from optimum (as we show in section V-C where
one can also find comparison with the other methods).

A. Indexing

First experiments concerned sizes of indexes needed to
store feature vectors of all the proteins. The results are
presented in Tab. II. Although number of indexed objects
is dependent solely on the dimension of the VPT, sizes of
indexes with various semantics having the same dimension
vary because of the variance in utilization of the M-tree
nodes. On the other hand, variance of the utilization is not
very high and so the number of objects is approximately
dimension×1810×c, where c is a small constant dependent
on the M-tree. Yet, the dimension can be considered as the
main determinant of the index size.

VPT semantics dimension #items index size
Radius (dens(vp[i]) = 7) 7 312338 24.88MB
Radius(dens(vp[i]) = 7) 14 312330 37.46MB
Density (width(vp[i]) = 3) 7 312263 24.74MB
Density (width(vp[i]) = 3) 14 312990 37.48MB

TABLE II
INDEX SIZE.

B. Single-step Classification

1) kNN queries: We tried to find out the optimal value
of k for kNN queries. Fig. 3 shows the accuracy of
classification proteins into superfamilies for different values
of k. In all the cases, weighted L2 metric was used where
weight log(dim− i + 1) was assessed to the ith dimension.
We can observe that low k values cause loosing correct VPTs
and hence decrease of the accuracy. On the other hand,

for k above 5 not all of the semantics behave identically.
In general, it can be said that optimal values are reached
between 20 and 40 but there is no value k, that is optimal for
all the semantics. E.g. optimal value of k for sRad having
density 7 is 30, but changing density to 6 causes increase
of the optimal k to 40. When comparing the individual
semantics in further experiments, we decided to use k = 30,
since such a value seems to be close to the optimum for most
of the semantics.

Fig. 3. Increasing k in kNN queries.

2) VPT Semantics: In section III-A, we presented few
VPT semantics. Figures 4a and 4b represent overview of the
influence of their parameters on the quality of classification.
Comparison of Fig. 4a and Fig. 4b supports the superiority
of the sDens semantics which was observable in the previous
experiment, too. We can also notice an interesting property
of our representations - if we add more information into
it (enrichment by the SSE type), the accuracy deteriorates
(while keeping the dimension the same). We attribute this
phenomenon to low density of Cα residues. Splitting (already
not very rich in information) rings into more segments
causes further loss of information which makes the VPTs
insufficiently discriminative (informative).

Normalizing the individual components of VPTs does not
provide us with additional accuracy either (see sRadNorm
results in Fig. 4a). The reason stems probably from loosing
information about differently long proteins (longer proteins
have higher values of VPT coordinates, since p% of their
aminoacids lay further from the viewpoint) which is hence
highly discriminative argument for the VPT similarity.

Fig. 5 represent the effect of dimension’s growth. For most
VPT semantics, best results are obtained for dimension 14.
For the sRad* semantics, the highest reachable dimension for
density 7 is 14. For higher dimension, 15th and following
dimensions do not have any residues, because width corre-
sponds to percentage of the overall number of residues in
the given protein. Hence, sRad* semantics are actually not
defined for those dimensions, but for transparency we show

Fig. 4. Influence of VPT semantics properties to accuracy.

Fig. 5. Impact of the VPTs’ dimension on the accuracy.

their accuracy in the figure as constant values identical to the
last defined combination of width and dimension. Clearly,
the dimension has some effect on the number of correctly
predicted proteins but the effect is most significant except
for the sDensSSE semantics. The reason is that dimension
of the *SSE semantics is actually two-times lower than for
the other semantics because for each ring, two values are
stored. And in line with this fact, the results of sDensSSE are
comparable (although still slightly worse) to other density-
based semantics when the dimension comes to 20.

3) Metrics: We chose three best VPT semantics to try
out the behavior of various metric functions. We used L2

and weighted L2 function together with several different sets
of weights. The outcomes can be seen in Tab. III. It turns
out that weighted L2 with log(dim − i + 1) and (dim −
i)/dim weighting systems work best since they favor direct
neighborhood of viewpoints (further coordinates obtain lower
weights). Opposite approach (favoring more distant residues)

Metric sRad sDens sDir
(dens[i]=7) (width[i]=3) (width[i]=3)

L2 1631(90.1%) 1674(92.5%) 1657(91.6%)

Weighted L2

(log(dim − i + 1))
1652(91.3%) 1682(92.9%) 1665(92%)

Weighted L2

((dim − i)/dim)
1651(91.2%) 1683(93%) 1670(92.3%)

Weighted L2

(i/dim)
1592(87.8%) 1659(91.7%) 1648(91.1%)

Weighted L2

(log(i + 1))
1612(89.1%) 1670(92.3%) 1655(91.4%)

TABLE III
METRICS’ COMPARISON (DIM=14).

turned out to perform considerably worse (as awaited).

C. Two-step Classification

With the knowledge of the best VPT semantics (among the
proposed ones) and their optimal parameters we are ready
to use them within the two-step approach. We remind that
apart from calibrating the characteristics of the partial scans,
in two-step approach we can also optimize the healing set’s
attributes. Tab. IV shows results achieved when the whole
nearest neighbor set of the first scan was used as the healing
set (the semantics at the left edge of the table is considered
as the first scan). Hence proteins that had at least one VPT in
one of the query’s VPTs’ NN-set are aligned with the query
with the help of the Smith-Waterman algorithm and the most
similar is chosen as the nearest neighbor. Each cell of the
Tab. IV shows pivot table (see section IV-B) for the respective
pair of semantics. Under it, resulting accuracy of the two-
step approach in the form of the absolute number of correctly
predicted proteins together with the resulting superfamily
classification accuracy is presented. We can notice that the
combination of sDir and sDens is not suitable for healing
since the semantics of both approaches are similar (based on
density of residues in rings) and hence Q2 value is about
two-times higher then for the other combinations.

sRad sDens sDir

sRad

1624 20
90 76
|HS| = 321

a=1744(96.4%)

1611 24
102 73
|HS| = 321

a=1735(95.9%)

sDens

1624 20
90 76
|HS| = 179

a=1738(96.0%)

1643 44
64 d
|HS| = 176

a=1724(95.2%)

sDir

1611 24
102 73
|HS| = 216

a=1734(95.8%)

1643 44
64 59
|HS| = 215

a=1726(95.4%)

TABLE IV
ACCURACY OF ANTISYMMETRIC FULL-SIZED HEALING SETS.

(|HS| . . . HEALING SET SIZE, a . . . ACCURACY)

The table presents the anti-symmetric approach (as we
call it) meaning the healing set forms the NN-set of one
of the scans. It is also possible to use union of the NN-sets,
results of which are presented in Fig. 6. The union here was

produced by subsets of given size of the NN-sets. Size of
each subset is defined by the multiplication factor, thus each
set contributes to the union with portion corresponding to the
given factor. We emphasize the NN-sets are sorted according
to the distance to the query hence the union contain always
the most similar proteins. Best results were achieved for
the sRad-sDens combination using factor 0.4 (96.4%). The
results show interesting observation that higher size of the
healing set does not necessarily lead to improved accuracy.
This leads us to the idea of using the whole database (1809
sequences) as the healing set. It turns out that apart from
the substantial slow-down, such a modification moreover
decreases the accuracy (95.8% for sDens-sRad semantics
combination). Hence using healing sets emerging from the
NN-sets is a good choice because it filters out sequentally
similar but structurally disimilar proteins.

Fig. 6. Influence of healing set size on the accuracy.

1) Comparison to other tools: Here, we took the optimal
combination of VPT semantics and their parameters (sDens:
width[i] = 7, dim = 14, k = 30 - sRad: dens[i] =
3, dim = 11, k = 30) and compared it to the best achieved
classification results of other tools as presented in [6]. We
underline that the used query set consists of 181 queries
only unlike 1810 queries in the previous experiments so the
superfamily classification accuracy differs.

Algorithm Superfamily Fold
PSI 88% N/A
ProGreSS 97.2% 98.3%
PSIST 97.8% 99.4%
DDPIn 98.9% 100%

TABLE V
SCOP SUPERFAMILY AND FOLD LEVEL ACCURACY COMPARISON.

Tab. V shows that on the reduced query dataset DDPIn’s
accuracy increases up to the level where it beats the other
methods. The presented DDPIn’s superfamily accuracy corre-
sponds to two wrong predictions. Nevertheless, although the
nearest proteins fall into wrong superfamilies they appear in

the same fold and hence fold classification accuracy is 100%
for DDPIn.

D. Multi-step Classification

The final accuracy experiments concerned the accuracy of
the multi-step approach. For the experiment, sRad, sDens
and sDir semantics were used with the same settings as
in the previous experiments and multiplication factor of the
healing set was set to 0.4 (the way of getting the healing
set and decision whether a query should proceed into the
healing step was described in section IV-C). We present here
results of the 3-step approach only but we believe the results
can be generalized into the higher steps too. The acquired
pivot table supports this belief. Q1 value grows to 1676 but
Q2 grows too. The value of Q2 is 68 which considerably
deteriorates the possible accuracy in such a way that there is
no advantage in using the multi-step approach (the accuracy
after performing the healing-step is 94.7% for this approach).

E. Performance evaluation

Tab. VI provides information about the running time of
DDPIn per query which is divided into the time spent in
the scans and time spent in the healing step. Moreover, we
present percentage of nodes traversed in the M-tree when
querying. This number is directly proportional to the scan
time. In the table, multiplication factor 0.4 was used - if the
whole DB was used for healing (maximum multiplication
factor), the time per query (healing) would be 202 s. Whilst
the main determinant of the second step is the size of the
healing set, run time of the first step is directly proportional
to the percentage of the tree nodes of the total number of
nodes that have to be traversed. We can see there is a clear
trade-off between speed and accuracy when comparing sRad
and sDens semantics. The table also shows that using a
index is inevitable since sequential scan would be too time-
consuming.

Method Index scan Index scan Healing step Overall time
(s) (% of tree nodes) (s) (s)

sDens-sRad 2.2 + 0.8 8.3 (12.1, 4.5) 1.8 4.8
sDens-sDir 2.2 + 3.2 14.2 (12.1, 16.2) 1.0 6.4
sDir-sRad 3.2 + 0.8 10.4 (16.2, 4.5) 2.2 6.2

TABLE VI
TIME COMPARISON (HS MULTIPLICATION FACTOR = 0.4).

We did not implement methods from [6] by ourselves and
hence the speed comparison can be only very approximate.
PSIST is presented in [6] as the most accurate method and
its time gets around 4 seconds per query (when the best
accuracy is requested) on a 2.8GHz CPU PC with 6GB of
RAM. Hence DDPIn would be comparable to PSIST in the
run time if ran on the same machine.

VI. CONCLUSION

In this paper we presented a novel representation of protein
structures based on distances among amino-acid residues
called DDPIn. Protein characteristics are stored in feature
vectors which are further indexed and queried by a metric

indexing method. Finally, a multi-step approach was pro-
posed to increase the accuracy of the classification. DDPIn
outperforms the previously released methods in accuracy
while using comparable amount of time.

REFERENCES

[1] A. Bhattacharya, T. Can, T. Kahveci, A. Singh, and Y. Wang. Progress:
Simultaneous searching of protein databases by sequence and structure,
2004.

[2] T. Can and Y.-F. Wang. Ctss: A robust and efficient method for protein
structure alignment based on local geometrical and biological features.
csb, 00:169, 2003.

[3] O. Çamoglu, T. Kahveci, and A. K. Singh. Towards index-based sim-
ilarity search for protein structure databases. In CSB ’03: Proceedings
of the IEEE Computer Society Conference on Bioinformatics, page
148, Washington, DC, USA, 2003. IEEE Computer Society.

[4] P. Ciaccia, M. Patella, and P. Zezula. M-tree: An Efficient Access
Method for Similarity Search in Metric Spaces. In VLDB’97, pages
426–435, 1997.

[5] Z. K. Feng and M. J. Sippl. Optimum superimposition of protein
structures: ambiguities and implications. Fold Des, 1(2):123–132,
1996.

[6] F. Gao and M. J. Zaki. Psist: Indexing protein structures using suffix
trees. In CSB ’05: Proceedings of the 2005 IEEE Computational
Systems Bioinformatics Conference, pages 212–222, Washington, DC,
USA, 2005. IEEE Computer Society.

[7] M. Gerstein and M. Levitt. Comprehensive assessment of automatic
structural alignment against a manual standard, the scop classification
of proteins. Protein Sci, 7(2):445–456, 1998.

[8] A. Godzik. The structural alignment between two proteins: is there a
unique answer? Protein Sci, 5(7):1325–1338, July 1996.

[9] L. Holm and C. Sander. Protein structure comparison by alignment of
distance matrices. J Mol Biol, 233(1):123–138, September 1993.

[10] W. Kabsch. A solution for the best rotation to relate two sets of
vectors. Acta Crystallographica Section A, 32(5):922–923, Sep 1976.

[11] P. Lackner, K. W. A., S. M. J., and D. F. S. Prosup: a refined tool for
protein structure alignment. Protein Eng, 13(11):745–752, November
2000.

[12] T. Madej, J. F. Gibrat, and S. H. Bryant. Threading a database of
protein cores. Proteins, 23(3):356–369, November 1995.

[13] A. G. Murzin, S. E. Brenner, T. Hubbard, and C. Chothia. Scop: a
structural classification of proteins database for the investigation of
sequences and structures. J. Mol. Biol, 247:536–540, 1995.

[14] C. A. Orengo, A. D. Michie, S. Jones, D. T. Jones, M. B. Swindells,
and J. M. Thornton. Cath–a hierarchic classification of protein domain
structures. Structure, 5(8):1093–1108, August 1997.

[15] I. N. Shindyalov and P. E. Bourne. Protein structure alignment by
incremental combinatorial extension (CE) of the optimal path. Protein
Eng, 11(9):739–747, September 1998.

[16] T. F. Smith and M. S. Waterman. Identification of common molecular
subsequences. Jurnal of molecular Biology, 147:195–197, 1981.

[17] S. Subbiah, D. V. Laurents, and L. M. Structural similarity of dna-
binding domains of bacteriophage repressors and the globin core. Curr
Biol, 3(3):141–148, March 1993.

[18] W. R. Taylor. Protein structure comparison using iterated double
dynamic programming. Protein Sci, 8(3):654–665, March 1999.

[19] W. R. Taylor and C. A. Orengo. A holistic approach to protein structure
alignment. Protein Eng, 7(2):505–519, 1989.

[20] W. R. Taylor and C. A. Orengo. Protein structure alignment. J Mol
Biol, 208(1):1–22, 1989.

[21] H. Wolfson and I. Rigoutsos. Geometric hashing: An overview. IEEE
Computational Science and Engineering, 4:10–21, 1997.

[22] H. J. Wolfson and I. Rigoutsos. Geometric hashing: an overview.
Computational Science and Engineering, IEEE [see also Computing
in Science & Engineering], 4(4):10–21, 1997.

