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Abstract— Mass spectrometry is a very popular method for
protein and peptide identification nowadays. Abundance of
data generated in this way grows exponentially every year and
although there exist algorithms for interpreting mass spectra,
demand for faster and more accurate approaches remains.

We propose an approach for preprocessing the protein se-
quence database based on metric access methods. This approach
allows to select only a small set of suitable peptide sequence
candidates, which can be then compared with experimental
spectra using more sophisticated algorithms. We define loga-
rithmic distance for selecting peptide sequence candidates and
also outline possibilities of using the interval query for searching
posttranslational modifications.

The experimental results show that our approach is compa-
rable in precision with nowadays most widely used public tools
and outline possible directions for further resarch.

I. INTRODUCTION

ASS SPECTROMETRY [10] is a modern and fast

method for protein sequences identification. The
knowledge of protein sequences is important for study-
ing protein functions, that are based on protein structure
determinded by the sequences [20]. Mass spectrometry is
also denoted as an indirect sequencing, because the mass
spectrometer does not determine a linear sequence of amino
acids (protein’s primary structure), but it captures a collection
of uninterpreted data called mass spectrum. Subsequently, the
protein sequence must be elucidated from the mass spectrum!
by some sophisticated algorithm first.

Before the mass spectrometry analysis, an unknown pro-
tein sample (number of molecules with identical structure)
is digested by a specific enzyme into many shorter peptides.
After the protein digestion at specific cleavage sites the
sample is analyzed by the mass spectrometer. Single peptide
molecules get charges (becoming to be ions) and they are
separated by their ratios mass/charge (m/z).

In case of simple mass spectrometry (MS), the mass
spectrum is a list of detected ratios m/z with intensities of
their occurence (list of peaks). Moreover, in case of tandem
mass spectrometry (MS/MS), each peptide ion can be splitted
to various types of fragment ions, hence for one analyzed
protein we get a collection of the tandem mass spectra (one
spectrum for each peptide ion) [15]. The peptide ion common
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'In the case of tandem mass spectrometry from the collection of the mass
spectra.
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Fig. 1. The most common types of peptide fragment ions in a tandem
mass spectrum (AA = amino acid).

to all fragment ions in a tandem spectrum is denoted as parent
peptide ion. The most common types of fragment ions y, b
and a are presented in the Fig. 1.

Two basic approaches are used for interpreting mass spec-
tra. First is based on the direct spectra interpretation using
graph algorithms (De Novo peptide sequencing) [7] and it is
typical for tandem mass spectra. Second is based on scanning
databases of already known protein or peptide sequences,
which is denoted Peptide Mass Fingerprinting (PMF) [9] for
MS spectra and Peptide Fragment Fingerprinting (PFF) [13]
for MS/MS spectra. A combined approach Sequence Tag
[16] can be used for tandem mass spectra, where a short
aminoacid sequence (tag) is determined manually or using
graph algorithm first and then the database is searched.

The interpretation of experimental spectra is complicated,
because many peaks (up to 80%) cannot be usually recog-
nized. These unrecognizable peaks (called noise) correspond
to ions with unpredictable structure. The noise arises from
ions losing complex chemical groups, from ions falling into
many parts or it can be a consequence of admixtures in
the analyzed sample, etc. Moreover, not all of the theoret-
ically generated ions (e.g. y or b-ions which are the most
important ones for peptide identification) need to have their
counterparts in the tandem mass spectra. Previous obstacles
(noise, absence of some important peaks) makes De Novo
identification very difficult, if not in practice impossible, task.
On the other hand, a substantial drawback of the database
approach is the need of existence of the analyzed or related
sequence in the database.

Databases often result from translation of known DNA
sequences, hence unknown protein sequences can be identi-
fied. The identification of protein sequences is complicated, if
the proteins were modified after translation (posttranslation
modifications, PTM) or during preparation the sample for
mass analysis, because the peaks can be shifted.
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The abundance of identified sequences in bioinformatic
databases is growing exponentially every year [11], so the
database should be preprocessed to speed up the search. An
approach based on the metric access methods (MAMs) [23]
is proposed in this work. Although the M-tree [6] structure
is used in the experimental part, any other MAM can be
utilized. The entire identification algorithm can be labeled as
PFF, because it focuses on the interpretation of the tandem
mass spectra and on the searching in protein sequences
databases.

Basic principles of proposed method are presented in
Fig. 2. The vectors of theoretical m/z values are generated
from already known peptide sequences and the vectors of
experimental m/z values are selected from an experimental
spectrum by heuristic. For comparison of theoretical and
experimental vectors suitable metric functions are used to-
gether with M-tree for speeding up the search. On a small
set of selected peptide sequence candidates, a simple scoring
system or some more sophisticated algorithm can be applied
to select a sequence best corresponding to the experimental
spectrum. Possibilities for searching peptide modifications
are also outlined (section II-E).

Our proposed method is based on using lowdimensional
metric spaces, but a method based on highdimensional metric
spaces was also presented in [8]. High dimension can cause
problems when using MAMs like M-tree, since the range
and k-NN (k-nearest neighbors) query algorithms have an
exponential dependency on the dimension of the metric
space. Another existing method [22] is based on reducing
the intrinsic dimensionality of the highdimensional spaces
and using MVP-tree [23].

The rest of this paper is organized as follows: Section II
describes the method for generating database of vectors from
protein sequences, heuristics for selecting vectors from ex-
perimental spectra and metrics for their comparing. There is
also presented a simple scoring system and an algorithm for
searching peptide modifications. Section III introduces the
M-tree and the interval query. Experiments and comparison
with public available searching tools MASCOT MS/MS Ions
Search [1] and ProteinProspector MS-Tag [2] are presented
in Section IV to show the effectivity of used metrics and the
M-tree performance. Finally, Section V concludes the paper.

suitable metric function "
scoring system or

peptide sequence
sophisticated algorithm

candidates

resulting peptide
sequence

&
MAM (M-tree)

Basic principles of proposed method.

II. METHODS
A. Database construction

Before the mass analysis each protein sequence is digested
at the specific positions (cleavage sites) to many shorter
peptides by an enzyme e.g. trypsine® [18]. So, the theoret-
ical peptide sequences and their theoretical fragment ions
spectra® can be generated for each protein sequence. The
minimum and maximum size of generated peptide sequences
and the maximum number of missed cleaveage sites* must
be also defined with enzyme type.

theoretical peptide sequence
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Fig. 3. Database construction.

Many types of fragment ions (e.g. y, b, a, y-H3O, y-
NH3, y-HoO-NH3, 0-H,0, a-H50) can be generated into the
theoretical fragment ion spectrum. But bigger set of fragment
ions means higher storage requirements in database without
certainty that all theoretically generated ions will also be
present in the experimental spectrum. Thus, we will generate
and store for each peptide only its y-ions, eventually y and
b-ions (because these are the most abundant ones).

Since the theoretical spectra have variable number of peaks
and we need vectors of constant size for a MAM method, a
sliding window of size n is applied. The window is moved
over the theoretical spectrum’ with specified step and vectors
of m/z values bounded by this window are stored in the

2Trypsine digests protein sequence after aminoacid residues lysine (K)
and arginine (R), if they are not followed by proline (P).

3The fragment ions intensities cannot be known by generating the
theoretical spectrum, so only m/z values are used.

4The digestion by enzyme is not perfect in reality, thus some digestion
places can be missed.

SOver the m/z values sorted in ascending order.
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Fig. 4. Heuristic based on fragment ions positions (collection amet - see section IV; experimental spectra are differentiated by parent peptide charge and

aligned against themselves from the right).

database (Fig. 3). If step < n, the redundantion of indexed
data increases, but also precision of peptide identification
improves. If there exists a peak not being member of a
window, a window for last n values is added.

B. Heuristics

The intensity of fragment ions cannot be known for
theoretical spectra and the experimental spectra does not
guarantee, that peaks with lower intensity are less interesting
for peptide identification than peaks with higher intensity. So,
we propose two heuristics for selecting the set of peaks from
an experimental spectrum without dependency on intensity
values. These peaks (m/z values) form the vectors needed
for search the database.

The first heuristic is based on a simply idea of y fragment
ions positions. If the database is constructed only from
y-ions, the vector created from an experimental spectrum
should consist in the ideal case of y-ions only (another
included ions can be understood as noise). The probability
of selecting a continuous vector consisted only of y-ions is
higher at the end® of the experimental spectra (especially
in spectra with parent peptide charge z > 27), because the
y-ions are often cumulated there (Fig. 4). So, the heuristic
based on the idea of y fragment ions positions picks the last
n peaks from the end of spectrum for indexing.

With increasing vector dimension, probability of vector
continuity decreases. Since the experimental spectrum vector
does not need to be found in the theoretical peptide spectrum,
we set a sliding window on the last n peaks of experimental
spectra and repeatedly move it towards the begin of the
spectrum with the specified step.

Let the fragment ions b; and y_; be complementary for
peptide sequence of size k, where 0 < 7 < k (Fig. 1).
The second heuristic is based on the idea of searching
complementary b and y-ions. The sum of masses b; and
complementary y;_; ion is equal’ to the mass of neutral
peptide molecule m,, plus 2 Daltons (1).

5The implicit ordering of the peaks by increasing m/z values is assumed
in an experimental spectrum.

7Providing that the charge z = 171 and specified mass tolerance is
reflected.

m(bi) + m(yx—;) = my + 2 (D
Because it cannot be decided which peak correspond to b-ion
and which to y-ion, a following procedure can be used. When
we suspect a mass m of being b-ion then the spectrum could
also contain masses coresponding a-ion, a-ion after losing
water HoO or ammoniac NHs. If so, m is considered b-ion
and complementary mass to y-ion.

n=3

«—

Fig. 5. Heuristic based on searching complementary b and y-ions.

The process is similar to the first heuristic, except for
the database vectors contain b and y-ions this time and the
last n peaks marked by this heuristic are selected from the
experimental spectrum. The sliding window can be moved
over the marked b and y-ions to increase effectivity of the
search (Fig. 5).

The heuristic based on searching complementary b and y-
ions is most effective for spectra from collection amet with
parent peptide charge 1. Probability that a peak marked by
this heuristic really correspond to b or y-ion is about 90%,
but only 40% of spectra have at least 10 marked peaks by
this heuristic (Fig. 6). More marked peaks means possible
higher maximum number of shifts of the sliding window,
hence higher probability of match.

The heuristic can recognize about 55% of all peaks corre-
sponding to b or y-ions in an experimental spectrum without
differentiation them and about 22% peaks with differentiation
[17]. A drawback of differentiation is its low precision, hence
further we use an alternative where we do not differentiate
b and y-ions.
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C. Metrics

Metrics suitable for comparing theoretical and experimen-
tal vectors are described below. A metric d defines the
similarity of two objects and satisfies following properties:
reflexivity, positiveness, symmetry and triangle inequality. If
the triangle inequality is not satisfied, d is called semimetric.
When the positiveness property is not satisfied, d is called
pseudometric and it can be turned into metric by treating
each pair of objects as a single object (value of d is 0) [23].

Well known metric, which falls into group of Minkowski
distances, is maximum distance (2).

Loo (7, §) = maix ||z; — yil| )

Another, for our purpose interesting metric, is the Haus-
dorff distance (3). It first computes distances to nearest
neighbours in set B for all elements from set A and for all
the elements from set B distances to their respective nearest
neighbours in set A. Finally, from computed distances the
maximum value is selected. The inner function d, must be
a metric. Further we treat d, as difference of two points in
Euclidean space.

acEA beB

h(A, B) = max {min {d.(a, b)}}

h(B, A) = max {min {d.(a, b)}}

beB | acA
H(A, B) = max(h(A, B), h(B, A)) 3)

Because the elements with minimum distances are chosen,
there is a particular resistance against shifts of peaks (m/z
values) with small differences. For example, vectors & =
{300, a, 400,500} and ¥ = {300,400, 500, b} have always
Lo, > 100, for 300 < a < 400 and b > 500. On the other
hand for @ = 399 and b = 501, H(Z,¥) = 1.

The cosine similarity (4) is also presented in mass spec-
trometry literature [14]. Cosine of an angle is not a metric,
but utilize the arccos function and operate directly with the
angle size, which is metric.

cosf = 4

Majority of metrics have shortcoming presented in follow-
ing example. Lets assume vectors & = {200, 300, 400, 500},
7 = {200, 300, 460, 500} and Z = {210, 305, 420,475}. The
vectors & and ¢ are closer considering peptide identification,
but their Euclidean distance of the vectors & and Z' is lower.
Such situations are the reason for proposing a modified
distance which we call logarithmic distance (5).

di(zisyi) = logla; — yil, |z; —yi| > 1
= 0, otherwise.
diog(Z,9) = Z di(zi, ys) 5)
i=1

The logarithm function causes that & and % are closer than
Z and Z, but it disadvantages also the vectors with a small er-
ror constant. For example, vectors ' = {200, 300,400, 500}
and y_7 = {210, 310,410,510} can represent the same or
similar peptide sequences, because the small constant errors
can be consequence of an aminoacid mass modification, an
aminoacid mutation or the whole spectrum contamination
(e.g. by sodium ions Na™).

The logarithmic distance is not a metric, since it does not
satisfy the positiveness and triangle inequality, so it is only
a pseudo-semimetric. But for the mass spectrometry data
(processed as described in sections II-A and II-B) is triangle
inequality satisfied with high probability (nearly 100%) and
so this distance is good in practice [17].

In case of troubles with inequality is also possible work
with modified triangle inequality (6), where constant x > 0
can be determined empirical. But using of this alternative get
worse efficiency by using the metric access methods.

d(a,b) + d(b,c) + k > d(a,c) (6)
D. Searching and scoring

If the database of vectors was created (section II-A) and
some metric was defined (section II-C), then the M-tree can
be constructed. If M-tree was created, the set of vectors
corresponding to peptide sequence candidates is selected
easily using the range query (section III) and a query vector
obtained by a heuristic (section II-B). If the correct pep-
tide sequence was not found among the candidates another
query vector is used and the search is repeated. The query
vectors are specified by a sliding window (section II-B) and
maximum number of window shifts is defined by the user.
Exceeding maximum number of shifts means, the peptide
sequence was not found for a given experimental spectrum.

For the set of peptide sequence candidates obtained by
the range query, a simply scoring system is employed. For
each candidate sequence the theoretical b and y-ions are
generated. If the sequence candidate with maximum b and
y-ions matched in experimental spectrum corresponds to the
reference sequence listed in experimental data collection, the
correct peptide sequence is matched. This scoring system can
be easily replaced with a more sophisticated algorithm, such
as spectral alignment based on dynamic programming [12].



E. Searching modifications

Searching peptide modifications is still an open prob-
lem [21]. A simple method is based on adding modified
peptide sequences to the database, with the drawback that
the number of possible modifications is immense [4]. An
algorithm based on using a set of interval queries is proposed
below.
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Fig. 7. Using a set of interval queries for searching peptide modifications.

In addition to one range query for searching unmodified
peptide sequence, a set of interval queries for searching
peptide modifications is used (Fig. 7). Suitable metrics for
this purpose are those that do not cummulate errors e.g. max-
imum (2) or Hausdorff distance (3), because each interval
query corresponds to an error caused by an aminoacid mass
modification in Daltons. The search for one modification can
correspond to more interval queries in case of its repeated
occurence in the peptide. If the sequence with at most
three occurences of carbamidated cysteine (+57.01 Da) was
searched, the three interval queries I (g, r—tol, r+tol), would
have to be used, where » = {57.01,2 x 57.01,3 x 57.01}
and tol is the mass tolerance.

A problem can arise with increasing number of searched
peptide modifications, because of the exponential growth of
required interval queries. If we grant m repeated occurences
of n different aminoacid modifications, then the number
of interval queries corresponds to the sum of combinations
with repeated elements (7). For searching e.g. n = 3
different modifications, we use 3 interval queries for m = 1
occurences, 9 for m = 2 and 19 for m = 3. The number of
known aminoacid modifications can be counted for hundreds
at this time [4]. Fortunately, only few modifications, that
usually appear in experimental spectra, can be predicted

empirical.
i n+k—1
> < L ) (7)

k=1

The scoring algorithm (section II-D) must be also modified
by using the set of interval queries. The theoretical values of
b and y-ions with shifts of masses caused by searched mod-
ifications are generated. For example, if we want to search
one occurence of oxidized methionine (+16 Da) together
with one occurence of carbamidated cysteine (+57.01 Da),
then the interval query average radius is 74,4 = 16 + 57.01.
The additions +16 Da for methione (M) and +57.01 Da for

cysteine (C) are applied to the theoretical b and y-ions. The
sequence best corresponding to the experimental spectrum
stays the sequence with highest number of matched b and
y-ions.

Alg. 1.

I best = 0;

> while not exceeded max. # of window shifts {
3 query = vector obtained by heuristic;

4 result = rangeQuery (query, radius) ;

5 best_one = scoring(result);
6

5

8

9

Searching modifications

if best_one.better (best) {
best = best_one;
if best.isGuaranteed() return best; }
for all analyzed modifications {
10 result = intervalQuery (query,
11 modif.mass () -tol,
12 modif.mass ()+tol);
13 best_one = scoring(result,modif);
14 if best_one.better (best) {
15 best = best_one;
16 if best.isGuaranteed() return best; } } }
17 return not found;

III. METRIC ACCESS METHODS

The metric access methods (MAMs) [23] have been de-
signed to quickly search in databases modeled in metric
spaces. They use the triangle inequality to organize data
objects into metric regions and for pruning those regions.
MAM of our choice for experimental evaluation is the metric
tree (M-tree) [19].
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Fig. 8. The M-tree structure.

The M-tree is a dynamic, hierarchical and balanced index
structure. It contains n-dimensional hyper-spherical regions
storing n-dimensional vectors representing the indexed ob-
jects. Some objects are selected as pivots (centers of hyper-
spherical regions), the others are partitioned among these
regions (Fig. 8).



Several types of queries can be performed by MAMs. First
and foremost the range (8) and the k-nearest neighbors (k-
NN) [23] queries.

R(q,r) ={o€ X,d(o,q) <r} (8)

The interval (or hyper-ring) query (9) is defined as an
extension of the range query for searching peptide modifica-
tions. The average radius 74,4 is the average value of 7.,
and 7,,4,- The M-tree interval query algorithm is proposed
in [17].

I(qa T'min, T‘max) = I(Q7 Tavg — t, Tavg + t) =
={o € X,d(0,q) > rmin Nd(0,q) < Tmaz} )

IV. EXPERIMENTS

We use Amethyst and Opal collections of experimental
spectra in our experiments, which are part of Quartz project
presented on the GPM site (The Global Proteome Machine
Organization) [3]. The collections are formed from tandem
mass spectra of peptides founded in human genome. Datasets
amethyst-gv.xml (amet) and opal-gv.xml (opal) are used in the
experiments (Tab. I). We assume, that spectra with parent
peptide charge 17 are the tandem MALDI (Matrix Assisted
Laser Desorption Ionization) [5] spectra and the others are
the ESI (Electrospray Ionization) [10] spectra. We focus on
interpretation of single peptide sequences from tandem mass
spectra.

. Count of spectra
Collection |—p [ 1F [ 27 [3F [4F
amet 1825 | 1052 | 533 | 224 | 16
opal 622 0 477 | 139 6

TABLE I
THE DATA COLLECTIONS.

The protein sequence database used in experimental part
was created from all protein sequences referenced in amet
and opal collections. In order to increase the database size,
we enriched it by adding extra human protein sequences
and removed duplicate sequences. Parameters for generating
database from protein sequences were - enzyme: trypsine;
minimum peptide size: 6; maximum peptide size: 20; maxi-
mum of missed cleavage sites: 1; sliding window step: 1 8.

All experiments were performed on machine with dualcore
64-bit processor AMD TURION TL52, 120 GB HDD, 1 GB
RAM and OS Windows XP SP2. The time of computation,
number of readed nodes and selectivity are average values
per one spectrum implicitly.

A. Distances comparison

The Euclidean, maximum, Hausdorff and logarithmic dis-
tance and cosine similarity were compared. The database
was constructed from y-ions and the heuristic based on y-
ions positions was used (section II). Only the last n peaks

8With bigger step, worse results were obtained.

from each experimental spectrum were selected, where n is
a vector dimension.
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Fig. 9. Distances comparison (collection: amet; parent peptide charge: 27 ;
query type: 20-NN; peptides in database: ~ 20000).

The most peptide sequences were identified with the
logarithmical distance (Fig. 9). The quality of identification
slowly decreases with increasing dimension for this distance.
Euclidean, maximum and Hausdorff distances give almost
identical results (only the maximum distance is shown in
Fig. 9). The quality of identification decreases quickly with
increasing dimension in their case and for n > 5 is too small
for practical use, but they still give a little better results than
cosine similarity.

B. Searching peptide modifications

The search for peptide modifications was tested us-
ing a set of interval queries and the maximum dis-
tance. One range query with » = 10 and 8 inter-
val queries with average radiuses comming from the set
{57.01,2 x 57.01,16,17.016,14.0156, 1,30.0106, 57.01 +
42} were used. The radiuses correspond to modifications
of aminoacids {C, 2xC, M, Q, V.V SV AV T, N
V Q, G, C + D}, where the mass tolerance needed for
specifying the radiuses 7,,;, and 7,4, is £0.1 Da. The
database was constructed from y-ions and heuristic based on
y-ions positions was used. Fig. 10 shows the dependency of
recognized proteins on increasing number of window shifts.
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Fig. 10.  Searching peptide modifications (vectors dimension: 3; parent

peptide charge: > 27 peptides in database: 23326).



The quality of recognition increases with growing maxi-
mum number of window shifts. The increase is most evident
for number of window shifts < 5. For amet, the num-
ber of identified peptides is 1.69x higher when searching
modifications were included than without it. The quality of
identification reaches to 64.81%, for collection opal is count
3.45% higher and the quality reaches 58.84% (10 window
shifts).
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Fig. 11.  Time of identification (vectors dimension: 3; parent peptide
charge: > 2%1; maximum number of window shifts: 10; type of searching:
with modifications; inner nodes capacity: 50 items; leaf nodes capacity: 66
items).

Databases containing from 510 to 5468 human protein
sequences (from 23326 to 242798 peptide sequences) were
used for testing M-tree structure’s characteristics. The time
of identification is much lower when using M-tree than
with sequential algorithm (Fig. 11). Average speed up is
9.82x for amet collection and 7.19x for opal collection. The
relative number of fetched M-tree nodes quickly decreases
with increasing size of the database. It decreased for both
collections by using 10.5x bigger database from around 65%
to 34%. The results on the real data (consisting “all” human
proteins) are presented in section I'V-D.

C. Logarithmic distance

Logarithmic distance was tested using heuristic based on
searching complementary b and y-ions (section II-B). Results
obtained by the second heuristic are presented in section I'V-
D. Since we do not have an effective technique for distin-
guishing b and y-ions (section II-B), the ions were stored in
the database without differentiating them. Since logarithmic
distance cummulates errors, no searching modifications were
applied. Dimension of vectors was n = 5, hence only those
spectra where the heuristic marked at least 5 peaks were
selected for further identification.

The quality of identification and the selectivity in de-
pendency on radius of M-tree range query are presented
in Fig. 12. The range query radius increases from r = 1.2
to 7 = 4.8. The quality of identification grows from 18.62%
to 44.28% and the selectivity from 0.00018% to 0.23366%.
Finally, the number of readed nodes increases from 9.52%
to 43.71%.

The datasets containing from 510 to 4476 human protein
sequences (from 23326 to 192431 peptide sequences) were

also used for testing characteristics of logarithmical distance.
The identification was average 11.27x faster by using M-tree
than by using sequential algorithm (Fig. 13). The number of
readed nodes decreased from 29.06% to 18.50%. The average
selectivity was about 0.01%.
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Fig. 12. Range query (collection: amet; parent peptide charge: 17 ; number

of spectra: 795; vectors dimension: 5; peptides in database: 61883; inner
nodes capacity: 50 items; leaf nodes capacity: 63 items).
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Fig. 13. Time of identification (collection: amet; parent peptide charge: 17;
number of spectra: 795; vectors dimension: 5; range query radius: 3.0; inner
nodes capacity: 50 items; leaf nodes capacity: 63 items).

D. Comparison with existing methods

Proposed methods were compared with free available
searching tools MASCOT MS/MS Ions Search [1] and Pro-
teinProspector MS-Tag (version 4.27.2 Basic) [2]. First, 50
MS/MS ESI-QTOF spectra from collection opal with parent
peptide charge 2% were analyzed. The identified peptide
sequences were compared with referenced sequences in the
data collection.

For MASCOT search tool following setup was used -
database: SwissProt; taxonomy: human; enzyme: trypsine;
missed cleavages: 1; fixed modifications: Carbamidomethyl
C (+57.01 Da); variable modifications: Oxidation M (416
Da), Gln—pyro-Glu for N-term Q (—17.016 Da) and Deami-
dated N, Q (+1 Da); peptide charge: 27; mass: monoiso-
topic; peptide mass tolerance: 1.2 Da; fragments mass tol-
erance: 0.2 Da. Settings for ProteinProspector were identi-
cal [17].



We employed maximum and Hausdorff distances in the
algorithm for searching peptide modifications, while logarith-
mic distance was used in algorithm that did not used peptide
modification. The database held 47781 human protein se-
quences (2427652 peptide sequences) in order to simulate
free available searching tools. The heuristic based on y-ions
positions was used.

Following modifications of aminoacids were searched for
- {C, M, Q, N V Q} corresponding to average radiuses of
the set of interval queries {57.01,16,17.016,1}. Radiuses
for interval queries were defined with tolerance £0.1 for
each average value. Other settings - vectors dimension: 3;
M-tree inner nodes capacity: 50 items; M-tree leaf nodes
capacity: 66 items; maximum of window shifts: 10; range
query radius for maximum and Hausdorff distance: 10.0;
range query radius for logarithmical distance: 2.0.

. max. dist. Haus. dist .
Searching type + int. queries | + int. queries log. dist.
Peptides found 26 (52%) 28 (56%) 24 (48%)
Search time (M-tree) 149.1 ms 165.3 ms 263.6 ms
Search time (seq.) 2955 s 3579 s 1576 s
Time of indexing 31.1 ms 34.3 ms 23.6 ms
Nodes read 3.32% 3.80% 11.15%
Selectivity 0.27% 0.28% 0.10%

TABLE II

COMPARING WITH EXISTING METHODS.

The MASCOT search tool identified 34 (68%) peptide se-
quences and guaranteed the results for 31 (62%) of them. The
ProteinProspector identified 36 (72%) peptide sequences.
The detailed statistics for M-tree are proposed in the table
II (searching times, nodes read and selectivity are average
values per one spectrum, time of indexing is average value
per one peptide sequence). Times of identification could not
be compared with MASCOT and ProteinProspector, because
these informations were not available.

The number of identified peptides by M-tree is comparable
with existing search tools, even thought simple heuristic
for selecting vectors from experimental spectra and simple
scoring system were used. The number of readed nodes is
for alternative with maximum or Hausdorff distance a little
lower than for logarithmical distance. The speed up of M-tree
against the sequential algorithm is around 103.

V. CONCLUSIONS AND FUTURE WORK

An approch for preprocessing the proteins or peptides
sequence database using metric access methods was proposed
in this work. The logarithmical distance was defined and an
algorithm for searching peptide modifications using set of
interval queries was introduced. Finally, two heuristics were
designed for creating the query objects from experimental
spectra. First is based on y-ions positions, the other on
searching complementary b and y-ions.

The quality of identification is slightly worse in compar-
ison to nowadays most widely used search engines but the

overall setup of our algorithm enables using more sophisti-
cated heuristics, new metrics and scoring shemes definitely
open possibilities for a further research.
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