Bioinformatics

 AlgorithmsDynamic Programming

RNDr. David Hoksza, Ph.D. http://siret.cz/hoksza

Outline

- Dynamic programming basics
o recursion
o approaches
- Example problems
o Fibonaccinumbers
o matrix product
o longest common subsequence

Sources

- Animations
o AIViE suite - https://sites.google.com/site/alviehomepage/

Recursion

- Method where the solution to a problem is builtfrom solution of smaller instances of the same problem
- Usually recursive problem is solved by a parameterized function which calls itself with parameter reflecting sma ller instance(recursion)
- Examples
o factorial
- $n!=\boldsymbol{n}(\boldsymbol{n}-1)!\rightarrow \boldsymbol{F}(n)=n F(n-1)$
o Fibonaccinumbers
o greatest common divisor
o binary search
o ...

Dynamic Programming (DP)

- Algorithm design technique/concept
- Conditions
o the optimal solutions to a problem is composed of optimal solutions to subproblems
o if there are several optimal solutions, we don't care which one we get
- Approaches
o Top-down
- retains standard recursive top-down structure but stores
o Bottom-up
- higher levels share results from the lower levels
- DP solutions are often considered only those using bottom-up approach
o see Fibonacciforan example

Dynamic Programming and Dimension

- Dynamic programming solves problems by dividing problem into subproblems and using their results later
- Memoization
o to store results of the subproblems n-dimensional a rray is usually used
- Usually, we talk about dynamic programming when $n \geq 2$
o e.g., algorithm forcomputation of Fibonacci numbers fulfills the conditions of DP solution but $n<2$

Fibonacci Numbers (FN)

- Definition

$$
\begin{aligned}
& \circ \quad \boldsymbol{F}(\boldsymbol{n})= \begin{cases}\boldsymbol{n} & \boldsymbol{n} \leq \mathbf{1} \\
\boldsymbol{F}(\boldsymbol{n}-\mathbf{1})+\boldsymbol{F}(\boldsymbol{n}-\mathbf{1}) & \boldsymbol{n}>\mathbf{1}\end{cases} \\
& \circ \\
& \circ \\
& \hline F(0)=0, F(1)=1, F(2)=1, F(3)=2, F(4)=3, F(5)=5, F(6)=8, \ldots
\end{aligned}
$$

- Task
- Given n compute $\mathrm{F}(\boldsymbol{n})$

FN - Recursion

```
static int FibRec (int n)
\{
```

```
if ( \(\mathrm{n}<=1\) ) return n ;
```

if ($\mathrm{n}<=1$) return n ;
else return FibRec (n - 1) + FibRec (n - 2);

```
else return FibRec (n - 1) + FibRec (n - 2);
```

 \}
 - example for $F(5)$

- high redundancy

```
        FN - DP - Top-Down
static int FibDPTD_rec(int n, int[] f)
{
    if (n <= 1) return n;
    else if (f[n] == 0)
    {
        f[n] = FibDPTD_rec(n - 1, f) + FibDPTD_rec(n - 2, f);
        }
        return f[n];
}
static int FibDPTD(int n)
{
    //f ... dynamic programming array
    int[] f = new int[n];
    Array.Clear(f, 0, f.Length);
    return FibDPTD_rec(n, f);
}
```

- requires $O(n)$ time and space

FN - DP - Bottom-Up

```
static int FibDP(int n)
{
    //f ... dynamic programming array
    f[0] = 0;
    f[1] = 1;
    for (int k = 2; k<n; k++) f[k] = f[k - 1] + f[k - 2];
    return f[n];
}
```

- one-dimensional dynamic programming array
- no redundant computations
- for computation of the solution, the subsolutions a re used
- requires $O(n)$ time and space (can be done in $O(1)$)

Matrix Product (MPO)

- Matrix multiplication
- takesa pair of matrices $A[p \times q]$ and $\mathrm{B}[q \times r]$
o and produces matrix $\mathrm{C}[p \times r]$
o associative 4×2 matrix
$\left[\begin{array}{cc}a_{11} & a_{12} \\ \cdot & \cdot \\ a_{31} & a_{32} \\ \cdot & \cdot\end{array}\right]$ $\begin{gathered}4 \times 3 \text { matrix } \\ {\left[\begin{array}{ccc}\cdot & b_{12} & b_{13} \\ \cdot & b_{22} & b_{23}\end{array}\right]=\left[\begin{array}{ccc}\cdot & x_{12} & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & x_{33} \\ \cdot & \cdot & \cdot\end{array}\right]}\end{gathered}$

$$
\begin{aligned}
& x_{12}=\left(a_{11}, a_{12}\right) \cdot\left(b_{12}, b_{22}\right)=a_{11} b_{12}+a_{12} b_{22} \\
& x_{33}=\left(a_{31}, a_{32}\right) \cdot\left(b_{13}, b_{23}\right)=a_{31} b_{13}+a_{32} b_{23} .
\end{aligned}
$$

- $A(B C)=(A B) C$
- $A B C D=((A B) C) D=(A(B C) D)=A((B C) D)=A(B(C D))=(A B)(C D)$
- Task
o Given n matrixes $A_{1}, A_{2}, \ldots A_{n}$ find such a parenthesization minimizing number of multiplications of the matrixes' items
- order of multiplication in the cha in is important
- $n=3, A_{1}[2 \times 3], A_{2}[3 \times 2], A_{3}[2 \times 5]$
o $A_{1} A_{2}=12$ multiplications, $\left(A_{1} A_{2}\right) A_{3}=20$ multiplications $\rightarrow 32$ in total
o $A_{2} A_{3}=30$ multiplic ations, $A_{1}\left(A_{2} A_{3}\right)=30$ multiplications $\rightarrow 60$ in total

MPO - Recursion

```
static int MPORec(int ixFrom, int ixTo)
{ //p ... matrices dimenstions
    int cntMin = 0;
    if (ixFrom != ixTo)
    {
        cntMin = Int32.MaxValue;
        for (int k = ixFrom; k < ixTo; k++)
        {
            int cntMult = MPORec(ixFrom, k) + MPORec(k+1, ixTo) +
                        p[ixFrom - 1] * p[k] * p[ixTo];
            if (cntMult < cntMin) cntMin = cntMult;
        }
    }
    return cntMin;
}
```

- MPORec retums minimum number of multiplications needed to multiply matrices $A_{\text {ixFrom }+1}, A_{i x T o+1}(+1$ because C \# a rrays go from 0)
- scan the a may of matrices
- at each position ta ke the best result from left, right and add their product cost
- parenthesization can be stored in an a uxilia ry struc ture

MPO - DP

- DP matrix M will store in $M[i, j]$ minimum number of multip lic a tions needed to multiply i consequent matrices starting at position j $\left(A_{j}, A_{j+1}, \ldots A_{j+i-1}\right) \rightarrow M[n, 1]$ conta ins the result (ind exing from 1 for sake of clanty)
runs starting
A_{1}, at position 3
- $\quad M[i, j]$ can be computed by inc reasing i
- $m[1, j]=0$
o $\quad M[i, j]=\min (M[k, j]+M[i-k, j+k]+p[j-1] \times p[j+k-1] \times p[j+i-1])$
runs of length 5

MPO - DP (cont.)

```
static int MPO()
    //n ... # matrices
    //m ... dynamic programming matrix
    //m[i][j] = minimum number of operations needed to multiply A_i, ..., A_i+j
    //p ... matrices dimenstions
    for (int i = 1; i <= n; i++) m[1][i] = 0; //indexing from 1 for sake of clarity
    for (int i = 1; i <= n; i++)
    {
        for (int j = 1; j <= n - i +1; j++)
        {
            cntMin = Int32.MaxValue;
            for (int k = 1; k < i - 1; k++)
            {
                int cntMult = m[k][j] + m[i - k][j + k] + p[j - 1] * p[j + k - 1] * p[j + i - 1];
                if (cntMult < cntMin) cntMin = cntMult;
            }
            m[i][j] = cntMin;
        }
    }
    return cntMin;
```

- Runs in $O\left(n^{3}\right)$ time a nd $O\left(n^{2}\right)$ space

Longest Common Subsequences (LCS)

- Task
o Given two sequence $S_{1}[1 \ldots m]$ and $S_{2}[1 \ldots n]$, find a longest common subsequence (not substring) common to both.
- Sequence \boldsymbol{S} of length $|S|$ is a subsequence of sequence \mathbf{A} of length $|\mathrm{A}|$ if there exists indeces $1 \leq i_{1}<i_{2}<\ldots<i_{|S|}<=|A|$ in A such that $S[j]=A\left[i_{j}\right]$, $j=0,1, \ldots,|S|$
- S is a common subsequence of S_{1} and S_{2} only if it is subsequence of both S_{1} and S_{2}.
- Example

- Partic ula rly importa nt in computa tional biology

LCS - Brute-Force

- Check every subsequence of S_{1} in S_{2}
o foreach subsequence $s s_{1}$ in s_{1} we can test whether it is present in s_{2} in $O(n)$ time
- scanning s_{2} linearly and checking whether first letter in s_{2} corresponds to the first letter in s_{1}
- if so, let us continue in the same fashion with the second letter from that position
- when we run out of letters of Ss_{1}, ss_{1} is present in s_{2}
o the are $\mathrm{O}\left(2^{m}\right)$ subsequences \rightarrow complexity of the brute-force algorithm is $\mathrm{O}\left(\mathrm{n} 2^{\mathrm{m}}\right)$
- OK for short sequences but not for, e.g., DNA sequences

LCS - DP

- DP solution is based on computing LCS for prefixes of S_{1} and S_{2} (subproblems in DP)
- Let us denote $\operatorname{LCS}(i, j)$ LCS of i and j long prefixes of S_{1} and S_{2}
- $\operatorname{LCS}\left(\left|S_{1}\right|,\left|S_{2}\right|\right)=$ solution of LCS
- Recursive rule

$$
\text { - } \quad \operatorname{LCS}(i, j)\left\{\begin{array}{lr}
0 & i=0 \text { or } j=0 \\
L(i,-1 j-1)+1 & S_{1}[i]=S_{2}[j] \\
\max \{L(i, j-1), L(i-1, j)\} & S_{1}[i] \neq S_{2}[j]
\end{array}\right.
$$

$$
\begin{array}{r}
\text { - } L(i, j)\left\{\begin{array}{ll}
0 & i=0 \text { or } j=0 \\
L(i,-1 j-1)+1 \\
\max \{L(i, j-1), L(i-1, j)\} & S_{1}[i]=S_{2}[j] \\
S_{1}[i] \neq S_{2}[j]
\end{array} \quad\right. \text { (3) }
\end{array}
$$

1. If there is only one sequence, $\mathrm{LCS}=0$
2. If $\operatorname{LCS}\left(A_{1}, A_{2}\right)=n$ then $\operatorname{LCS}\left(A_{1} x, A_{2} x\right)=n+1$

- bec ause if two sequenc es have the same 1-letter suffix then their LCS will conta in it, otherwise it wouldn't be LCS

3. If two sequences $A_{1} x$ and $A_{2} y$ differ at last position then their LCS is identic al to either $\operatorname{LCS}\left(A_{1} x, A_{2}\right)$ or $\operatorname{LCS}\left(A_{1}, A_{2} y\right)$

LCS - DP (cont.)

```
LCS( a b )
    FOR (i = 0; i <= m; i = i+1)
                length[i][0] = 0;
    FOR (j = 0; j <= n; j = j +1)
        length[0][j] = 0;
    FOR (i = 1; i <= m; i = i+1)
        FOR (j = 1; j <= n; j = j+1) {
            IF (a[i-1] == b[j-1]) {
                length[i][j] = length[i-1][j-1] + 1;
            } ELSE IF (length[i][j-1] > length[i-1][j]) {
                length[i][j] = length[i][j-1];
            } ELSE {
                length[i][j] = length[i-1][j];
                }
                }
    RETURN length[m][n];
```

- The a lignment itself can be identified easily by backtracking

LCS Matrix

		B	D	C	A	B	A
	0	0	0	0	0	0	0
A	0	0	0	0	1	1	1
B	0	1	1	1	1	2	2
C	0	1	1	2	2	2	2
B	0	1	1	2	2	3	3
D	0	1	2	2	2	3	3
A	0	1	2	2	3	3	4
B	0	1	2	2	3	4	4

LCS Backtracking

		B	D	C	A	B	A
	0	0	0	0	0	0	0
A	0	0	0	0	1	1	1
B	0	1	1	1	1	2	2
C	0	1	1	2	2	2	2
B	0	1	1	2	2	3	3
D	0	1	2	2	2	3	3
A	0	1	2	2	3	3	4
B	0	1	2	2	3	4	4

		B	D	C	A	B	A
	0	0	0	0	0	0	0
A	0	0	0	0	1	1	1
B	0	1	1	1	1	2	2
C	0	1	1	2	2	2	2
B	0	1	1	2	2	3	3
D	0	1	2	2	2	3	3
A	0	1	2	2	3	3	4
B	0	1	2	2	3	4	4

	B	D	C			A	B	A
A	B		C	B	D	A	B	

			B	D	C	A	B	A
A	B	C	B	D		A	B	

LCS - example

- AlVie
- Practise
o LCS (HUMAN, CHIMPANZEE)

