
Density-Based Classification of Protein Structures Using Iterative TM-score

David Hoksza, Jakub Galgonek
Department of Software Engineering

Charles University in Prague, Faculty of Mathematics and Physics
Prague, Czech Republic

Email: {david.hoksza, jakub.galgonek}@mff.cuni.cz

Abstract—Finding similarity between a pair of protein
structures is one of the fundamental tasks in many areas of
bioinformatical research such as protein structure prediction,
function mapping, etc. We propose a method for finding
pairing of amino acids based on densities of the structures
and we also propose a modification to the original TM-score
rotation algorithm that assess similarity score to this alignment.
Proposed modification is faster than TM and comparably
robust according to non-optimal parts in the alignment. We
measure the qualities of the algorithm in terms of SCOP
classification accuracy. Regarding the accuracy, our solution
outperforms the contemporary solutions at two out of three
tested levels of the SCOP hierarchy.

Keywords-protein structure, TM-Score, SCOP, classification

I. INTRODUCTION

Proteins and their interactions are crucial for every living
organism. To be able to understand protein interactions and
their evolution, the study of protein structures is inevitable.
In face of large number of determined protein structures in
the PDB [2] a need for certain form of organization of these
structures emerged. From all the classifications, manually
curated hierarchical evolutionary classification SCOP [12]
was established as the gold standard for organizing protein
structures. The hierarchy contains four levels - family, su-
perfamily, fold and class. Proteins in the same family can
have high sequence similarity (> 30%) or lower sequence
similarity (> 15%) with very similar function or structure.
Proteins sharing common evolutionary origin (based on
structural and functional features) but differing in sequence
reside in the same superfamily. Structures having same major
secondary structures in similar topological distribution are
in the same fold. And finally, similar folds are grouped into
classes.

In the face of growing size of PDB, there became a need
to automate the work of a human expert, hence being able to
asses a correct classification to a newly discovered protein
automatically. This task facilitates the process of determina-
tion of protein function (which is grossly determined by the
structure) since establishing a similarity class gives a hint to
the function of the protein.

This research has been supported in part by Czech Science Foundation
(GAČR) project Nr. 201/09/0683 and by institutional research plan number
MSM0021620838.

Algorithms solving structural similarity problem usually
describe protein structures by a set of features based on
3D distances of proteins’ amino acids (and sometimes
other qualities such as amino acid burial, solvent exposure,
hydrophobicity, secondary structure elements - SSE, etc.).
Purpose of these features is to catch the protein structure
as closely as possible and use them to describe similarity
of a pair of proteins in terms of partial similarities of the
amino acids (hence features by which they are represented).
Since protein structures do not have a fixed coordinate frame,
features (that are independent on the absolute position in
space) are usually used to find matching pairs of amino
acids in the respective proteins. Given the alignment, an
algorithm is used to rotate and translate one of the structures
to optimally fit the other. Here, the optimality is expressed
in the sense of the distance function (various methods can
use various distance functions) that has to be minimized or
maximized. It has been shown that finding an optimal pairing
of amino acids is NP-hard [11].

In this paper, we approach both problems - we propose
an algorithm for pairing amino acids (sections II-A, II-B)
and this pairing is forwarded into an improved algorithm
for computing TM-score (section II-C).

Lets revisit few well known algorithms used for com-
parison of protein structures. DALI [8], one of the first
methods to compare protein structures, employs matrix of
inter-residual distances and uses its parts to find similar
substructures that are utilized for finding the alignment by
Monte Carlo algorithm. CE [15] utilizes aligned fragment
pairs (AFP) to describe pairs of consecutive residues in both
structures sharing substantial structural similarity and these
pairs are then connected to obtain the alignment. Another
well known example is SSAP [17] which utilizes dynamic
programming (DP) to asses similarity to pairs of amino acids
which are represented by so-called views (vector of distances
to all the other amino acids). Optimal paths in the individual
DP matrices are used to fill in DP matrix at second level that
outputs the final alignment.

Now, we will briefly describe newer algorithms to which
we will compare our solution of the problem. The most
well known algorithm is probably TM-align [19], since
it is the solution with which the TM-score [18] is usu-
ally presented. TM-score is considered as the standard for

evaluating similarity of two structures given an alignment
(see section I-A). TM-Align uses three initial alignments
achieved by DP based on SSEs and/or distances of Cα

amino acids. For these alignments TM-score rotation matrix
is computed and used as the basis for scoring matrix for
further iterative steps of the DP. Vorolign [3] uses global DP
solution where scoring matrix is based on features obtained
from Voronoi tessellation. The same collective of authors
presented later a solution called PPM [5]. PPM identifies
core blocks (blocks in the two structures sufficiently similar)
which are then used to create a graph of core blocks. That
path in the graph is chosen, that minimizes the cost of
mutation. Finally, the most recently presented solution is
Vorometric [14]. Vorometric achieves in general the highest
classification accuracy and (similarly to Vorolign) employs
Voronoi contacts enriched with SSE information to obtain
a metric scoring matrix enabling indexing of global DP
computations, thus highly increasing classification speed.

A. Protein Structure Similarity Measures

Probably the most often employed measure is the root
mean square deviation (RMSD). Given the alignment, the
optimal superposition minimizing RMSD distance can be
found in polynomial time by Kabsch algorithm [10]. In
RMSD, distances (after translation) among paired amino
acids are computed and then aggregated to get the distance:

RMSD =

√√√√ 1
N

N∑
i=1

di
2. (1)

N stands for the length of the alignment, di for the distance
between ith pair of aligned amino acids.

But such a distance could be easily influenced by outliers
(partial distances being far from average) and is not sensitive
to highly conserved local substructures. To handle these
issues, TM-score [18] was proposed which puts emphasis
on closer pairs by weighting them higher. The superposition
is obtained by its own algorithm exploiting Kabsch (see
section II-C for details and optimalizations). TM-score value
(to evaluate quality of the superposition) is defined as:

TM-score =
1

LT

LA∑
i=1

1

1 +
(

di

d0

)2 . (2)

Let’s assume that TM-score is used for classification
purposes where an unknown structure (target) is being
classified. Then LT stands for length of this structure, LA

is length of the alignment, di distance between ith pair of
aligned amino acids and d0 is a normalization parameter
(see [18] for details).

II. METHODS

In this section we describe our approach to protein
structure alignment which consists of finding best possible

alignment of amino acids based on density of residues.
Afterwards we revisit the TM-score algorithm for finding
optimal superposition based on given alignment presented
in [18].

The alignment is the crucial component of the process of
superposing protein structures. Given a meaningless align-
ment, no method is able to provide a good superposition.
Since the problem is NP-hard, only heuristics are employed
to find the alignment. Our proposed heuristic understands
individual amino acids as viewpoints from which the rest of
the protein is viewed. Then we pair similar viewpoints from
respective protein structures with the help of local or global
dynamic programming.

A. Protein Structure Representation
Our protein structure representation is based on distances

and density of the amino acids (their Cα atoms) that we
presented in [7]. A protein structure (of size n) is represented
by a set of n feature vectors each of them describing
the neighborhood of an individual amino acid. We present
several semantics of feature vectors based on density of
amino acids in nested 3-dimensional rings with the center in
the amino acid from which the protein is viewed (see Fig. 1).
Based on widths or perimeters of those rings, feature vectors
are extracted which we call viewpoint tags (VPT) since they
are blueprints of the protein according to given amino acids.
The description of the VPT semantics follows.

Figure 1. Visualization of a protein with PDB ID 1apc in 2D (vertices on
the curve correspond to Cα residues of individual amino acids; dens(vp[2])
equals number of dots in ring2).

Let vp represent a particular viewpoint, then vp[i] stands
for the ith ring, rad(vp[i]) for the distance from the view-
point to the further edge of the ith ring, width(vp[i]) =
rad(vp[i]) − rad(vp[i − 1]) (width(vp[0]) = rad(vp[0]))
and let dens(vp[i]) be the density (sum) of the residues
in the ith ring (see Fig. 1). Finally, let V PT [i] be the ith

coordinate of the feature vector (viewpoint tag). Based on
these terms, we propose several VPT semantics.

• sRad: For sRad (radius based semantics) holds:
– ∀i, j : dens(vp[i]) = dens(vp[j]) = p
– ∀i : V PT [i] = rad(vp[i])

where p is a user-defined parameter representing per-
centage of amino acids in the protein.

• sDens: For sDens (density based semantics) holds:
– ∀i, j : width(vp[i]) = width(vp[j]) = w
– ∀i : V PT [i] = dens(vp[i])

where w is a user-defined parameter representing width
of the rings in Å.

• sRadSSE, sDensSSE: s*SSE is identical to s* except
for semantics of vp which slightly differs. Only residues
belonging into an α helix or a β sheet are taken
into account when defining viewpoints and moreover
residues from distinct SSE types are stored separately.
Hence dimension of the VPT increases twice. ith

ring is represented by V PT [2i] (α type residues) and
V PT [2i + 1] (β type residues). V PT [i] is defined
equivalently to the sRad (sDens) VPT semantics.

• sDir: For sDir (direction based semantics) holds:
– ∀i, j : width(vp[i]) = width(vp[j]) = w
– ∀i : V PT [i] =

∑
(pairs of consequent residues in

the ith ring with the orientation from the vp)
where w is a user-defined parameter representing width
of the rings in Å. sDir semantics aims to detect shape
of the curve within the bounds of the density/distance
approach.

We utilize weighted euclidean distance for VPTs com-
parison. Weighting is used for emphasizing the fact that
for assessing similarity to a pair of viewpoints, their close
neighborhood is more important than the more distant one.
Hence, our weighting scheme favors the close neighborhood
by putting more weight on the first few coordinates. Specif-
ically, for ith coordinates of the feature vectors, we define
weighting scheme w as w(i) = n− log(i).

B. Finding an Alignment

Using VPTs and distance functions from section II-A
we apply DP to find optimal pairs of amino acids (similar
viewpoints) following sequence order. This solution can
resemble SSAP [17], but despite SSAP we do not need to
accomplish two levels of DP, since our viewpoints based on
VPTs substitute the first level of DP. We compute distances
between all pairs of VPTs in the given proteins and these
are stored in a matrix that is subsequently used as scoring
matrix for the DP phase. Moreover, in contrast to SSAP we
use variable gap costs and modified TM-score for scoring.

1) Needleman-Wunsch (Global Alignment): Needleman
and Wunsch (NW) [13] is a DP programming algorithm
that was originally invented to optimally align two protein
sequences given a substitution (distance) matrix (expressing
similarity of pairs of amino acids). The core of the algorithm
is a recursive function deciding whether ith and jth letters

should be aligned of whether a gap should be introduced
into one of the sequences. Originally, NW was proposed as
a maximization problem where similar amino acids scored
higher and gap penalties were usually negative. In order to
use NW with VPTs we replace the max with min function
because our substitution matrix S contains lower values for
similar pairs of viewpoints, hence optimal alignment is that
one having minimal overall score.

2) Smith-Waterman (Local Alignment): To be able to
concentrate more on conserved parts of compared protein
structures we also use Smith and Waterman (SW) algo-
rithm [16]. SW was also proposed for protein sequences
to find highly similar (conserved) subsequences.

Using SW with our algorithm is not so straightforward
as using NW. If minimization would be the only change
to the algorithm than, because of adding zero (minimum
value ensuring locality of the alignment) to the recursive
formula, each alignment of length at least one would score
higher then zero and hence would be impossible to achieve.
In order to be able to utilize local alignment we keep the
maximization but modify the substitution matrix. At first we
modify the cells so that lower values imply lower similarity
by S[i, j] = c/S[i, j] (c being a constant value). Moreover,
median µ is computed from the modified values and 3

4 ∗ µ
(empirically determined) is subtracted from each value in
S. So we introduce negative values into the scoring matrix
inevitable for local alignment to behave correctly.

3) Gap Costs: Both types of alignment allow using
different costs for opening a gap and extending an already
opened gap. In all algorithms, we are aware of, this price is
constant. But since the substitution matrix is not constant in
our case (as it usually is for sequence alignment algorithms),
the gap costs should not be constant either. For this reason,
we employ variable gap costs (varying for each single pair of
structures) that was empirically determined as OGP = µ for
open gap penalty and EGP = µ/2 for extend gap penalty.

C. Scoring

As stated earlier, the quality of the final superposition is
strongly dependent on the initial alignment that is passed
to the superposition method. But this method itself can
be robust regarding non-optimalities in the alignment. For
example with the same set of alignments we are able to
achieve higher classification accuracy with TM-score than
with RMSD. It is not only consequence of the formula
itself but also the transformation procedure that superposes
the structures (to this superposition the formula is applied).
Hence, we not only use the TM-score formula but we also
improve the rotation procedure (by adding iterative steps of
DP) to increase the robustness of the TM-score as a whole.
Moreover, we propose a modification in order to increase
speed of the algorithm causing only a small or no decrease
of the classification accuracy.

0.
00

0.
01

0.
02

0.
03

Difference of Heuristics

TM−score

A
ve

ra
ge

 d
iff

er
en

ce
 fr

om
 o

rig
in

al
 T

M

0.0 0.2 0.4 0.6 0.8 1.0

FAST
FAST_SSE

Figure 2. The average difference of FAST and FAST SSE modifications
according to the full TM-score (y-axis shows the average decrease of the
score).

1) Reducing the Number of Initial States of TM-score:
One of the problems of the TM-score is the absence of a
fast algorithm for computing the superposition of the align-
ment. The algorithm presented in [18] is a relatively slow
heuristics. Its main idea lies in finding such a cut (subset) of
the input alignment whose RMSD superposition maximizes
the TM-score formula.1 The algorithm uses various initial
cuts of the alignment. For each, its RMSD superposition and
TM-score according to this superposition are computed and
a new cut of the alignment is created. The new cut includes
those pairs of the alignment that are spatially near in the
superposition. The process is repeated until stabilization of
the cuts (two subsequent cuts are identical) or maximum
number of iterations (typically 20) is achieved. In the end,
from all the superpositions that one maximizing TM-score
is returned. Hence, the main factor influencing speed of
the algorithm is the number of initial cuts. The algorithm
examines initial cuts of lengths L, L/2 . . . max(L/25, 4),
L being length of the input alignment. For each length, all
possible continuous cuts of given length are taken.

In order to speed up the algorithm, we reduce number of
the initial cuts. In an extreme variant (called FAST), we use
only one initial cut that includes the whole (initial) alignment
(with such an approach, quality of the initial alignment
and similarity of the proteins should be considerably high).
In other variant (called FAST SSE), we take the whole
alignment as in the previous variant and its cuts having pairs
coming from identical SSEs. The reason for considering
those cuts is based on the assumption that cuts with this
property should be included in the optimal alignment.

In general, FAST and FAST SSE approximations show
worse results than the full TM-score algorithm. However,
the level of decrease of the TM-score value is dependent
on similarity of the proteins (see Fig. 2). For proteins being
significantly similar, which are interesting for us, full TM,
FAST and FAST SSE give comparable results.

1Superposition of the cut is then applied to the original alignment.

Figure 3. Superposition and alignment (aligned residues connected by
black bars) of the proteins d1nyef and d1n2fa before (a) an after (b)
iterative DP (with TM-scores 0.56553 and 0.70329).

In order to classify a query protein, we find the most simi-
lar protein in the database. As stated in preceding paragraph,
for structurally similar proteins full TM and FAST* variants
differ only slightly. We employ this quality and use FAST*
heuristics as a prestep since they are much faster than the
full TM (see III-B). The database is scanned with FAST*
heuristics and then one of the following methods is applied
to pick up database proteins (candidate set) that are to be
aligned to the query with the full TM-score method:

• top kNN (k nearest neighbors) fitraltion - k most similar
proteins with the query are further examined

• range filtration - only proteins in a given distance from
the most similar protein are further examined2

2) Iterations of TM-score: One of the major qualities
of the TM-score formula lies in concentrating on strong
local structural similarities. Hence, an alignment with highly
similar regions shows high TM-score. On the other hand, a
superposition looking optically well (Fig. 3a3) can obtain
lower TM-score than it should according to the look. In
such case, correction of the alignment by DP should increase
the TM-score value. Similarly to [19], we employ NW with
scoring matrix S, defined as:

S[i, j] =
1

1 +
(

dij

d0

)2 . (3)

dij being the euclidean distance of the ith and jth residues
of the proteins and d0 the normalization parameter.

The optimal path through the DP matrix represents the
alignment having best TM-score value according to the given
superposition. We modify NW to increase speed and to avoid
extensive modifications in the alignment by considering only
an area (belt) in the DP matrix with a constant width going
along the original alignment (we set width of the belt to 21).
Based on the newly obtained alignment, the whole process
of computing TM-score superposition can be iteratively
repeated (we run two iterations of DP). Superposition after
two DP iterations demonstrates Fig. 3b.

2Being more effective than the more common method considering
proteins in a given distance from the query since it is more query-specific.

3Image generated by VMD [9].

III. EXPERIMENTAL EVALUATION

To evaluate our method and to compare it to other
algorithms, we employ simple classification accuracy (CA
- ratio of proteins classified into the correct SCOP “fam-
ily”) and precision-recall curves in our experiments. If not
otherwise stated, our algorithm uses sDens semantics (8
rings each having width 3Å) to extract feature vectors4. The
machine running experiments was 2.3 GHz 4xQuad-Core
AMD Opteron CPU, 64GB RAM with Red Hat Linux Server
5.3.

Using dataset originally presented in [3] (also used in [5]
and [14]) (CA of other methods is acquired from these
papers) allows us to compare our method to the best con-
temporary solutions. This dataset contains 979 test proteins
present in version 1.67 of ASTRAL compendium [4] (based
on SCOP classification) but not present in version 1.65. Test
proteins were scanned against ASTRAL25 (each pair of pro-
teins sharing no more than 25% sequence identity) version
1.65 database containing 4357 objects, evaluating number
of correctly classified proteins into family, superfamily and
fold according to the SCOP classification.

A. Classification Accuracy (CA)

Methods to be compared to our solution include
BLAST [1] (used with its standard settings), CE [15],
PPM [5], TM-align [19], Vorolign [3] and Vorometric [14]
(its TM variant applying TM-score superposition).

In Tab. I, db-iTM represents our method with fast iterative
TM (TM FAST). Original TM score rotation algorithm
(exploiting sDens semantics) is marked as db-TMorig and
db-iTMorig is its iterative version. The results demonstrate
superiority of db-iTMorig and db-iTM in superfamily and
fold CA. On family level, Vorometric, PPM as well as
Vorolign outperform our solution which is probably caused
by not taking sequence into account at all (as stated earlier,
SCOP families are largely determined by sequence iden-
tity). We can observe poor results of BLAST (exclusively
sequence based method) which can be definitely attributed
to the level of difficulty of the test set aiming at low sequence
similar proteins.

4The values or parameters of the semantics are based on results in [7].

Table I
CLASSIFICATION ACCURACY ON SCOP LEVELS.

Family Superfamily Fold
db-iTM 86.4 95.6 98.0
db-iTMorig 87.0 95.8 98.1
db-TMorig 85.4 93.4 96.7
Vorometric-TM 90.7 94.9 97.6
PPM 88.3 94.5 97.5
Vorolign 86.4 92.4 97.7
TM-align 83.8 92.6 95.9
CE 84.6 91.9 94.1
BLAST 48.9 52.5 52.8

kNN Filtering

Filter set size

●

●
●

●

● ●
●

● ●
● ●

0 1000 2000 3000 4000

0
10

0
20

0
30

0
40

0

0.
91

0.
92

0.
93

0.
94

0.
95

0.
96

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

T
im

e
pe

r
cl

as
si

fic
at

io
n

(s
)

● FAST − Accuracy
FAST − Time
FAST_SSE − Accuracy
FAST_SSE − Time

Range Filtering

TM−score range

●

●
●●

●
●

●

●

●

●

●

●

●●
●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0.0 0.2 0.4 0.6 0.8 1.0

0
10

0
20

0
30

0
40

0

0.
91

0.
92

0.
93

0.
94

0.
95

0.
96

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

T
im

e
pe

r
cl

as
si

fic
at

io
n

(s
)

● FAST − Accuracy
FAST − Time
FAST_SSE − Accuracy
FAST_SSE − Time

Figure 4. Impact of the prefiltration candidate set size on the runtime and
CA (the upper dashed line represents runtime of the full TM version, the
lower dotted line represents its CA).

We believe that the accuracy of our method lies in quality
of the initial alignment and in iterative use of the TM-
score (where using the belt further increases the accuracy
by concentrating on polishing the found alignment instead
of seeking for other possibilities). Other methods, such as
Vorolign and Vorometric, use TM-score formula for the
evaluation of their superpositions but these superpositions
are not achieved with the help of the TM-score algorithm
but with Kabsch (RMSD) algorithm. Avoiding the TM-score
transformation algorithm is understandable since its runtime
in the original version is very high which we investigate in
further section.

B. Speed-up Evaluation

Tab. I shows that with the db-iTM we are able to achieve
comparable accuracy to the db-iTMorig . The advantage of
TM FAST is its speed which is counterbalanced with the
accuracy decrease (db-iTMorig takes 406s whereas db-iTM
takes only 12s). But we are able to noticeably decrease
runtime of the db-iTMorig by prefiltration (see II-C1) whilst
keeping the original accuracy. Fig. 4a shows that for pre-
filtration set size of about 850 (hence for the whole DB
db-iTM is computed and 850 top proteins are verified by db-
iTMorig) the accuracy is identical to db-iTMorig . For such a
set size the runtime is 152s, hence less than 50% of the run-
time of the full version. Using range prefiltration, the results
are even better since when CA of the filtration method hits
the accuracy of full TM the runtime is 26s in case of using
TM FAST for prefiltration and 24s using TM FAST SSE.
That means we are able to achieve accuracy of the full TM
method in only 6% of its time.

C. Precision-Recall Experiments

More practical for real is a method returning multiple
results/proteins (instead of the classification only) which can
be manually revisited. Among those returned answers should
of course prevail correct classifications. Information retrieval
(IR) field offers utility to evaluate quality of the method ac-
cording to this requirement - precision-recall curves. In our
case, precision is defined as #correctly classified proteins

#retrieved proteins

and recall as #correctly classified proteins
#proteins in the query’s “family” . In Fig. 55

precision-recall curves are shown belonging to sRad(SSE),
sDens(SSE) and sDir semantics not using prefiltration (for
non-SSE semantics, results for both local and global algo-
rithms to obtain the initial alignments are shown). At most
of the recall levels, sDensSSE semantics dominates but on
low recall levels the dominate semantics is sDens which is
why we use it in the CA experiments. We can also see that
using local DP (SW) is more suitable than using global one
(NW).

Precision−recall

Recall

P
re

ci
si

on

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

sDir(dim=14,width=3)+SW
sRad(dim=14,pct=6)+SW
sDens(dim=8,width=3)+SW
sRadSSE(dim=14,pct=6)+SW
sDensSSE(dim=20,width=3)+SW
sDir(dim=14,width=3)+NW
sRad(dim=14,pct=6)+NW
sDens(dim=8,width=3)+NW

Figure 5. Precision-recall curves for various VPT semantics (dim = number
of rings, width = width of a ring, pct = percentage of amino acids in a ring).

IV. CONCLUSION

We proposed a novel algorithm aimed at classification
of protein structures. The novelty of the method lies in
using density-based representation of protein structures to-
gether with dynamic programming. Resulting alignment is
forwarded to TM-score rotation procedure. Based on the
result, the alignment is repaired by global dynamic program-
ming with belt bounding the alignment. This modification
increases both speed and accuracy. We also proposed modifi-
cation of the TM-score rotation procedure highly increasing
the speed of the algorithm causing only slight deterioration
of the accuracy. Finally we enhanced the method with
prefiltration step that leads to a fast method outperforming
other algorithms at the superfamily and fold level6.

REFERENCES

[1] S. F. Altschul, T. L. Madden, A. A. Schffer, R. A. Schłffer,
J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman. Gapped
blast and psi-blast: a new generation of protein database
search programs. Nucleic Acids Res, 25:3389–3402, 1997.

[2] H. M. Berman, J. D. Westbrook, Z. Feng, G. Gilliland, T. N.
Bhat, H. Weissig, I. N. Shindyalov, and P. E. Bourne. The
protein data bank. Nucleic Acids Research, 28(1):235–242,
2000.

5Only our solution is presented here since we were not able to obtain
source codes of the other methods.

6Preliminary research on topic of further speed-up has already been
discussed in [6].

[3] F. Birzele, J. E. Gewehr, G. Csaba, and R. Zimmer. Vorolign
- Fast Structural Alignment using Voronoi Contacts. Bioin-
formatics, 23(2):e205–e211, 2007.

[4] J. Chandonia, G. Hon, N. Walker, L. Conte, P. Koehl,
M. Levitt, and S. Brenner. The ASTRAL compendium in
2004. Nucleic Acids Research, 32:D189–D192, 2004.

[5] G. Csaba, F. Birzele, and R. Zimmer. Protein structure
alignment considering phenotypic plasticity. Bioinformatics,
24(16):i98–i104, 2008.

[6] J. Galgonek and D. Hoksza. On the effectiveness of distances
measuring protein structure similarity. In SISAP. IEEE, 2009.

[7] D. Hoksza. DDPIn - Distance and Density Based Protein
Indexing. In CIBCB, pages 263–270. IEEE, 2009.

[8] L. Holm and C. Sander. Protein structure comparison by
alignment of distance matrices. J Mol Biol, 233(1):123–138,
September 1993.

[9] W. Humphrey, A. Dalke, and K. Schulten. VMD: Vi-
sual molecular dynamics. Journal of Molecular Graphics,
14(1):33–38, February 1996.

[10] W. Kabsch. A solution for the best rotation to relate two sets
of vectors. Acta Crystallographica Section A, 32(5):922–923,
Sep 1976.

[11] R. H. Lathrop. The protein threading problem with sequence
amino acid interaction preferences is np-complete. Protein
Eng, 7(9):1059–1068, September 1994.

[12] A. G. Murzin, S. E. Brenner, T. Hubbard, and C. Chothia.
Scop: a structural classification of proteins database for the
investigation of sequences and structures. J. Mol. Biol,
247:536–540, 1995.

[13] S. Needleman and C. Wunsch. A general method applicable
to the search for similarities in the amino acid sequence of
two proteins. Journal of Molecular Biology, 48(3):443–453,
1970.

[14] A. Sacan, I. Toroslu, and H. Ferhatosmanoglu. Integrated
search and alignment of protein structures. Bioinformatics,
24(24):2872–2879, 2008.

[15] I. N. Shindyalov and P. E. Bourne. Protein structure alignment
by incremental combinatorial extension (CE) of the optimal
path. Protein Eng, 11(9):739–747, September 1998.

[16] T. F. Smith and M. S. Waterman. Identification of common
molecular subsequences. J Mol Biol, 147(1):195–197, March
1981.

[17] W. R. Taylor and C. A. Orengo. A holistic approach to protein
structure alignment. Protein Eng, 7(2):505–519, 1989.

[18] Y. Zhang and J. Skolnick. Scoring function for automated
assessment of protein structure template quality. Proteins:
Structure, Function, and Bioinformatics, 57(4):702–710.

[19] Y. Zhang and J. Skolnick. TM-align: a protein structure
alignment algorithm based on the TM-score. Nucleic Acids
Res, 33(7):2302–2309, 2005.

