
Index-based approach to similarity search in
protein and nucleotide databases

David Hoksza and Tomáš Skopal

Department of software engineering, Faculty of Mathematics and Physics,
Charles University in Prague

Malostranské nám. 25, 118 00, Prague 1, Czech Republic
{david.hoksza, tomas.skopal}@mff.cuni.cz

Abstract. When searching databases of nucleotide or protein sequences,
finding a local alignment of two sequences is one of the main tasks.
Since the sizes of available databases grow constantly, the efficiency of
retrieval methods becomes the critical issue. The sequence retrieval re-
lies on finding sequences in the database which align best with the query
sequence. However, an optimal alignment can be found in quadratic time
(by use of dynamic programming) while this is infeasible when dealing
with large databases. The existing solutions use fast heuristic methods
(like BLAST, FASTA) which produce only an uncontrolled approxima-
tion of the best alignment and even do not provide any information about
the alignment approximation error. In this paper we propose an approach
of exact and approximate indexing using several metric access methods
(MAMs) in combination with the TriGen algorithm, in order to reduce
the number of alignments (distance computations) needed. The exper-
imental results have shown that a straightforward adoption of MAMs
to sequence retrieval cannot outperform the specialized heuristic algo-
rithms (at least at the moment). On the other side, the results show
MAMs could provide a basis for specialized access methods capable of
precision/efficiency trade-off control.

Keywords: bioinformatics, indexing, database, MAM, (P)M-tree, TriGen, BLAST

1 Introduction

When managing biological sequence information, it is important to realize that
organisms linked by common descent use similar genes to secure their biologi-
cal functions. Therefore, it makes sense to store known genetic sequences in a
database and search for similarities among them. Because these databases grow
quickly in time and due to expensive comparison of sequences, there is a strong
need for efficient methods capable of handling such amounts of data.

One way to handle the increasing number of sequences is indexing, which
is unavoidable in today’s situation of exponentially growing databases to be
searched (Figure 1). There have appeared indexing applications in this area
already, however, they usually tried to split sequences into q-grams (substrings

of length q) [14] and compute simple Hamming distance [21] on them. This
is inappropriate in many cases because of neglecting the evolutionary nature
of similarity in protein and nucleotide sequences. As an other disadvantage,
some information is lost when cutting sequences into q-grams and computing
distances just among these q-grams. Some efforts have also been undertaken in
order to develop non-hamming distance which reflects better biological meaning
of similarity [23], while such a distance has been used to index q-grams [11].
Anyways, today’s most used methods for sequence retrieval are based on BLAST
– a heuristic ”index-sequential” approach supporting local alignment (described
in Section 2.3).

1.1 Protein Databases

DNA molecules consist of a linear (unbranched) string of nucleotides (conven-
tionally labeled A, C, G, T) which can be transcribed to RNA and later trans-
lated to proteins. A protein molecule is a linear chain of amino acids. There
are 20 amino acids, each encoded by a triplet of nucleotides (called codon). The
assignment between codons and amino acids is determined by an evolutionarily
fixed code table – the genetic code. Every protein has some biological activity
which is derived from its three-dimensional structure. Similar amino acid se-
quences tend to have similar three-dimensional structure and therefore similar
function1. When a protein sequence is determined (nowadays it is usually derived
from an experimentally obtained sequence of the corresponding gene), its func-
tion is usually unknown. One should try to find similar proteins in the database
of already known protein sequences (even in proteins of different species) to find
out possible purpose of the newly sequenced protein or at least to get a clue
of it. Therefore, it is appropriate to search through as large amount of data as
possible to increase the probability of finding similar protein.

1.2 Nucleotide (DNA) Databases

Using nucleotide databases is not as common as using protein databases2. They
are searched only for similarities among sequences of one species (unlike protein
databases) which follows from the aims why they are analyzed, i.e.

– finding similarities in parts of nucleotide sequences which are not transcribed
to mRNA (non-coding sequences)

– checking whether someone else has already sequenced given segment of DNA
– checking whether given segment was sequenced incorrectly

1 Moreover more extensive sequence similarity can be viewed as evidence of common
ancestry, and therefore as a basis for reconstructing phylogenetic history of organisms
and their genes.

2 which is the reason why we have tested our method for protein sequences only, but
it can be used for nucleotide sequences without any change at all.

1.3 Existing Prominent Databases

As comes out from previous, the role of databases in bioinformatics is of major
importance. Nowadays, there exist three most prominent databases of sequences
– American GenBank [8], European EMBL [2] (European Molecular Biology
Laboratory Data) and Japanese DDBJ [1] (DNA Data Bank of Japan), which
are not moderated (means that anybody well-founded can add a sequence into).

Besides these databases, there exist several other (mostly protein) databases.
In our experiments we used the Swiss-Prot [4] – a moderated database of pro-
teins. The Swiss-Prot together with TrEMBL (TRanslated EMBL) and PIR
(Protein Information Resource) constitute the UniProt database [22], which
serves as a central repository of protein sequences and their functions. As we
can see in Figure 1, the size of databases grows exponentially in time, so the
needs for more efficient methods grow as well.

1982 1986 1990 1994 1998 2002 2006

0
5

1
5

2
5

3
5

4
5

5
5

6
5

GenBank growth

Year

Base pairs of DNA (billions)
Sequences (millions)

1986 1990 1994 1998 2002 2006

0
1

0
2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

Swiss-Prot growth

Year

Aminoacids (millions)
Sequences (10 thousands)

Fig. 1. Nucleotide and protein databases growth

2 Similarity Search in Sequence Databases

When searching for similarity between two sequences, there are three methods
in general:

– analysis of the dot matrix
– dynamic programming solution
– heuristic methods using q-grams

All these methods compute a kind of biological similarity between two se-
quences. The similarity of two sequences is defined by an optimal alignment of

them. An alignment of two3 sequences is every such correspondence between let-
ters in both (sub)sequences (one written under the other), which can be achieved
by inserting gaps into either sequence (see Figure 2). Naturally, among all possi-
ble alignments we are interested in an optimal one – which is the alignment with
best real-value score (interpreted as sequence similarity). A particular method of
scoring an alignment changes with method used (see next subsections), however,
it is always a sum over the scores between aligned letters/gaps.

Fig. 2. Alignment of two sequences

Consequently, the similarity assessment (score of alignment) can be used in
retrieval of sequences from a database similar to a query sequence.

2.1 Dot Matrix Method

A dot matrix (dotplot) analysis is a simple method for finding possible align-
ments of two sequences. In the dot matrix analysis we mark each of the axes
with one amino acid sequence and then mark each position in the matrix where
the two sequences match (have the same letters on given positions). Matching
segments can then be seen as diagonal rows of dots going from left to right (see
Figure 3).4

This algorithm can be improved by use of sliding windows of given length5

(see Figure 3a,b). The window is successively placed to every position, while the
window on every position is checked for a diagonal occurrence. If the number of
matching letters in both sequences is above a fixed threshold (possibly according
to a scoring matrix, see below), then a dot is placed on the position of the upper
left corner of the window. Subsequently, short diagonals in the resulting plot can
be filtered out for better transparency(Figure 3c).

Afterwards, the dot matrix is visually checked for diagonals long enough to
be used as candidates for even longer alignment. Pairs of sequences showing
sufficient similarity are then further inspected with some other techniques (e.g.
tools using dynamic programming).

3 There can be also multiple sequences mutually aligned for some purposes, but this
is out of scope of this paper.

4 This method can also be used to finding reverse matchings (diagonals go from right
to left in that case).

5 When comparing nucleotide sequences, longer windows are used.

ARIPETIQIZLASTPFPTEA ARIPETIQIZLASTPFPTEA ARIPETIQIZLASTPFPTEA
• •A • • •A A
• • • • • •R R R

I • • • • • • •I I
P • •P P

• • •E E E
• • • • •T T T
•I I • •I
• • •Q Q Q
• • •I I I

Z Z Z
• • • • •L L L
• • • • • •A A A

S • • • • •S • •S
T • •T T

• • •P P P
• • • •F F F

• • • •P P P
T • • • • • •T T
E • • •E E •

A A A

A

I
P

S
T

T
E
A

ARIPETIQIZLASTPFPTEA

(a) (b) (c)

Fig. 3. Dot matrix

2.2 Dynamic Programming

The dot matrix method is appropriate for visualisation and manual analysis of
partial alignments of two sequences, but it does not give us the optimal alignment
– especially if an alignment with gaps is our goal. To solve this problem, there
exist algorithms based on dynamic programming which can compute optimal
alignment with gaps in O(mn) (where m,n are sequence lengths) time. With
minor changes one can use the same algorithm for finding both, global and
local alignment. A global alignment of sequences is such an alignment where the
whole sequences must be aligned, whereas a local alignment methods look for
best alignment for any subsequences of the input sequences.

First of all we need to define a distance to measure similarity between two
sequences (possibly by use of an alignment). The simplest is the Hamming dis-
tance (HD) which is defined on two strings of equal lengths, and computes the
number of positions for which the corresponding symbols are different. Because
HD is a metric, it is often used when indexing sequences split to q-grams.

The Hamming distance is not suitable because it is sensitive to shifts in
sequences. Therefore, a better measure is the Levenshtein (or edit) distance
given by the minimum number of operations needed to transform one sequence
into the other, where an operation is an insertion, deletion, or replacement of a
single letter. The Levenshtein distance can be further extended with operation
weights. Every replacement, insertion or deletion can be penalized by a constant
value. Such an extended edit distance is called weighted edit distance.

However, when considering DNA or protein sequences, even weighted edit dis-
tance is not suitable. The reason is that probability of mutations from one amino
acid into another (appearing in an alignment) is dependent on the two particu-
lar amino acids involved (the same holds for nucleotides but this is not so often
used, since there are only four of them). To deal with this fact, a scoring matrix
is used which is a 20× 20 square matrix where on position [i, j] is the so-called
weight of mutation of amino acid i into amino acid j (if we use identity matrix
we get an ordinary edit distance). There are many different scoring matrices used
for different purposes (e.g. PAM matrices [7], BLOSUM matrices[9], etc.). The

scoring matrices used in bioinformatics contain scores interpreted as similarity
of two amino acids/nucleotides, so instead of distance measures we speak about
similarity measures (where the greater overall scores stand for greater overall
similarity). Hence, as opposite to Hamming or edit distance, an optimal scored
alignment is the one with highest overall score (see Figure 4).

Fig. 4. Global and local alignment (and their scores) of protein sequences
NPHGIIMGLAE and HGLGL according to BLOSUM62 scoring matrix

Global Alignment Measures. As mentioned earlier, there exist algorithms
for both, global and local alignment (see Figure 4). The first algorithm for global
alignment was published in 1970 by Needleman and Wunsch [13]. It makes use
of distance matrix where on one side of the matrix is the first sequence and
on the other the second one. We define a cell si,j = [i,j] of the matrix as the
optimal (maximal) score which belongs to prefixes of lengths i and j of the
aligned sequences. The recursive formula for filling cells of the distance matrix
is:

si,j = max

si−1,j + σ
si,j−1 + σ
si,j + δ(ai, bj)

(1)

where a and b represent the sequences to be aligned, σ is a score for gaps
and δ is scoring matrix. Since [i, j] contains the score of global alignment of the
i-long prefix of a and j-long prefix of b, the cell [|a|, |b|] contains the alignment
score for the whole sequences a, b.

Local Alignment Measures. Since we are more interested in matching sub-
sequences, the local alignment is applied more often in computing similarity
between biological sequences6. Local alignment of sequences a and b is finding a
subsequence S(a) of sequence a and a subsequence S(b) of sequence b, such that
global alignment of S(a) and S(b) provides the highest score. The algorithm for
local alignment can be seen as a modification of Needleman-Wunsch and was
published in 1981 by Smith and Waterman [20]. It modifies filling of the dis-
tance matrix by not allowing negative values. The optimal local alignment score
is then the maximum value in the distance matrix, which means there is no way
to increase the score with extending (or cutting) either of the two subsequences.
The recursive formula is adjusted in the following way:
6 Global alignment could damage alignment of perfectly conserved domain.

si,j = max

0
si−1,j + σ
si,j−1 + σ
si,j + δ(ai, bj)

(2)

Finally, there is usually another modification which enables differentiating
between the opening and extending gap. Extending a gap is considerable less
penalized than opening a gap (i.e. two single gaps in alignment are more penal-
ized than a single two-letter gap).

2.3 Heuristic Approaches to Retrieval of Similar Sequences

The Smith-Watterman (SW) algorithm gives the optimal solution to local align-
ment but it is computationally expensive. Hence, there have been developed
cheaper heuristics which approximate the optimal local alignment. The first
wide-spread method of this type was the FASTA [15], which used short local
alignments as seeds that were further extended on both sides. Nowadays, BLAST
(Basic Local Alignment Tool) [3] algorithm is widely used, because in most cases
it is faster then FASTA and gives better results (suffers from less false dismissals
with respect to sequential retrieval using Smith-Watterman alignment). In short,
the BLAST algorithm can be described as follows:

1. Remove low complexity regions from the query sequence (those with no
meaningful alignment).

2. Generate all n-grams substrings of length n from query sequence.
3. Compute the similarity for every sequence of length n (on a given alphabet)

and each n-gram from the previous step.
4. Filter out sequences with similarity lower than a cut-off score (called neigh-

borhood word score threshold).
5. Remaining high-scoring sequences (organized in search tree) are then used

to search all database sequences for exact match.
6. High-scoring sequences within a given distance (those on the same diagonal

if we imagine sequences in dot matrix) are then connected together with
gapped alignment and these are being extended as long as the score grows7.
Such alignments are called high scoring pairs (HSP).

7. All HSPs with scores below a given threshold are excluded.
8. The scores of non-filtered sequences are refined by the classic Smith-Watterman

algorithm.

Statistical Relevance. Because of the heuristic nature of BLAST, it is im-
portant to have a method saying how good the found hits are (however, there is
no way to determine the retrieval error, say precision/recall in IR terminology).
We are also interested in determining whether the retrieved alignments are some
7 This applies to BLAST2 - previous versions of BLAST did not connect sequences

on diagonals (and therefore used higher value for cut-off score in step 4).

coincidence, or whether they really refer to a biological relation. The local align-
ments are statistically well understood, so we are able to say how relevant the
retrieved sequences are. This statistic evidence fits primarily to ungapped local
alignment, but it has been shown (mostly by computational experiments) that
it applies to gapped alignments, too.

We are interested whether the resulting score (either Smith-Watterman (SW)
or any other) has any statistical significance (otherwise the score alone is just a
number), hence, we have to take the score distribution into account, considering
the entire sequence space and a particular scoring matrix. We can derive an
expected number of sequences of lengths m and n with score at least S as

E = Kmne−λS (3)

where K and λ are characteristics of the SW score distribution. The E formula
is called the E-value for the score S [10].

The E-value as defined above does not take into consideration dealing with
more than two sequences, however, we should additionally take into account
the fact that probability of finding a sequence with given score depends also
on the number of sequences in the database or/and the query length. In order
to prevent the effect that finding a short sequence with given E-value has the
same probability as finding a longer sequence with the same E-value, we should
multiply the E-value by the total number of residues (letters) in the database and
obtain a new E-value (used by FASTA). Alternatively, instead of multiplying the
E-value by database size, we could adjust the E-value by distinguishing different
sequence lengths, since a query is more likely to be related to a long sequence
than to a shorter one (used by BLAST).

3 Metric Sequence Indexing & Search

Since a particular method of sequence alignment can be viewed as a non-metric
distance/similarity measure, we had an idea to turn it into a distance metric
δ, which satisfies the metric properties (reflexivity, non-negativity, symmetry
and triangle inequality). Such a metric could be then utilized by various metric
access methods (MAMs) which have been designed to quickly search in databases
modeled in metric spaces [24]. Their common characteristics reside in utilizing
the triangle inequality to organize the database into metric regions, so that when
a query is processed (the metric space is queried for objects falling into the query
region), only the overlapping regions need to be searched. Basically, the MAMs
are designed to support range query and k-nearest neighbors (kNN) query. A
range query is defined by a center object and a query radius, so we ask for
objects which are within a predefined distance from the query object. On the
other hand, a kNN query asks for k nearest objects to the query object. Both
range and kNN queries are represented by ball query regions (the radius of kNN
ball is the distance to the k nearest neighbor), thus the searching by MAMs is
reduced to a geometric problem (searching for database objects falling into the
query regions/balls).

3.1 Choosing the Metric

First, we have to decide which sequence similarity measure should be used. The
simplest solution would be the Smith-Waterman (SW) score. However, the prob-
lem with SW is that it is similarity measure, not a distance (greater scores mean
higher similarities). Another problem is that SW lacks statistical significance.
Therefore, the use of E-value is much better, since it is a distance and it is also
widely used in ranking the results retrieved by FASTA or BLAST. Due to this
choice, we can also compare our approach to the other methods.

If we want to use E-value for metric indexing, we need an equivalent metric.
As defined, the original E-value satisfies just the non-negativity property, but
it can be easily modified to satisfy also reflexivity and symmetry. To enforce
reflexivity, the definition of E-value can be modified in a way that identical
sequences have a zero E-value. This is not a problem because two identical
sequences are also most similar in mathematical and biological meaning (no other
sequence can be more similar). To satisfy the symmetry, we have to accomplish a
more substantial change. As mentioned in Section 2.3, the BLAST’s modification
of E-value takes into account the total number N of residues (letters) in database
and the length n of inspected database sequence, as follows:

E = Kmne−λSN/n (4)

If we change the role of query and database sequence, we get different values.
So we changed E-value to the following form:

E = Kmne−λSN/max(m,n) (5)

where m is the length of query sequence. This is a minor change in statistical
relevance if we realize that an average length of query is very similar to the
average length of database sequences. As mentioned before, e.g. FASTA does
not take sequence lengths into account at all.

TriGen Algorithm. Up to now, we have turned the E-value into a semi-
metric (reflexive, non-negative, symmetric distance). The last step is to enforce
the triangle inequality, which is the hardest part. For this purpose we can use
the TriGen algorithm [17] designed for general-purpose modifications of unknown
semi-metrics into metrics (or approximations of metrics). Moreover, using TriGen
we can specify (by so-called T-error tolerance) to what extent the resulting
modified distance may violate the triangle inequality. While distances modified
into full metrics guarantee 100% precision of indexing by MAMs with respect to
the precision of sequential search, a modification which is only an approximation
of metric (more or less violating the triangle inequality) exhibits lower intrinsic
dimensionality [5] (i.e. better indexability) at the expense of lower precision of
indexing/retrieval. In principle, the TriGen algorithm applies a class of concave
modifiers such that the input semi-metric (violating triangle inequality) becomes
a metric (or semi-metric where the extent of triangle violation is reduced).

3.2 LAESA

The LAESA method [12] is a typical pivot-based MAM. In principle, m database
objects are selected to act as so-called pivots. Then each of the n database
objects to be inserted is mapped using this pivots into a vector of dimension m,
where into i-th coordinate the distance of the inserted object to the i-th pivot
is computed and stored. This way we obtain an n × m distance matrix which
serves as a metric index.

Whenever a query is to be processed, the query object is projected into the
pivot space the same way as if it would be inserted. Then the distance matrix is
sequentially searched and all the vectors which do not overlap the query region in
the pivot space are filtered out. The remaining candidate objects (corresponding
to the non-filtered vectors) are subsequently filtered in the original metric space.

The LAESA method is very powerful in its pruning effectiveness, however,
due to expensive selection of pivots and due to the sequential processing of
distance matrix its usage in dynamic database environments is limited.

3.3 M-tree & PM-tree

A typical tree-based MAM designed for database environments is the M-tree [6].
The concept of M-tree is a kind of generalization of R-tree into metric spaces.
Instead of R-tree’s MBRs, the M-tree recursively bounds the objects into balls
specified by a center data object and a ball radius (unlike R-tree the M-tree
cannot create a synthetic centroid, it must pick one of the indexed objects). The
inner nodes of an M-tree index contain routing entries, consisting of a region ball
and a pointer to the subtree (all objects in a subtree must fall into the parent
region ball). The leaf nodes contain ground entries – the DB objects themselves.
For an M-tree hierarchy see an example in Figure 5a.

A range query in M-tree is processed by processing just the nodes the region
ball of which overlaps the query ball. A kNN query processing is similar, however,
the radius of query ball is unknown at the beginning, so it must be heuristically
updated during query evaluation.

Fig. 5. (a) M-tree (b) PM-tree

As a combination of LAESA and M-tree, the PM-tree [16, 19] makes use
of both, LAESA’s pivot-based indexing and M-tree’s hierarchical metric space

partitioning. The main difference is that the routing entries contain also a set
of m1 ≤ m rings (related to m1 of total pivots) which prune the region ball,
thus, the total ”volume” of a PM-tree’s data region is always smaller than an
equivalent M-tree region (see Figure 5b). The ground entries are extended by
rings as well, but in this case the number of rings used is different (m2 ≤ m).
By specifying m = m1 = m2 = 0 we get an ordinary M-tree.

Slim-down Algorithm. A particular hierarchy of M-tree’s (or PM-tree’s)
nested data regions can be far from optimal, which means the volumes of re-
gions can be very large, and they can also overlap significantly. This leads to
poor search efficiency, since the larger volumes/overlaps the greater probabil-
ity that a data region and the query region will overlap. To prevent such poor
hierarchies, the generalized Slim-Down algorithm [18] has been developed to op-
timize an already built (P)M-tree index. Although the ”slimming down” is an
expensive operation, it can speed up the subsequent querying up to 10x.

4 Experimental Results

As dataset we used random subset of the Swiss-Prot database of size 3000 with
total number of 1041027 amino acids. Another random 100 hundred sequences
have been chosen as query sequences.All of the sequences were of maximal length
1000 which is doesn’t cause any problem when we realize that there are only 9191
longer sequences out of 252616 in whole Swiss-prot which makes 3% (average se-
quence length is 365 in whole Swiss-prot and 335 in the reduced variant). These
longer sequences could then be treated in special way since they are just small
part of the whole.
We do not present time comparation in our tests because we do not have ef-
fecitive implementation of Smith-Waterman yet, being the crucial component of
the running time. But our method could be easily compared to SSEARCH (part
of FASTA package) when we realize that SSEARCH is equevalent to sequence
scan.
To be able to compare index based methods with BLAST we distinguish number
of distance computations from computational costs. We defined computational
costs here as number of comparing two letters. Therefore computational cost
of tree based methods are averaged as number of distance computations mul-
tiplied by the average size of distance matrix for Smith-Watterman which is
321 ∗ 321 = 103041. For possibility of comparing index-based methods with se-
quentional scan, we show number of distance computations too.
Computational costs of BLAST can be devided from description in section 2.3.
Average number of neighbouring words for our dataset of query sequences is 54
and takes 81784 operations (matching letters) to get them 8 , which gives us
245352 computational operations. This means that there was built search tree
with 54 items. Such a tree has aproximatly 6 levels. When searching for seeds for

8 found out empirically

the high scoring pairs, there have to be done 6 comparations with every position
of the database. Since every comparation of word with database costs 3 opera-
tions, the computation costs of BLAST in average are 6 ∗ 1041000 ∗ 3 = 1873800
operations. Number of operations done while finding neighbouring words and
finding high scoring pairs is insignificant in comparation with this number so we
do not take it into account. Therefore we state that in average case, computa-
tional costs of BLAST are 18738000 operations9.

Fig. 6. Relation between E-value and number of computations (range query)

Four indexing methods were tested - M-tree, PM-tree, slimmed PM-tree and
LAESA, each of them using the same set of distance modificators 10 genereted by
the TriGen algorithm. As can be seen in Figure 6, when the zero error tolerance
is used, weight of the modificator causes that number of distance computations
is almost equivalent to sequence scan. When the weight is too big, it makes trina-
gle inequvality hold but for the price of increasing intrinsic dimension. However
M-tree performes slightly better then sequence scan which means that when
searching in the tree, not all of the nodes have been inspected (because of inner
nodes, number of objects in the tree exceeds 3000). On the other side, PM-tree
and slimmed PM-tree show worse result since there are aditional computations
to pivots (mapping the query). The most similar to sequential scan is LAESA
method, which uses constant number of distance computations independently
on range of the query.

The situation slightly changes when we allow small error (Figure 7). This
causes that number of distance computations decrease about six percent com-
pared to zero error tolerance. Here, PM-tree and slimmed PM tree outperform
M-tree and the difference is about 1%. On the other hand LAESA showed just
9 We do not consider possible filtering of nonsignificant segments.

10 fractional power modificators were used

Fig. 7. Relation between E-value and number of computations (range query)

slight improvement. But in both cases BLAST method is evidently more effective
since effctivity of the index is almost sequence scan even if small error is allowed.

Fig. 8. Relation between E-value and number of computations (range query)

Why PM-tree and slimmed PM-tree behave better when allowing some error?
Answer to this question can be seen on Figure 8 which shows on range query of
E-value five the relation between declared TriGen error tolerance and real error
experienced in test. Here we can see, that PM-tree real error growth more quickly
than the error of M-tree and moreover, we can see that slope of those lines are
almost inverse, which means that the distance computations gain of PM-tree is
counterbalanced by the error. From these two graphs can also be seen that for real
error 50%, there still have to be done approximately 1200 distance computations
which is about 120000000 computational operations. That means that if BLAST

would be such a bad hauristic that it would have just 50% successfulness, it still
would be noticeable more effective.

5 Conclusions

In this paper, we have have tested suitability of metric access indexing methods
for indexing protein sequences. It has been shown that these method are not
applicable to sequence alignment problem without their modification. This is
primarily because of quality of the data to be indexed and the distance func-
tion which is used to define similarity between them. This distance function is
highly non-metric which demands strong modifications to it, to make it metric.
This modification distorts distances in a way that strongly increases intrinsic di-
mension of the data and therefore the efficiency of search is almost the same as
efficiency of sequential scan. But against sequentional scan it has that advantage
that precission can be defined and thus traded off for efficiency.
This learned facts can be used to next resarch targeted to several areas. To name
a few:

– Examining TriGen modificators and finding such modificators, which would
minimize real error while distributing objects (i.e. sequences) in the space
in a way which will be appropriate for indexing methods (i.e. descreasing
intrinsic dimension).

– Modifying the search structures. For example examining possiblities of cut-
ting sequences to q-grams but being able to define arised error (caused by
splitting and thus losing information included in the whole sequence) and
(optimaly) minimalize it.

– Modifying computing of Smith-Waterman local alignment. The idea is to
change computing so that it will be faster and resulting scores won’t violate
properites of metric so much, as they do now (for example by using borders
to limit the computational space in the distance matrix).

Acknowledgments

This research has been partially supported by GAČR grant 201/05/P036 pro-
vided by the Czech Science Foundation. We would like to thank prof. Fatima
Cvrčková (Department of Plant Physiology, Faculty of Science, Charles Univer-
sity in Prague) for helping to get in touch with biologist point of view to the
problem and contributing to the paper with helpful comments.

References

1. DNA DataBank of Japan. www.ddbj.nig.ac.jp.

2. European Molecular Biology Laboratory Data. www.embl.org.

3. S. F. Altschul, T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and
D. J. Lipman. Gapped blast and psi-blast: a new generation of protein database
search programs. Nucleic Acids Res., 25:3389–3402, 1997.

4. A. Bairoch, B. Boeckmann, S. Ferro, and E. Gasteiger. Swiss-prot: Juggling be-
tween evolution and stability. Brief. Bioinform., 5:39–55, 2004.

5. E. Chávez and G. Navarro. A Probabilistic Spell for the Curse of Dimensionality.
In ALENEX’01, LNCS 2153, pages 147–160. Springer, 2001.

6. P. Ciaccia, M. Patella, and P. Zezula. M-tree: An Efficient Access Method for
Similarity Search in Metric Spaces. In VLDB’97, pages 426–435, 1997.

7. M. O. Dayhoff, R. M. Schwartz, and B. C. Orcutt. A model for evolutionary change
in proteins. Atlas of Protein Sequence and Structure, 5:345–352, 1978.

8. D. B. et al. Genbank. Nucleic Acids Res., 34(Database issue):D16–D20, 2006.
9. S. Henikoff and J. Henikoff. Amino acid substitution matrices from protein blocks.

Proc. Natl Acad. Sci. USA., 89:10915–10919, 1992.
10. S. Karlin and S. Altschul. Methods for assessing the statistical significance of

molecular sequence features by using general scoring schemes. In Proc. Natl. Acad.
Sci., volume 87, pages 2264–2268, 1990.

11. R. Mao, W. Xu, S. Ramakrishnan, G. Nuckolls, and D. Miranker. On optimizing
distance-based similarity search for biological databases. In Proc IEEE Comput
Syst Bioinform Conference, pages 351–61, 2005.

12. M. L. Micó, J. Oncina, and E. Vidal. A new version of the nearest-neighbour
approximating and eliminating search algorithm (AESA) with linear preprocessing
time and memory requirements. Pattern Recognition Letters, 15(1):9–17, 1994.

13. S. Needleman and C. Wunsch. A general method applicable to the search for
similarities in the amino acid sequence of two proteins. Journal of Molecular
biology, 48(3):443–453, 1970.

14. Z. Ning, A. Cox, and J. Mullikin. Ssaha: a fast search method for large dna
databases. Genome Research, 11(10):1725–1729, 2001.

15. W. Pearson and D. Lipman. Improved Tools for Biological Sequence Analysis.
Proc. Natl. Acad. Sci., 85:2444–2448, 1988.

16. T. Skopal. Pivoting M-tree: A Metric Access Method for Efficient Similarity
Search. In Proceedings of the 4th annual workshop DATESO, Desná, Czech Re-
public, ISBN 80-248-0457-3, also available at CEUR, Volume 98, ISSN 1613-0073,
http://www.ceur-ws.org/Vol-98, pages 21–31, 2004.

17. T. Skopal. On fast non-metric similarity search by metric access methods. In Proc.
10th International Conference on Extending Database Technology (EDBT’06),
LNCS 3896, pages 718–736. Springer, 2006.

18. T. Skopal, J. Pokorný, M. Krátký, and V. Snášel. Revisiting M-tree Building
Principles. In ADBIS, Dresden, pages 148–162. LNCS 2798, Springer, 2003.

19. T. Skopal, J. Pokorný, and V. Snášel. Nearest Neighbours Search using the PM-
tree. In DASFAA ’05, Beijing, China, pages 803–815. LNCS 3453, Springer, 2005.

20. T. Smith and M. Waterman. Identification of common molecular subsequences.
Jurnal of molecular biology, 147:195–197, 1981.

21. C. Weimin and K. Aberer. Efficient querying on genomic databases by using metric
space indexing techniques. In Proceedings of the 8th International Workshop on
Database and Expert Systems Applications, page 148, 1997.

22. C. Wu, R. Apweiler, A. Bairoch, D. Natale, W. Barker, B. Boeckmann, S. Ferro,
E. Gasteiger, H. Huang, R. Lopez, M. Magrane, M. Martin, R. Mazumder,
C. O’Donovan, N. Redaschi, and B. Suzek. The universal protein resource
(uniprot): an expanding universe of protein information. Nucleic Acids Res.,
34(Database issue)(1):D187–D191, 2006.

23. W. Xu and D. Miranker. A metric model of amino acid substitution. Bioinfor-
matics, 20(8):1214–1221, 2004.

24. P. Zezula, G. Amato, V. Dohnal, and M. Batko. Similarity Search: The Metric
Space Approach (Advances in Database Systems). Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2005.

