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Abstract—Determining similarity between two protein struc-
tures is one of the most fundamental problems in contemporary
structural bioinformatics. With the increasing complexity of
the measures, their effectiveness increases as well. However,
other important observables, such as the degree of metric
properties fulfilment, could rather deteriorate than improve.
In this paper we introduce an effective measure and study its
degree of metric properties fulfilment.
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I. INTRODUCTION

A protein is a polymer of amino acids. Parts of a nascent
protein chain are self-organized into secondary structures
(helices, sheets or loops). Finally, the whole protein is
formed into a tertiary structure (called structure in the
following text). The structure of a protein is described by
coordinates of its amino acids in the Euclidean space.

Proteins secure many biological functions in living or-
ganisms and this function is grossly determined by their
structure. Hence, structural similarity is utilized to asses
function to a protein with known structure but unknown
function.

II. MEASURES IN GENERAL

Measure of protein structure similarity consists of three
subsequent steps:

1) Finding correspondence between pair of aminoacids
in respective proteins. A general algorithm determines
similarities (based on local, or possibly global, prop-
erties) of all possible amino acid pairs and selects the
optimal subset. Output of this step is a vector of amino
acid pairs.

2) Transformation of one of the proteins to minimize
the distance (see step 3) to the other protein. Since
protein structure is not anchored in the Euclidean
space, it is difficult to find such a transformation (shift
and rotation) that minimizes mutual distance of the
respective proteins. Output of this step is a vector
of Euclidean distances between pairs of transformed
amino acids.

3) Computing a distance for the vector from step 2.

III. ENHANCING OF CONTEMPORARY SOLUTIONS

In our paper we focus on enhancing similarity measures
(step 2,3) given an alignment (step 1). The resulting align-
ment is based on Smith-Waterman dynamic programing
(DP) algorithm [1] which employs DDPIn’s [2] amino acids
representation.

We evaluate various similarity measures (within the mean-
ing of step 2 and 3), trying to determine the most effective
one according to our alignment algorithm. Hence, we are
searching for a measure being robust against small devia-
tions in the alignment.

Measures to be compared are the resulting DP score, root
mean square deviation (RMSD), normed RMSD, TM-score1

[3], and our improved version of TM-score.
One of the improvements in the TM-score stems from

reducing number of the initial states. Only the original
alignment and states that have identical secondary structure
type are considered. In this way we noticeably decrease the
runtime whilst keeping the quality of the heuristics. Further
modification incorporates iterative modification of the given
alignment. There are two types of modifications. First, if
there is a segment S1 missaligned with segment S2 by a
constant value, then S2 is moved to match S1. Second, we
extend (after the transformation step) the alignment if there
are portions of structures that are near each other but not
present in the alignment. These are added to the alignment.

The original TM-score uses a scale to normalize distances
of amino acid pairs which is parametrized by the length of
one of the proteins. Our final modification uses parametriza-
tion based on length of both of the proteins. In the experi-
mental evaluation we show only results where minimum of
lengths of the proteins is utilized for parametrization, since
other ways of parametrization do not score as good.

The effectiveness of the measures (classification accu-
racy2) is evaluated against subset of SCOP database [4],
including 4326 database proteins and 979 query proteins
having low sequence similarity. Results presented in Tab.
1 demonstrate superiority of the improved TM-score.

1Originally, TM-score is dissimilarity measure having maximum value 1,
but we transform it to similarity measure by subtracting the actual TM-score
from 1.

2The percentage of correctly classified proteins according to SCOP
superfamilies.



meassure effectiveness
DP 23.08%
RMSD 75.18%
normed RMSD 88.86%
TM-score 93.36%
iTM-score 93.97%

Table I
EFFECTIVENESS OF MEASURES WITH OUR ALIGNMENT ALGORITHM.

meassure dimension T-error BOF
iTM 131.2 0.000005% 96.8%
iTM2.5 24.3 0.04% 58.1%
iTM3 17.5 0.10% 44.5%
-log(1-iTM) 6.9 0.15% 44.4%

Table II
PROPERTIES OF MEASURES ON THE RANDOM SUBSPACE.

IV. METRIC PROPERTIES

The improved TM-score (iTM) shows highest effective-
ness, hence here we study its fulfilment of metric properties.

iTM is reflexive but it is not non-negative and sym-
metric. To fulfil this properties we modify the measure
as max(iTM(pi, pj), iTM(pj , pi)) (further we use this
modified measure). However, effectiveness of this measure
decreases to 93.05%. To acquire the former effectiveness,
we use top N most similar protein for the symmetric iTM
and re-sort them according to the original non-symmetric
iTM. In such a way, the effectiveness increases to 94.38%.

To evaluate the degree of the fulfilment of the triangle
inequality property, we calculate the T-error [5]. Moreover,
we calculate the intrinsic dimension and the ball-overlap
factor (BOF) [5], which evaluates suitability of the measure
for metric indexing. All the quantities are calculated for 500
random proteins from the SCOP database.

Tab. 2 shows that the value of T-error is low but BOF
is very high. To change this behavior, we try out several
TV-modification [5] (various powers and logarithm). The
measure with logarithm modification shows low T-error,
BOF and intrinsic dimension. Hence, we investigate this
modification more thoroughly. We calculate the qualities
again, but for individual structural classes of proteins (see
Tab. 3). It shows slight increase of T-error whereas keeping
BOF low (with one exception).

Due to the observation of the increase of T-error, we repeat
the experiment for some big folds and superfamilies of
proteins (including even more structurally similar proteins).
On these subsets, T-error can increase significantly (e.g., T-
error 19.27% for proteins from superfamily 48726). This
increase of T-error can be also observed (not so noticeably)
for the measure without the logarithmic modification (for
superfamily 48726 the T-error is 0.52% ).

class ID cardinality dimension T-error BOF
46456 825 6.4 0.32% 27.7%
48724 952 6.8 0.60% 15.8%
51349 1115 7.8 0.22% 17.8%
53931 965 8.7 0.21% 26.3%
56572 86 8.3 0.36% 55.3%
56835 100 3.8 0.27% 38.8%
56992 283 8.1 0.76% 38.1%

Table III
PROPERTIES OF THE MEASURE WITH THE LOGARITHMIC MODIFICATION

ON DIFFERENT CLASSES OF PROTEINS.

V. CONCLUSIONS

We introduced an effective measure and its symmetric
version that holds the semimetric properties. Its degree of
the triangle inequality property fulfilment is very good (on
random sets of proteins), not so the BOF quality. The
logarithmic modification can decrease BOF, but increase
number of T-errors (rapidly for sets of structural very similar
proteins). However, we believe (possibly with better TV-
modification) it is suitable measure for metric indexing.
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