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Abstract. One of the most crucial discoveries in proteomics is that similar proteins (in both sequence and structure) handle similar biological functions. This knowledge together with growing size of databases of protein structures with known function is the reason why field of protein structural alignment has been very active in the last twenty years. To handle increasing amount of structures with unknown function, many algorithms for pairwise structural alignment have emerged. Together with tools for optimal superposition of protein structures, also measures for quantifying similarity and ways to represent features of individual structures has been proposed. In this paper we categorize measures, algorithms and present their main ideas.

Key words: protein structure, alignment, RMSD, protein databases, indexing.

1 Introduction
Protein structure alignment (correspondence between residues of pair of proteins) is an important task in many areas of structural biology because proteins secure many biological functions in a cell.
Proteins can be defined on four levels of complexity which are called primary, secondary, tertiary and quaternary structure. Primary structure describes proteins as linear sequences of amino-acids. Secondary structure describes proteins as local three-dimensional segments which are folded into specific repeated structures by hydrogen bonds. Tertiary structure moreover contains the atomic coordinates, hence spatial relations among the secondary structure elements (SSEs). Finally, quaternary structure consists of multiple polypeptide chains.
Similar proteins secure similar biological functions in organisms, hence function of a protein can be a clue to the function of another protein with an unknown structure. Because of the knowledge that structure is determined by its sequence, similarity is defined on all levels of the protein description. Thus, primary methods concentrated on similarity between sequences of amino-acids (which is easier then working with 3D structures). Nowadays, standard algorithm for such an alignment is BLAST [1]. BLAST is a heuristic developed because of growing size of protein sequence databases (optimal alignment is of quadratic complexity). Overview and comparison of different algorithms using sequence similarity can be found in [30][27]. 
Likening primary sequence alignment with the structural one has several drawbacks. One of them appears from the fact that aligning sequences works well just for sequences up to twilight zone [29], i.e. sequences with pairwise sequence identity higher than 20-35%. Another drawback when using primary structure stems from the assumption that similar sequences fold into similar structures (and therefore secure similar function). It turned out that this assumption might not be correct in some cases and in some areas researchers should treat this statement carefully. E.g. in [14][11], few pairs of proteins which show high structure similarity but low sequence correspondence were examined thoroughly. Even more surprisingly, there occur (not many) proteins with dissimilar structures aligning well according to their sequences [18]. And since structural alignment is often considered to be “gold standard” for sequence alignment or threading methods, such an inconsistence should be taken into account.

But from algorithmic viewpoint, sequence alignment is much easier than structure alignment. Complexity of finding optimal alignment (at least in mathematical point of view) is quadratic, but finding optimal correspondence between pair of protein structures is even NP-hard [19]. Even though, much attention is paid to the structural alignment because structure is considered to be more related to function of the protein than sequence, since SSEs are highly conserved throughout the evolution.
A summary on the topic of protein structural alignment was written in year 2000 [10] but many new algorithms have emerged since then. Our goal is to describe ideas of these new algorithms and tools together with the classical ones. 
2 Protein Structure

In this section we will describe thoroughly structure of a protein which is inevitable for further investigation of possible similarity measures (section 3) and algorithms for searching databases or protein structures (section 4).
2.1 Peptide chain
Protein is an assembly of polypeptides - polymers of amino-acids. Amino-acids differ only in their side chains to which we also refer as R-groups which discriminate each of the twenty amino-acids. Each amino-acid links to the neighboring amino-acid by peptide bond which connects carboxyl group of one molecule with amino group of the other (Fig. 1a) in a process called dehydration synthesis (H2O is released). This process happens in ribosomes while translating mRNA into the polypeptide.
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Figure 1
The 3D structure is primarily described by its dihedral angles. Dihedral angle is defined as the angle forming two planes or their normal unit vectors. If we understand vectors between atoms as these normal vectors we can describe 3D conformation by its dihedral angles. Since distances between atoms are broadly equal, the angles determine distance between atoms’ coordinates. In Fig. 1c one can see dihedral angle between three vectors (foursome points) where vector v2 comes out of the screen. In this manner, we define angles φ (backbone atoms C-N-Cα-C), ψ(backbone atoms N-Cα-C-N) and ω (backbone atoms Cα-C-N-Cα). Important fact is that because of the peptide bond ω is most often 180° (in trans isomer) or 0° (in cis isomer)
, atoms in the shaded rectangles in Fig. 1b are located in a plane. Thus, protein can be understood as a sequence of rigid peptide units (planes) that can be rotated according to each other and the rotation angles are φ and ψ. Further degree of freedom is in connecting the R group to the α-carbon, which can be rotated freely.
Existence of such rigid planes is the reason why most of the methods consider just positions of α-carbons of the investigated proteins.

2.2 Folds
Proteins fold into standard shapes which are called secondary structural elements. SSEs are repetitive structures that arise by H bonds between amide H and carbonyl O. The most abundant structures are alpha helices (Fig. 2a - PDB
 entry 1dlwA) and beta sheets (Fig. 2b - PDB entry 1h8pA02).

[image: image2.png]



Figure 2
In an alpha helix, ith amino-acids is connected to (i+4)th amino-acid. φ and ψ angles are constant, hence the structure is rigid and number of peptide units per turn is 3,6. There are also different types of helices (with different connection lengths) but these occur sporadically.
Beta sheets (strands) consist of multiple strands connected to each other by H bonds making an inter-strand connection (in contrast to intra-strand connection in alpha helices). Beta sheets can be either parallel or antiparallel depending on the directions of the individual strands.
Various combinations of helices and sheets form several common motifs such as beta ribbon, beta-hairpin, helix-loop-helix, greek key and many more. According to these structures, proteins can be divided into classes. There are several databases hierarchically dividing proteins (stored in kind of central repository – Protein Data Bank PDB [4]) – the most well known are SCOP [23][2] (Structural Classification Of Proteins) and CATH [25] (Class Architecture Topology Homologous).
3 Distance (similarity) measures and representations
To be able to quantify similarity of objects in a database, we need a (dis)similarity measure. In protein structure databases, measures are based on features extracted from structural elements. If a method uses C coordinates
 as its basic units, usually a measure summarizing Euclidean distances between corresponding atoms in pair of structures is used. When feature vectors are extracted, an ad-hoc measure quantifying distances among the feature vectors is used. Here, we briefly describe few measures used in nowadays methods. 
3.1 Root mean square distance (RMSd)
Intuitively, we want to put one structure atop of the other so that distances between corresponding structural elements are minimal. Sum of these distances is usually taken as the measure of similarity of the aligned structures. Such a 3D matching is called superposition of structures and to be able to evaluate quality of the match (alignment) we define coordinate root mean square distance as:
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where n is the number of aligned residues (atoms), ||.|| is L2 (Euclidean) norm and xA(i), xB(i) is ith atom in the alignment of protein A and B respectively. The goal is to find such an alignment that minimizes the distance
.
Other approach using Euclidean norm is measuring inter-residue distances inside each of the aligned proteins and comparing these distances:
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Both cRMSd and dRMSd have a serious drawback stemming from using L2 norm – they tend to be distorted by outliers. Therefore some methods try to disregard the outliers by adding more weight to important residues in the alignment. For example one of the most well known algorithms DALI [15] uses following scoring - elastic similarity score:
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(4)
where dij* stays for the average between dijA  and dijB and θ is a similarity threshold. Most importantly, w(x) is an envelope function in the form of exp(-x2/α) where α is a constant. This function minimizes score for those residues that are far to each other. Moreover residues having common neighborhood will have high score since the expression |dijA - dijB| approaches 0 for such residues.
Another approach to avoid outliers was proposed and used in [16][7][26]. Each protein is presented as number of points in a unit sphere. Points are unit vectors recorded in the direction from the ith to (i+1)st α-carbon along the backbone chain. These vectors are unit vectors since distance between consequent carbons are approximately the same (about 4Å). Then minimum RMSd is computed between these vectors. Because of the unit-vectors the distance is called URMSd.

3.2 Local Features and Representations

Many measures do not work with whole structure but rather cope with reasonably small portions of it. These parts can be taken from CATH, SCOP, … or can be artificially defined as substructures (sometimes called AFP – Aligned Fragment Pairs) having sufficiently small RMSD among their atoms. Example where using local features instead of working with 3D coordinates (considering rigid transformation) might be favorable are proteins with two equal substructures where one of them has bend in the middle. Such structures are actually very similar but their RMSD after rigid transformation might be very high.
dRMSD is adjustable to cope with fragment of structures (e.g. in [33],[38]):
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(5)
In [31] each SSE in the protein is represented as 2D vectors coarsely describing SSE’s origin and end
 and these vectors are used for initial superposition further being improved.
Another approach can be using torsion angles to catch the structure of the protein as in [22] or [12]. This approach is natural because torsion angles describe essentially the structure as well as 3D coordinates, as mentioned in section 2.1. Similarly, curvature (combined with torsion angles) was used in [6].
Interesting approach was used in [8], where distance matrix is handled as an image. On these images, different measures as entropy, contrast, correlation, etc. are conducted.

In [9] many overlapping submatrices of distance matrices are used to detect representative common local features. Existence of these features in a protein defines its local feature frequency profile vector. Distance of two proteins is then Euclidean distance of these vectors.

4 Methods

In previous section, we described some of the measures that are used for quantifying quality of a pairwise structural alignment or that are used to build it. Although these measures are important in itself, they are rather tools used to evaluate goodness of an algorithm. In this section we will describe several approaches used when dealing with protein structure alignment. Some of those methods use combinations of the outlined approaches.
But first we should highlight that structural alignment is in many papers considered unambiguous, but in [14] and [11] examination of alignments has shown that when using different structural alignment algorithms with emphasis on different aspects of protein’s features, there exists more alignments with virtually identical similarity score.

4.1 Incremental extension

Some methods use a kind of incremental extension of an initial alignment. Method like this can be used independently on structure representation (i.e. it does not matter what is the underlying mechanism for determining whether next piece of the structure should be added to the already formed alignment).

One of the first methods of this kind was DALI [15]. DALI uses a matrix of inter-residual distances which is a 2D representation of 3D structure and is independent of the coordinate frame. The main idea is that similar structures have similar inter-residue distances, hence similar proteins will have similar distance matrices. DALI breaks distance matrices into overlapping submatrices of fixed size (contact patterns). Subsequently all elementary contact patterns are compared and similar patterns are stored. One pair is selected as the seed pattern and then Monte Carlo algorithm is used to extend the alignment by connecting overlapping contact patterns to the already connected ones.

Next well-known method in this class is CE [36]. CE (in contrast to DALI) does not resolve non-topological similarities where order of the structure alignment does not follow the sequence order. It uses notion of aligned fragment pairs (AFP) for sufficiently similar constant-length portions of consecutive residues (local structure) in both sequences. Three different measures are used for determining whether an AFP should be added to the already chosen AFPs (it computes whether the AFP has sufficient score, whether adding it would not increase the overall distance above a given threshold and z-score of the overall alignment). Several paths (alignments) are computed in this way and best of them passes through the final optimization (moving gaps, iterative improving by Smith-Waterman [37]).

VAST [21] differs from CE in finding initial alignments. It uses bipartite graph where vertices are SSEs. In this graph, maximal clique is found which is used for initial alignment that is further extended by Gibbs sampling.

4.2 Dynamic Programming
Many or even most of the methods rely on some kind of dynamic programming similarly as optimal sequence alignment does. But when dealing with sequences, one iteration of dynamic programming is sufficient. For many methods of structural alignment this does not apply. In sequence alignment, substitution matrix expressing similarity of pairs of amino-acids is known in advance. When aligning structures, substitution matrix is based on relation between residues. This relation is grounded on their mutual 3D coordinates which is modified with each alignment.
SAP [35][34][33] operates in this way. It is based on Smith-Waterman algorithm [37] and is used to cluster proteins in CATH database. Every residue is represented by vector of distances
 to all other residues in the protein which is called view. Distance between views is then defined as distance between each of their residues and these are recorded into a matrix. In each such matrix (for each residue there is one view, hence matrix), an optimal path is found. In the second phase of algorithm, all the optimal paths (scores on the optimal paths) of individual views are written into a final dynamic programming matrix (at the positions where more optimal paths intersect, scores of individual paths are summed). Finally, in such a matrix, optimal path is found that represents the final optimal alignment.

PROSUP [20] uses iterative dynamic programming together with incremental extension and works in four steps. In first step, all constant length fragments are superimposed and those sufficiently RMSD similar are being expanded by such pairs having distance in space lower than a cut-off (step 2).  Seeds from step 2 are refined by Needleman-Wunsch algorithm [24] which results in a set of aligned residues. Those alignments with distance smaller than given cut-off form new set of aligned residues. This step is repeated until the alignment does not change. Finally, set of filters is applied to get rid of non-significant alignments.

STRUCTAL [13][32], that was evaluated as the best structural alignment algorithm  in [17], employs similar approach as PROSUP. Instead of expanding seeds to get initial alignment, initial alignments starting at given positions are selected. Upon these alignments, iterative dynamic programming is used. Moreover, exposure weighting (atoms buried deeply
 are weighted higher) is applied.
MAMMOTH [26] uses URMS to computes distance among all heptapeptides. In following step, distance matrices of the heptapeptides are normalized and global dynamic programming is applied to these newly created matrices to find alignments of local structures that maximize similarity. Finally, maximum subset of similar structures whose Cα atoms are close in Cartesian space is found and P-value is computed.

All the approaches described so far understand proteins as rigid bodies, not as FATCAT [38]. Its main idea is to minimize number of twists (rearrangements) in order to turn one structure into another. It uses dynamic programming to connect AFPs (distance between AFPs is RMSD) where introducing a twist is penalized by a constant cost. Dynamic programming then computes score S(k) of kth AFP from S(k-1).

Some algorithms do not use 3D coordinates at all. An example can be TALI [22] which incorporates torsion angles φ and ψ. Mutual distances of the angles are computed and serve as scoring matrix for the standard Smith-Waterman algorithm. Hence TALI strongly resembles sequence alignment.
4.3 Indexing trees
Since structural alignment is computationally expensive task and since size of PDB steadily grows, methods for decreasing computational costs where searched for. Standard solution is employing indexing. 
For example PSIST [12] uses moving window to represent protein as a sequence of vectors, where ith position encodes distance and torsion angle to the residue w positions further in the protein chain. These vectors are then normalized to natural numbers and indexed by a suffix tree.

In PSI [5], R*-tree is used for indexing feature vectors representing SSEs. While searching, a pair graph is created out of retrieved vectors and is further used for finding an alignment. Feature vectors are created from SSEs where distances to center of mass of each SSE are computed. According to these distances, residues are divided into three groups. Residues near to the center of mass are taken into account when computing distance to another SSE.

4.4 Geometric Hashing
Quite a popular solution is to utilize geometric hashing [28] which is n-dimensional hashing where n is dimension of the extracted feature vectors. Each vector is inserted into a bin according to its coordinates. In the recognition phase, structures with vectors present in a bin corresponding to a query feature gain vote. Histogram of votes is finally evaluated and similar structures are identified.
ProGreSS [3] is one of tools using geometric hashing to index multidimensional points that arise from moving a constant size window along the backbone and recording both, 3D positions and sequence. Each position lead to orthogonal st-dimensional structure and sq-dimensional sequence vector. Structure vector employs Euclidean distance. For sequence, each line in the scoring matrix is considered as a vector and distance between two amino-acids is Euclidean distance of these vectors. On both structure and sequence vectors are Haar wavelet transformation is applied to get two 2-dimensional vectors. Moreover, for each point SSE type in which it is participating is found to make the subsequent querying more selective.
Another tool exploiting idea of geometrical hashing for storing its feature vectors is CTSS [6].  CTSS is based on the theory of differential geometry where structure is understood as spline in 3D. This spline is smoothed (because of possible noise in measurement process) and then torsion angle and curvature of each Cα atom, together with its SSE structure type, is recorded for geometric hashing.
5 Conclusion

In this paper, we have presented essential knowledge of protein structure and showed metrics used for quantifying (dis)similarity of such structures. These were further used in a survey of various methods for structural alignment. Many methods have not been presented here since lack of space. But we tried to present at least the most important ones and outline principles that can be observed in almost all of the methods.
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� Cis-trans isomers are such isomers that differ in orientation of their functional groups (in Fig. 1b, trans means that alpha carbons are situated on the opposite sides of the shaded plane).


� See below.


� Coordinates of alpha carbons.


� If the superposition consist of translation and rotation only (which usually does), it is called rigid body superposition.


� These measures are usually used rather for building an alignment, but for qualifying an alignment RMSd measures are used.


� Two atoms on each side are used for helices and three for strands.


� Basic version uses Euclidian distance among residues, but in following versions other distances were also taken into account such as burial, torsion angles, …


� have smaller accessible surface area
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