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Dynamic Programming 



Outline 
• Dynamic programming basics 

 
o recursion 

 
o approaches 

 
• Example problems 

 
o Fibonacci numbers 

 
o matrix product 

 
o longest common subsequence 



Sources 
• Animations 

o AlViE suite - https://sites.google.com/site/alviehomepage/ 

https://sites.google.com/site/alviehomepage/


Recursion 
• Method where the solution to a problem is built from 

solution of smaller instances of the same problem 
 

• Usually recursive problem is solved by a parameterized 
function which calls itself with parameter reflecting 
smaller instance(recursion) 
 

• Examples 
o factorial 

• 𝒏! = 𝒏 𝒏 − 𝟏 !  → 𝑭 𝒏 = 𝒏𝑭 𝒏 − 𝟏  
o Fibonacci numbers 
o greatest common divisor 
o binary search 
o … 



Dynamic Programming (DP) 
• Algorithm design technique/concept 

 
• Conditions 

o the optimal solutions to a problem is composed of optimal solutions to 
subproblems 

o if there are several optimal solutions, we don’t care which one we get 

 
• Approaches 

o Top-down 
• retains standard recursive top-down structure but stores 

o Bottom-up  
• higher levels share results from the lower levels 
• DP solutions are often considered only those using bottom-up 

approach 
 

o see Fibonacci for an example 



Dynamic Programming 
and Dimension 

• Dynamic programming solves problems by dividing 
problem into subproblems and using their results 
later 
 

• Memoization 
o to store results of the subproblems n-dimensional array is usually used 

 
• Usually, we talk about dynamic programming when 
𝒏 ≥ 𝟐 
o e.g., algorithm for computation of Fibonacci numbers fulfills the conditions 

of DP solution but 𝑛 < 2 
 



Fibonacci Numbers (FN) 
 

• Definition 
 

o 𝑭 𝒏 = �𝒏                                        𝒏 ≤ 𝟏
 𝑭 𝒏 − 𝟏 + 𝑭 𝒏 − 𝟏    𝒏 > 𝟏 

 
o 𝐹 0 = 0,𝐹 1 = 1, 𝐹 2 = 1, 𝐹 3 = 2, 𝐹 4 = 3, 𝐹 5 = 5,𝐹 6 = 8, … 

 

 
• Task 

 
o Given 𝒏 compute F(𝒏)  



FN - Recursion  

• example for F(5) 
 
 
 
 
 
 
 
 

• high redundancy 



FN – DP – Top-Down 

 
• requires O(n) time and space 



FN – DP – Bottom-Up 

• one-dimensional dynamic programming array 
• no redundant computations 
• for computation of the solution, the subsolutions are 

used 
 

• requires O(n) time and space (can be done in O(1)) 



Matrix Product Ordering 
(MPO) 

• Matrix multiplication 
o  takes a pair of matrices 𝐴[𝑝 × 𝑞] and B[𝑞 × 𝑟]  
o and produces matrix C[𝑝 × 𝑟] 

 
o associative 

• 𝐴 𝐵𝐵 = 𝐴𝐵 𝐵 
• 𝐴𝐵𝐵𝐵 = 𝐴𝐵 𝐵 𝐵 = 𝐴 𝐵𝐵 𝐵 = 𝐴 𝐵𝐵 𝐵 = 𝐴 𝐵 𝐵𝐵 = (𝐴𝐵)(𝐵𝐵) 

 

• Task 
o Given 𝒏 matrixes 𝑨𝟏,𝑨𝟐, …𝑨𝒏 find such a parenthesization minimizing 

number of multiplications of the matrixes’ items 
• order of multiplication in the chain is important 
• 𝑛 = 3,𝐴1 2 × 3 ,𝐴2 3 × 2 ,𝐴3 2 × 5  

o 𝐴1𝐴2= 12 multiplications, (𝐴1𝐴2)𝐴3 = 20 multiplications → 32 in total 
o 𝐴2𝐴3= 30 multiplications, 𝐴1(𝐴2𝐴3) = 30 multiplications → 60 in total 

 



MPO - Recursion 

• MPORec returns minimum number of multiplications needed to multiply 
matrices 𝐴𝑖𝑖𝑖𝑖𝑖𝑖+1,𝐴𝑖𝑖𝑖𝑖+1(+1 because C# arrays go from 0) 
 

• scan the array of matrices 
 

• at each position take the best result from left, right and add their product 
cost  
 

• parenthesization can be stored in an auxiliary structure 



MPO - DP 
• DP matrix M will store in 𝑴[𝒊, 𝒋] minimum number of multiplications 

needed to multiply 𝑖 consequent matrices starting at position 𝑗 
(𝑨𝒋,𝑨𝒋+𝟏, …𝑨𝒋+𝒊−𝟏) → 𝑴[𝒏,𝟏] contains the result (indexing from 1 for 
sake of clarity) 
 

• 𝑀[𝑖, 𝑗] can be computed by increasing 𝑖 
o 𝑀 1, 𝑗 = 0 
o 𝑀 𝑖, 𝑗 = min (𝑀 𝑘, 𝑗 + 𝑀 𝑖 − 𝑘, 𝑗 + 𝑘 + 𝑝 𝑗 − 1 × 𝑝[𝑗 + 𝑘 − 1] × 𝑝[𝑗 + 𝑖 − 1]) 

 

0 0 0 0 0 0 0 0 
runs of length 5 

runs starting 
𝐴1, at position 3 

𝐴1,𝐴2, 𝑨𝟑, 𝑨𝟒, 𝑨𝟓, 𝑨𝟔, 𝑨𝟕, 𝐴8 

area with 
subresults 

relevant for 
𝑀 5,3   



MPO – DP (cont.) 

• Runs in 𝑂 𝑛3  time and 𝑂 𝑛2  space 



Longest Common 
Subsequences (LCS) 

• Task 
o Given two sequence 𝑆1[1 …𝑚] and 𝑆2 

[1 …𝑛], find a longest common 
subsequence (not substring) common to both. 

 
• Sequence 𝑺 of length |𝑆| is a subsequence of sequence A of length |A| if 

there exists indeces 1 ≤ 𝑖1 < 𝑖2 <  …  < 𝑖|𝑆| <= |𝐴| in 𝐴 such that 𝑺 𝒋 = 𝑨 𝒊𝒋 ,
 𝑗 =  0, 1, … , 𝑆  

• 𝑺 is a common subsequence of 𝑆1 and 𝑆2 only if it is subsequence of both 
𝑆1 and 𝑆2 . 
 

• Example 
• A  B  C  B D A  B 

 
 

• B D C A B A 

 
• Particularly important in computational biology 



LCS – Brute-Force 
• Check every subsequence of S1 in S2 

 
o for each subsequence ss1 in s1 we can test whether it is present in s2 in O(n) 

time  
• scanning s2 linearly and checking whether first letter in s2 corresponds 

to the first letter in ss1 

• if so, let us continue in the same fashion with the second letter from 
that position 

• when we run out of letters of ss1, ss1 is present in s2 
 

o the are O(2m) subsequences → complexity of the brute-force algorithm is 
O(n2m) 

• OK for short sequences but not for, e.g., DNA sequences 
 

 



LCS – DP 
• DP solution is based on computing LCS for prefixes 

of 𝑆1 and 𝑆2 (subproblems in DP) 
 

• Let us denote 𝐿𝐵𝑆(𝑖, 𝑗) LCS of 𝑖 and 𝑗 long prefixes of 
𝑆1 and 𝑆2 
o 𝐿𝐵𝑆(|𝑆1|, 𝑆2 ) = solution of LCS 

 

• Recursive rule 

o 𝐿𝐵𝑆(𝑖, 𝑗)�
0                                                             𝑖 = 0 𝑜𝑟 𝑗 = 0
𝐿 𝑖,−1 𝑗 − 1 + 1                                𝑆1 𝑖 = 𝑆2[𝑗]
max 𝐿 𝑖, 𝑗 − 1 , 𝐿 𝑖 − 1, 𝑗               𝑆1 𝑖 ≠ 𝑆2[𝑗]

 



LCS – DP (cont.) 
• 𝐿(𝑖, 𝑗)�

0                                                             𝑖 = 0 𝑜𝑟 𝑗 = 0      (𝟏)
𝐿 𝑖,−1 𝑗 − 1 + 1                                𝑆1 𝑖 = 𝑆2 𝑗        (𝟐)
max 𝐿 𝑖, 𝑗 − 1 , 𝐿 𝑖 − 1, 𝑗               𝑆1 𝑖 ≠ 𝑆2 𝑗        (𝟑)

 

 
1. If there is only one sequence, LCS = 0 

 
2. If LCS(𝐴1,𝐴2) = 𝑛 then LCS(𝐴1𝑥,𝐴2𝑥) = 𝑛 + 1  

• because if two sequences have the same 1-letter suffix then their LCS will contain it, 
otherwise it wouldn’t be LCS 

 
 
 

3. If two sequences 𝐴1𝑥 and 𝐴2𝑦 differ at last position then their 
LCS is identical to either LCS(𝐴1𝑥,𝐴2) or LCS(𝐴1,𝐴2𝑦) 

 

x 
x 

x 
y 



LCS – DP (cont.) 
 
 
 
 
 
 
 
 
 

• The alignment itself can be identified easily by 
backtracking 



LCS Matrix 
B D C A B A 

0 0 0 0 0 0 0 

A 0 0 0 0 1 1 1 

B 0 1 1 1 1 2 2 

C 0 1 1 2 2 2 2 

B 0 1 1 2 2 3 3 

D 0 1 2 2 2 3 3 

A 0 1 2 2 3 3 4 

B 0 1 2 2 3 4 4 



LCS Backtracking 

B D C A B A 
A B C B D A B 

B D C A B A 

0 0 0 0 0 0 0 

A 0 0 0 0 1 1 1 

B 0 1 1 1 1 2 2 

C 0 1 1 2 2 2 2 

B 0 1 1 2 2 3 3 

D 0 1 2 2 2 3 3 

A 0 1 2 2 3 3 4 

B 0 1 2 2 3 4 4 

B D C A B A 

0 0 0 0 0 0 0 

A 0 0 0 0 1 1 1 

B 0 1 1 1 1 2 2 

C 0 1 1 2 2 2 2 

B 0 1 1 2 2 3 3 

D 0 1 2 2 2 3 3 

A 0 1 2 2 3 3 4 

B 0 1 2 2 3 4 4 

B D C A B A 
A B C B D A B 



LCS - example 
 
 

• AlVie 
 
 
 

• Practise 
o LCS (HUMAN, CHIMPANZEE) 
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