
Construction of Tree-based Indexes for
Level-Contiguous Buffering Support

Tomáš Skopal, David Hoksza, Jaroslav Pokorný

Charles University in Prague, FMP, Department of Software Engineering
Malostranské nám. 25, 118 00 Prague, Czech Republic

{tomas.skopal, david.hoksza, jaroslav.pokorny}@mff.cuni.cz

Abstract. In multimedia databases, the spatial index structures based
on trees (like R-tree, M-tree) have been proved to be efficient and scalable
for low-dimensional data retrieval. However, if the data dimensionality is
too high, the hierarchy of nested regions (represented by the tree nodes)
becomes spatially indistinct. Hence, the query processing deteriorates
to inefficient index traversal (in terms of random-access I/O costs) and
in such case the tree-based indexes are less efficient than the sequential
search. This is mainly due to repeated access to many nodes at the top
levels of the tree. In this paper we propose a modified storage layout
of tree-based indexes, such that nodes belonging to the same tree level
are stored together. Such level-ordered storage allows to prefetch several
top levels of the tree to the buffer pool by only a few or even a single
contiguous I/O operation (i.e. one-seek read). The experimental results
show that our approach can speedup the tree-based search significantly.

1 Introduction

The research in database indexing remains still a hot topic – its importance even
increases with the emergence of new data types like multimedia data, time series,
DNA sequences, etc. For such data, the tree-based indexes are often employed,
e.g. the R-tree, X-tree, M-tree, and many others [1, 4]. While there have arisen
new criteria for retrieval efficiency, the I/O costs still represent the major effi-
ciency component, especially in multidimensional databases. Simultaneously, the
complexity of the new data makes them hardly indexable by tree-based struc-
tures, so in many papers the sequential search is referred to perform better (in
terms of I/O costs) than any tree-based index [16].

1.1 Problem Analysis

We start with a bit of history on magnetic hard disk drives. Despite the recent
boom of new storage media – e.g. flash or hybrid disks – the best (and cheapest)
medium for storage and indexing is still the magnetic hard disk drive (HDD) with
rotating platters and moving heads. Due to its construction, the I/O efficiency
of HDD depends on access time and transfer rate. The access time is determined
by the seek time (head moves to a track), settle time (precise head positioning)
and the latency (or rotational delay). The transfer rate is given by megabytes
per second of sequentially (contiguously) read/written data from/to a track.



While HDD capacity doubles every year and transfer rate increases by 40%,
the access time improves only by 8% (because of kinetic limitations of heads).
Todays HDD can be of 300GB capacity, 50MB/s transfer rate and 10ms access
time. With 8KB disk blocks (or pages) used by file systems, the fetching of a block
takes 10.16ms, so the access takes 98.5% of the total time. A contiguous fetch
of 800KB data takes only 2.5x the time needed for fetching 8KB data. However,
some two decades ago the HDDs exhibited different parameters, the access time
about 100ms and the transfer rate at about 150KB/s. Thus, a random access to
a disk block is relatively more expensive nowadays than some 20 years ago.

Sequential vs. Tree-based Indexing. The classic access methods have been
developed based on a traditional disk model that comes with simplifying assump-
tions such as an average seek-time and a single data transfer rate. An excellent
overview of these problems can be found in [15]. The B-tree or R-tree struc-
tures were developed in times of relatively cheap access costs (compared to the
transfer rates). The tree node size (mapped to a block) was 2 or 4KB, while
sequential reading of large data from HDD was not much more expensive than
reading the data by multiple random-access retrievals, e.g. 7s vs. 32s in case of
1MB of data and 4KB blocks. By query processing, a traversal of 1/5 (or less)
of the tree index sufficed to be faster than the simple sequential search. Today,
the tree-based querying must traverse less than 1/86 to overtake the sequential
search. Such a small proportion is achieved by B+-tree, or R-tree built on low-
dimensional data. However, complex data cannot be retrieved in such an efficient
way, because of their high dimensionality. Therefore, in modern applications the
sequential search (or sequential-based indexes like VA-file [16]) is reported as
more efficient (in terms of I/O costs) than indexing by tree-based structures.

How Large the Tree Nodes Should be? One can ask whether the access
times could be reduced simply by enlarging the tree nodes from few (tens) of
kilobytes to hundreds or even thousands. Then the number of nodes would be
much smaller and so the number of disk accesses would decrease. Here the prob-
lem is in the increased number of entries stored in the node (the node capacity).
Actually, this is possible for B-tree, but not for structures like R-tree or M-tree.
Unlike the B-tree where the node split operation is of linear complexity with the
number of entries, in R-tree or M-tree the complexity of node split is super-linear
because of (sub)optimal partitioning of entries. A high node capacity also leads
to worse approximations (e.g. MBRs in case of R-tree) in the parent node.

Second, although in B-tree the search in a single large node is fast because of
use of interval halving, this is not possible in R-tree or M-tree where no universal
ordering of entries is guaranteed. This has not to be critical in case of low-
dimensional R-tree where the tuples-in-query testing is fast, however, in M-tree
the sequential search within a node implies expensive distance computations.

1.2 Paper Contributions

In this paper we use level-separated buffering scheme which leads to more effec-
tive buffer utilization. Moreover, we introduce a modified split algorithm which



keeps the tree index level-contiguous, that is, nodes belonging to a certain level
in the tree are stored together. Such a modified index file layout allows to cheaply
prefetch the top levels of the tree and thus further decrease the access costs.

2 Tree-based Indexing

In this section we briefly summarize the structural properties of tree-based in-
dexes and their secondary storage, including buffering into main memory.

First of all, we assume ”region-based” redundant trees, where the data objects
are stored in the leaves, while each entry in an inner node represents a (spatial)
approximation of the appropriate subtree, e.g. an MBR in case of R-tree, or
hyper-sphere in case of M-tree. We also assume an inner node with m entries
(regions) has m children (see Figure 1a). Such assumptions are satisfied by R-
tree, M-tree, but not by the B-tree (which is not region-based).

Fig. 1. (a) Insert into leaf G0. (b) The resulting tree, split up to the root.

We subscript each node by a number of its level (level number), starting
by 0 at the leaf level (see Figure 1). Since indexes grow from bottom to top,
a node’s level number does not change. Besides the level number, each node
obtains an identifier. A node is stored at address (or offset) in index file which
is the identifier times node size (we omit the header of the index). The node size
is assumed to be the same for leaves and inner nodes and is given in kilobytes.

Inserting & Splitting. By standard insertion, a leaf is found into which a
new object is inserted. An overflowed leaf must be split between two leaves, one
keeping the old identifier, and a brand new leaf. The two new entries describing
two subtrees are inserted into the parent node (one entry is just updated). When
the parent node overflows, the splitting is repeated (possibly up to the root level).
The insertion with splits is presented in Figure 1. First, the leaf G0 is chosen for
insertion. The insertion raises a sequence of node splits (including the root).

Model Structure vs. Index File Layout. Note that the sequential ordering
of nodes in the index file (physical view in Figure 1a) does not preserve the
structure (the model view). This is because the new allocated nodes at the end
of the index file come from different tree levels after a sequence of splits. In the
optimal situation, the physical ordering exactly follows the model ordering given
by breadth-first traversal of the tree. With such an organized index file we would
be able to prefetch the neighboring nodes by a single contiguous read. Unfortu-
nately, the standard splitting strategy cannot preserve the physical ordering of



nodes in accordance with the model, because this would imply O(n) insertion
complexity (shifting many nodes), which is impracticable in most cases.

2.1 Standard Buffering & Prefetching

Like other database structures, also indexes use buffering [6] of blocks into mem-
ory frames. When a node is requested, its block is fetched from the disk and
stored in a frame of the buffer pool. If the same node is requested later, there is
a probability that it is still in the buffer, so we avoid an I/O operation. Since the
buffer is smaller than the total volume of requested nodes, there must be a re-
placement policy used, which chooses a node from the pool that will be released
in order to make space for a requested node. There have been many policies de-
veloped [11], like LRU (least recently used), MRU (most recently used), FIFO,
Clock, LFU (least frequently used), etc., each suitable for different database
conditions.

Because of reasons discussed in Section 1.1, we would like to access a large
amount of data in a single contiguous read/write operation. Instead of a single
node being requested, we could prefetch several additional nodes from the disk.
Such prefetching is actually provided by the HW cache of the HDD. Unfortu-
nately, the nodes are stored in the index file in very different order than is the
order of nodes in the tree model. Hence, it would be inappropriate to force the
prefetched nodes to be stored in the buffer pool, because such bulk-loading of
(possibly not utilizable) nodes would lead to release of many nodes from the
buffer which are (maybe) more likely to be requested than the prefetched ones.

3 Related Work

Typically, the tree-based indexes follow linear abstraction of HDD provided by
file system. The only factor that has to be minimized is the number of random-
access I/Os, i.e. number of blocks, each fetched from an arbitrary location on
the disk [7]. Most efforts in advanced database indexing have been spent on
improving filtering abilities with respect to the model (e.g. R-tree vs. X-tree
[1] or M-tree vs. PM-tree [14]). Although the filtering improvements have a
substantial impact on the overall efficiency (not only on the I/O costs), at some
point, further improving of the model is very hard. At that moment some lower-
level techniques have to be investigated, related to HW and data storage issues.

3.1 Buffering Techniques

The I/O costs can be substantially reduced by using appropriate buffering strate-
gies. The classic work on index buffering [10] suggests the LRU replacement pol-
icy for B+-tree as the most effective. Also for multidimensional indexes the LRU
policy has been proved as effective, we refer to [5] where an impact of buffering
on closest-pair queries in R-tree is discussed.

3.2 Dynamic Layout Rearrangement

A general approach to speedup data retrieval from HDD is the dynamic re-
arrangement of the storage layout [2, 9]. The main idea follows the assumption



that some access patterns are more frequent than other ones, so blocks belonging
to the same pattern should be stored together in order to minimize necessary
movements of disk heads. The organ-pipe arrangement [12] is an example of
such a layout. The rearrangement (also called shuffling [12]) resembles file de-
fragmentation for a specific access pattern, where the frequently accessed blocks
are moved together during data retrieval with a hope this access pattern will
occur again in the future. Although the dynamic rearrangement is a universal
method for data management, its usage in database indexing is limited due to
the absence of strong access patterns. Even if there exists an access pattern for
a particular user, a multi-user access to the index will spoil the efforts spent by
rearrangement because of many contradictory access patterns.

In our approach we use a kind of layout rearrangement, however, this one is
performed during the construction of the index (i.e. not during query processing).

3.3 Physical Designs

Some recent works leave the linear abstraction of HDD and exploit physical
properties of modern disks. In recent years, hard disks are manufactured with
zoned recording (or zoning), which groups adjacent disk cylinders into zones.
Tracks are longer towards the outer portions of a disk platter as compared to
the inner portions. Hence, more data can be recorded in the outer tracks when
the maximum linear density, i.e., bits per inch, is applied to all tracks. The
results are multiple physical zones in a disk, where seek times and data transfer
rates vary significantly across the zones. In [17] the authors optimize dynamic
multidimensional access methods (R*-tree) given a zoned disk model.

Another adjacent block utilization is presented in [13], however, the authors
deal with storage of multidimensional data rather than indexing. The key idea is
that the HDD is, in fact, a three-dimensional medium where the adjacent tracks
(either within a platter or within a cylinder) can be accessed efficiently.

The drawback of these methods is a requirement on specific system-level
software, that provides applications with access to adjacent portions on the disk.

4 Level-Contiguous Indexing

Unlike the proposals in Section 3.3, we use the classic linear abstraction of data
storage. Furthermore, we focus on indexes where complex queries are issued, i.e.
queries where a substantial volume of nodes at the top levels must be processed.
Hence, we do not consider point or interval queries on B+-tree, since such queries
result in simple one-path traversal. In other words, we assume an access pattern
where the inner nodes are accessed much more frequently than the leaves. Based
on the assumptions, we propose level-contiguous storage layout – an index stor-
age partially preserving the model ordering of nodes for only a little construction
overhead. In this layout the nodes are physically ordered by their level numbers.

4.1 Index Traversal Analysis
In the B+-tree, the most used query types are the point and interval queries de-
fined for single-key domains, where the traversal is guided along a single path in
the tree (an interval query must additionally search the leaf level), see Figure 2a.



Assuming that the queries are distributed uniformly, the probability that
a node at a level of B+-tree will be accessed is proportional to the number of
nodes at that level, i.e. a leaf has the smallest probability and the root has 100%.
However, some tree-based indexes are used for multidimensional or metric data,
e.g. R-tree, X-tree, M-tree, where the nodes represent regions in the indexed
space. On such data there is no universal ordering defined, and also the query
types are more complex. In particular, the R-tree is used for range query (or
window query) and the M-tree is often used for (k-)nearest neighbor query.

Since these structures index data which cannot be ordered (with respect to
all queries), the tree traversal goes not along a single path. More likely, to reach
all relevant data in the leaves, there must be multiple paths passed through (see
Figure 2b). The reason is that leaves relevant to a query are not clustered – they
are spread over the entire leaf level.

Fig. 2. (a) Point/interval search in B+-tree (b) Range/kNN search in R-tree or M-tree.

Since the nodes represent regions in the indexed space, the top-level nodes’
regions have large volume (they must cover all children regions, see Figure 3).
Then, during a query processing the nodes are checked against a query region
and those children are further processed, which overlap the query. Obviously,
the larger regions (nodes at the top levels) have greater probability to be ac-
cessed. With high-dimensional data, this means almost all top-level nodes are
accessed (due to the curse of dimensionality [1, 3]). Consequently, many random
accesses are performed when querying high-dimensional data, so large portions
of top levels are searched in randomized order. This is, in turn, often worse than
contiguous sequential search of the entire index file.

Fig. 3. Hierarchical space decomposition by (a) R-tree (b) UB-tree (c) M-tree

4.2 Level-Contiguous Index Storage Layout

In our approach, we focus on ”derandomization” of the I/O costs so that infre-
quent large contiguous I/Os are preferred over many random block I/Os. This
can be achieved by a modification of index storage layout, in particular by ensur-
ing that nodes are physically ordered by their level numbers (the order of nodes
within a single level does not matter). In such a way, we can read all the nodes



at several top levels by a single contiguous fetch, and store them into the buffer.
The idea makes use of adjusted node splitting. After an object has been inserted
such that some node splits occurred, a special algorithm (called SwapUp, see
Listing 1) is executed. The algorithm uses an array mLevelStartIndex, where its
i-th entry stores the index file position of the first node belonging to i-th tree
level. In principle, the algorithm propagates the new nodes (produced by split-
ting at the end of index file) in order to restore the ordering defined by level
numbers. This is realized by swapping the new (misplaced) nodes with some old
nodes which are located at first positions of a particular level in the index file.

Listing 1 (modified insertion algorithm, SwapUp algorithm)

method InsertObject(object o) {
// insert o into the tree (this also involves splitting of overflowed nodes)
. . .
// if some splits have occurred during the insertion, set splitCount = number of splits
if (splitCount > 0) then SwapUp(splitCount)

}
method SwapUp(integer splitCount) {

splitCount = splitCount - 1;
for (i = 0; i < splitCount; i++) {

integer swappedAtLevel = splitCount - i;
for (j = 0; j < swappedAtLevel; j++) {

SwapTwoNodesAt(mLevelStartIndex[i] + j,
mLevelStartIndex[i] + GetNodesCountAtLevel(i) + j + 1);

}
mLevelStartIndex[i] = mLevelStartIndex[i] + swappedAtLevel;

}
if (splitCount == treeHeight) then { // treeHeight is the number of levels except the root level

allocate mLevelStartIndex[splitCount];
mLevelStartIndex[splitCount] = 0;

}
}

Notes to the code: The SwapTwoNodesAt swaps the nodes defined by their
identifiers (positions in index) together with both parent nodes’ links pointing
to the swapped nodes. To quickly access the parent node, a parent identifier
must be additionally stored in each node. However, now also the parent identi-
fiers of the child nodes of the two nodes being swapped must be updated. The
GetNodesCountAtLevel returns the number of nodes at a given level before the
insertion.

The algorithm running is explained in Figure 4a, which is index file layout
related to the tree in Figure 1. Before insertion, the storage layout was level-
ordered (see the white part in Figure 4a-1). After insertion, the multiple splits
caused violation of the ordering (see the grey part). The SwapUp algorithm now
propagates the new nodes to correct positions. In Figure 4a-1, the new non-leaf
nodes are swapped with the first 3 leaf nodes stored in the index. Then, the two
remaining nodes are swapped with the first two level-1 nodes (see Figure 4a-2)
and finally, the new root node O3 is swapped with the old root N2 (Figure 4a-3).
The final index layout (let us denote it as level-ordered index ) is presented in Fig-
ure 4a-4, where the top (bottom, resp.) arrows denote which parents (children)
had to be updated with the new node’s identifier during the swapping-up.



Time Complexity. Suppose n is the number of objects in the tree (i.e.
O(log n) is the tree height). There is only O(log n) seeks performed during the
swapping, additional seeks are required for updating the links in parent/child
nodes. Thus, the worst-case complexity is O(log2n) when measured in block I/Os
as well as in seek operations.

Fig. 4. (a) Swapping-up the new nodes after insertion (which caused multiple splits).
(b) Top-level and Bottom-level buffer pools.

4.3 Level-Contiguous Buffering
As we have mentioned in Section 4.1, the nodes at top levels are the most
frequently accessed ones. It could appear that the LRU (LFU) replacement policy
keeps the top-level nodes in the buffer for a long time, since as the recently
(frequently) access nodes are considered the top-level nodes. However, when a
query is executed, the greatest amount of nodes read belongs to the leaf level
and the ”valuable” top-level nodes are replaced by the leaves, because these are
temporarily the most recently accessed ones.

Divided Buffer. Due to the obstacles caused by original LRU replacement
in a single buffer pool, we propose a buffer logically divided in two parts (see
Figure 4b). The first part stores a user-defined number of top-level nodes (the
top-level buffer), while once a node is loaded into top-level buffer, it will never
be replaced. The second part behaves as an ordinary LRU-based buffer for the
rest of nodes not buffered by top-level buffer (the bottom-level buffer).

Buffering the Top Levels. The top-level buffer can be populated either in-
crementally (by individual fetch requests of nodes) on an ordinary index, or in
a batch by prefetching certain volume of the level-ordered index file.

The prefetching itself can be accomplished in two ways. We can prefetch a
large portion of the index at the beginning of index usage (the bulk prefetching),
so that the entire top-level buffer is populated. Or, we can prefetch smaller (yet
sufficiently large) portions at the moment when a requested node is still not
loaded in the top-level buffer (the incremental prefetching). While the bulk vari-
ant minimizes the query time over many queries, the incremental one distributes
the prefetch load among several queries.



5 Experimental Results

To prove the benefits of level-contiguous storage layout, we have performed ex-
tensive experimentation with the R-tree and the M-tree. In the former case, the
testing platform was a Pentium4@3GHz, 1GB RAM, Maxtor OneTouch, Ultra
ATA 133, 250GB@7200 rpm, 8MB disk cache, avg. seek < 9.3ms, transfer rate
34 MB/sec. In the latter case we used Pentium4@3.6GHz, 1GB RAM, Seagate
Barracuda ST3200826A, SATA, 200GB@7200 rpm, avg. seek < 8ms, 8MB disk
cache, transfer rate 65MB/s. Both platforms were used with Windows XP sys-
tem with disabled file-system cache (the HDDs’ HW caches were enabled for
read), while both HDDs involved in tests were not system disks.

In addition to R-tree and M-tree, we have also performed the tests on se-
quential file to set up a baseline, where for sequential query processing we have
used a buffer of equal size as in case of the competitive R/M-trees. Most of the
tests were executed for 100 different query objects and the results were averaged.

5.1 R-tree Testbed
The first set of tests was aimed at indexing large synthetic multidimensional
datasets by the R-tree and its level-contiguous modification (denoted as LC index
in figures). There were 3 datasets generated, consisting of 3,000,000, 6,000,000,
and 10,000,000 5-dimensional tuples. The tuples were distributed uniformly
among 700, 800 and 1000 clusters, respectively. In Table 1 see the R-tree in-
dex characteristics.

Table 1. R-tree index statistics.

Index size (4kB nodes): 160–511MB Data objects: 3,000,000–10,000,000
Number of tree levels: 6–10 Node capacity: 92 in inners, 169 in leaves
Total buffer memory: 16,4MB Number of nodes: 7,679–19,723 inners,

(3.2–10,3% of index size) 31,545–104,810 leaves
LC construction time: 44min notLC constr. time: 27min
(for 3,000,000 dataset) (for 3,000,000 dataset)

Sequential file size: 82–245MB Buffer for seq. file: 16,4MB (6.7–13,5%)

Fig. 5. R-tree: Disk accesses and realtimes for increasing query selectivity.

The number of disk accesses for window queries with increasing query se-
lectivity (number of objects in the answer) is presented in Figure 5a. The label
TopBuffer=x% denotes a bulk-prefetch index with size of top-level buffer equal



to x% of all inner nodes (i.e. TopBuffer=0% means no top-level buffering, while
TopBuffer=100% means all inner nodes can be buffered). The bottom-level buffer
is maintained in the remaining buffer memory. As we can see, the LC index with
TopBuffer=8% outperforms the classic R-tree (”notLC” indexes) as well as LC
indexes with different TopLevel values. Note that we have utilized the top-level
buffering also in the notLC indexes, however, here the top-level nodes could not
be prefetched, they were accessed one-by-one.

In Figure 5b see the realtimes for the same situation. All the LC indexes
show almost 100% speedup when compared with notLC indexes. Surprisingly,
the LC indexes outperform the notLC indexes even in case that no top-level
buffering and prefetching is employed. In Figure 5c the realtimes show behavior
of LC/notLC indexes on the 10,000,000 dataset, and in Figure 6a see the disk
accesses on the 3,000,000 dataset.

We have also tested the impact of top-level buffering/prefetching with respect
to the order of issued queries. In Figures 6b,c see the average realtime costs
for queries with selectivity = 2 (5, respectively), according to the order of the
query in a query sequence (or query batch). We can observe the benefits of LC
indexes do not decrease in time. In Figure 6b the top-level nodes of LC indexes
were prefetched incrementally, by 100 nodes, but as we can notice, there is no
significant difference between prefetching incrementally or in a bulk (Figure 6c).

Fig. 6. R-tree: Disk accesses for increasing query selectivity and realtimes for typical
response of i-th query in a query batch.

5.2 M-tree Testbed

Second, we have implemented level-contiguous M-tree [4] and performed exper-
iments with the Corel [8] feature vectors (65,615 images). The dataset consisted
of 262,460 8-dimensional vectors, constructed by merging 4 feature representa-
tions (color and layout histograms, textures, color moments). The L1 distance
was used to measure image dissimilarity. See M-tree characteristics in Table 2.

In Figure 7a see the realtimes of kNN queries, with respect to increasing k.
Although the classic notLC M-tree gets worse than the sequential file already
at k = 15 (or k = 20 in case of M-tree with top-level buffering), the LC indexes
remain efficient up to k = 50. The impact of query batch size is presented in
Figure 7b, where the LC indexes do not deteriorate when compared with notLC
indexes, they get even better. We have also examined the influence of top-level



buffer proportion in the total buffer memory, see Figure 7c. We can observe that
increasing volume of top-level buffer improves the realtimes quite significantly.

Table 2. M-tree index statistics.

Index size (2KB nodes): 29MB Data objects: 262,460 (8D vectors)
Number of tree levels: 5 (root + 4) Node capacity: 19 in inners, 29 in leaves
Total buffer memory: 2.9MB (10%) Number of nodes: 1188 inners, 13180 leaves
LC construction time: 3.5min notLC constr. time: 2.8min

Sequential file size: 9MB Buffer for seq. file: 0.9MB (10%)

Fig. 7. M-tree: Realtimes for kNN queries depending on k, size of query batch, and
proportion of TopBuffer.

Finally, in Figure 8 see the structure of accesses to nodes in the tree-based
indexes. Besides the root node, which must always be accessed, we can see that
the nodes at top levels are accessed indeed frequently, especially in case of M-tree.
Thus, the arguments for top-node buffering and level-contiguous index layout
seem to be well-founded, and we can expect level-contiguous layout could be
beneficial also to other tree-based indexes, like X-tree, UB-tree and others.

Fig. 8. Structure of level accesses for queries in R-tree and M-tree.

In summary, the level-contiguous storage layout supports efficient utilization
of access patterns usual for tree-based indexes, so that they can exploit the ad-
vantage of contiguous disk reading (like sequential search does it). This property
dramatically reduces the random-access I/O overhead spent at top tree levels.

6 Conclusions

In this paper we have introduced level-contiguous storage layout for tree-based
indexes. The new layout allows to prefetch the frequently accessed nodes at the
top levels of any multidimensional or metric tree based on B+-tree. Moreover,



we have proposed divided schema for level buffering, where the prefetched top-
level nodes are stored separately and the replacement policies are not applied
to them. The experimental results show that the prefetching together with the
top-level buffering significantly improves the performance of query processing
(up to 200% speedup) at the costs of a moderate increase of construction costs
(about 30%).

References

1. C. Böhm, S. Berchtold, and D. Keim. Searching in High-Dimensional Spaces –
Index Structures for Improving the Performance of Multimedia Databases. ACM
Computing Surveys, 33(3):322–373, 2001.

2. S. D. Carson. A system for adaptive disk rearrangement. Software - Practice and
Experience (SPE), 20(3):225–242, 1990.

3. E. Chávez, G. Navarro, R. Baeza-Yates, and J. L. Marroqúın. Searching in metric
spaces. ACM Computing Surveys, 33(3):273–321, 2001.

4. P. Ciaccia, M. Patella, and P. Zezula. M-tree: An Efficient Access Method for
Similarity Search in Metric Spaces. In VLDB’97, pages 426–435, 1997.

5. A. Corral, M. Vassilakopoulos, and Y. Manolopoulos. The Impact of Buffering on
Closest Pairs Queries Using R-Trees. In ADBIS ’01: Proceedings of the 5th East
European Conference on Advances in Databases and Information Systems, pages
41–54, London, UK, 2001. Springer.

6. W. Effelsberg and T. Haerder. Principles of database buffer management. ACM
Transastions on Database Systems (TODS), 9(4):560–595, 1984.

7. V. Gaede and O. Günther. Multidimensional access methods. ACM Computing
Surveys, 30(2):170–231, 1998.

8. S. Hettich and S. Bay. The UCI KDD archive [http://kdd.ics.uci.edu], 1999.
9. H. Huang, W. Hung, and K. G. Shin. FS2: dynamic data replication in free disk

space for improving disk performance and energy consumption. In SOSP ’05:
Proceedings of the twentieth ACM symposium on Operating systems principles,
pages 263–276, New York, NY, USA, 2005. ACM Press.

10. L. F. Mackert and G. M. Lohman. Index scans using a finite LRU buffer: a validated
I/O model. ACM Transactions on Database Systems (TODS), 14(3):401–424, 1989.

11. R. Ramakrishnan and J. Gehrke. Database Management Systems, 3rd edition.
WCB/McGraw-Hill, 2003.

12. C. Ruemmler and J. Wilkes. Disk Shuffling, Technical Report HPL-CSP-91-30,
Hewlett-Packard Laboratories, 1991.

13. S. W. Schlosser, J. Schindler, S. Papadomanolakis, M. Shao, A. Ailamaki,
C. Faloutsos, and G. R. Granger. On multidimensional data and modern disks. In
4th USENIX Conference on File and Storage Technologies, pages 225–238, 2005.

14. T. Skopal, J. Pokorný, and V. Snášel. Nearest Neighbours Search using the PM-
tree. In DASFAA ’05, Beijing, China, pages 803–815. LNCS 3453, Springer, 2005.

15. J. S. Vitter. External memory algorithms and data structures: dealing with massive
data. ACM Computing Surveys, 33(2):209–271, 2001.

16. R. Weber, H.-J. Schek, and S. Blott. A quantitative analysis and performance
study for similarity-search methods in high-dimensional spaces. In VLDB ’98:
Proceedings of the 24rd International Conference on Very Large Data Bases, pages
194–205, San Francisco, CA, USA, 1998. Morgan Kaufmann Publishers Inc.

17. B. Yu and S. Kim. An efficient zoning technique for multi-dimensional access
methods. In TEAA 2006, LNCS 3888, Springer, pages 129–143, 2006.


