
Bioinformatics
Algorithms

RNDr. David Hoksza, Ph.D.
http://siret.cz/hoksza

Dynamic Programming

Outline
• Dynamic programming basics

o recursion

o approaches

• Example problems

o Fibonacci numbers

o matrix product

o longest common subsequence

Sources
• Animations

o AlViE suite - https://sites.google.com/site/alviehomepage/

https://sites.google.com/site/alviehomepage/

Recursion
• Method where the solution to a problem is built from

solution of smaller instances of the same problem

• Usually recursive problem is solved by a parameterized
function which calls itself with parameter reflecting
smaller instance(recursion)

• Examples
o factorial

• 𝒏! = 𝒏 𝒏 − 𝟏 ! → 𝑭 𝒏 = 𝒏𝑭 𝒏 − 𝟏
o Fibonacci numbers
o greatest common divisor
o binary search
o …

Dynamic Programming (DP)
• Algorithm design technique/concept

• Conditions

o the optimal solutions to a problem is composed of optimal solutions to
subproblems

o if there are several optimal solutions, we don’t care which one we get

• Approaches

o Top-down
• retains standard recursive top-down structure but stores

o Bottom-up
• higher levels share results from the lower levels
• DP solutions are often considered only those using bottom-up

approach

o see Fibonacci for an example

Dynamic Programming
and Dimension

• Dynamic programming solves problems by dividing
problem into subproblems and using their results
later

• Memoization
o to store results of the subproblems n-dimensional array is usually used

• Usually, we talk about dynamic programming when
𝒏 ≥ 𝟐
o e.g., algorithm for computation of Fibonacci numbers fulfills the conditions

of DP solution but 𝑛 < 2

Fibonacci Numbers (FN)

• Definition

o 𝑭 𝒏 = �𝒏 𝒏 ≤ 𝟏
 𝑭 𝒏 − 𝟏 + 𝑭 𝒏 − 𝟏 𝒏 > 𝟏

o 𝐹 0 = 0,𝐹 1 = 1, 𝐹 2 = 1, 𝐹 3 = 2, 𝐹 4 = 3, 𝐹 5 = 5,𝐹 6 = 8, …

• Task

o Given 𝒏 compute F(𝒏)

FN - Recursion

• example for F(5)

• high redundancy

FN – DP – Top-Down

• requires O(n) time and space

FN – DP – Bottom-Up

• one-dimensional dynamic programming array
• no redundant computations
• for computation of the solution, the subsolutions are

used

• requires O(n) time and space (can be done in O(1))

Matrix Product Ordering
(MPO)

• Matrix multiplication
o takes a pair of matrices 𝐴[𝑝 × 𝑞] and B[𝑞 × 𝑟]
o and produces matrix C[𝑝 × 𝑟]

o associative

• 𝐴 𝐵𝐵 = 𝐴𝐵 𝐵
• 𝐴𝐵𝐵𝐵 = 𝐴𝐵 𝐵 𝐵 = 𝐴 𝐵𝐵 𝐵 = 𝐴 𝐵𝐵 𝐵 = 𝐴 𝐵 𝐵𝐵 = (𝐴𝐵)(𝐵𝐵)

• Task
o Given 𝒏 matrixes 𝑨𝟏,𝑨𝟐, …𝑨𝒏 find such a parenthesization minimizing

number of multiplications of the matrixes’ items
• order of multiplication in the chain is important
• 𝑛 = 3,𝐴1 2 × 3 ,𝐴2 3 × 2 ,𝐴3 2 × 5

o 𝐴1𝐴2= 12 multiplications, (𝐴1𝐴2)𝐴3 = 20 multiplications → 32 in total
o 𝐴2𝐴3= 30 multiplications, 𝐴1(𝐴2𝐴3) = 30 multiplications → 60 in total

MPO - Recursion

• MPORec returns minimum number of multiplications needed to multiply
matrices 𝐴𝑖𝑖𝑖𝑖𝑖𝑖+1,𝐴𝑖𝑖𝑖𝑖+1(+1 because C# arrays go from 0)

• scan the array of matrices

• at each position take the best result from left, right and add their product
cost

• parenthesization can be stored in an auxiliary structure

MPO - DP
• DP matrix M will store in 𝑴[𝒊, 𝒋] minimum number of multiplications

needed to multiply 𝑖 consequent matrices starting at position 𝑗
(𝑨𝒋,𝑨𝒋+𝟏, …𝑨𝒋+𝒊−𝟏) → 𝑴[𝒏,𝟏] contains the result (indexing from 1 for
sake of clarity)

• 𝑀[𝑖, 𝑗] can be computed by increasing 𝑖
o 𝑀 1, 𝑗 = 0
o 𝑀 𝑖, 𝑗 = min (𝑀 𝑘, 𝑗 + 𝑀 𝑖 − 𝑘, 𝑗 + 𝑘 + 𝑝 𝑗 − 1 × 𝑝[𝑗 + 𝑘 − 1] × 𝑝[𝑗 + 𝑖 − 1])

0 0 0 0 0 0 0 0
runs of length 5

runs starting
𝐴1, at position 3

𝐴1,𝐴2, 𝑨𝟑, 𝑨𝟒, 𝑨𝟓, 𝑨𝟔, 𝑨𝟕, 𝐴8

area with
subresults

relevant for
𝑀 5,3

MPO – DP (cont.)

• Runs in 𝑂 𝑛3 time and 𝑂 𝑛2 space

Longest Common
Subsequences (LCS)

• Task
o Given two sequence 𝑆1[1 …𝑚] and 𝑆2

[1 …𝑛], find a longest common
subsequence (not substring) common to both.

• Sequence 𝑺 of length |𝑆| is a subsequence of sequence A of length |A| if

there exists indeces 1 ≤ 𝑖1 < 𝑖2 < … < 𝑖|𝑆| <= |𝐴| in 𝐴 such that 𝑺 𝒋 = 𝑨 𝒊𝒋 ,
 𝑗 = 0, 1, … , 𝑆

• 𝑺 is a common subsequence of 𝑆1 and 𝑆2 only if it is subsequence of both
𝑆1 and 𝑆2 .

• Example
• A B C B D A B

• B D C A B A

• Particularly important in computational biology

LCS – Brute-Force
• Check every subsequence of S1 in S2

o for each subsequence ss1 in s1 we can test whether it is present in s2 in O(n)

time
• scanning s2 linearly and checking whether first letter in s2 corresponds

to the first letter in ss1

• if so, let us continue in the same fashion with the second letter from
that position

• when we run out of letters of ss1, ss1 is present in s2

o the are O(2m) subsequences → complexity of the brute-force algorithm is
O(n2m)

• OK for short sequences but not for, e.g., DNA sequences

LCS – DP
• DP solution is based on computing LCS for prefixes

of 𝑆1 and 𝑆2 (subproblems in DP)

• Let us denote 𝐿𝐵𝑆(𝑖, 𝑗) LCS of 𝑖 and 𝑗 long prefixes of
𝑆1 and 𝑆2
o 𝐿𝐵𝑆(|𝑆1|, 𝑆2) = solution of LCS

• Recursive rule

o 𝐿𝐵𝑆(𝑖, 𝑗)�
0 𝑖 = 0 𝑜𝑟 𝑗 = 0
𝐿 𝑖,−1 𝑗 − 1 + 1 𝑆1 𝑖 = 𝑆2[𝑗]
max 𝐿 𝑖, 𝑗 − 1 , 𝐿 𝑖 − 1, 𝑗 𝑆1 𝑖 ≠ 𝑆2[𝑗]

LCS – DP (cont.)
• 𝐿(𝑖, 𝑗)�

0 𝑖 = 0 𝑜𝑟 𝑗 = 0 (𝟏)
𝐿 𝑖,−1 𝑗 − 1 + 1 𝑆1 𝑖 = 𝑆2 𝑗 (𝟐)
max 𝐿 𝑖, 𝑗 − 1 , 𝐿 𝑖 − 1, 𝑗 𝑆1 𝑖 ≠ 𝑆2 𝑗 (𝟑)

1. If there is only one sequence, LCS = 0

2. If LCS(𝐴1,𝐴2) = 𝑛 then LCS(𝐴1𝑥,𝐴2𝑥) = 𝑛 + 1

• because if two sequences have the same 1-letter suffix then their LCS will contain it,
otherwise it wouldn’t be LCS

3. If two sequences 𝐴1𝑥 and 𝐴2𝑦 differ at last position then their
LCS is identical to either LCS(𝐴1𝑥,𝐴2) or LCS(𝐴1,𝐴2𝑦)

x
x

x
y

LCS – DP (cont.)

• The alignment itself can be identified easily by
backtracking

LCS Matrix
B D C A B A

0 0 0 0 0 0 0

A 0 0 0 0 1 1 1

B 0 1 1 1 1 2 2

C 0 1 1 2 2 2 2

B 0 1 1 2 2 3 3

D 0 1 2 2 2 3 3

A 0 1 2 2 3 3 4

B 0 1 2 2 3 4 4

LCS Backtracking

B D C A B A
A B C B D A B

B D C A B A

0 0 0 0 0 0 0

A 0 0 0 0 1 1 1

B 0 1 1 1 1 2 2

C 0 1 1 2 2 2 2

B 0 1 1 2 2 3 3

D 0 1 2 2 2 3 3

A 0 1 2 2 3 3 4

B 0 1 2 2 3 4 4

B D C A B A

0 0 0 0 0 0 0

A 0 0 0 0 1 1 1

B 0 1 1 1 1 2 2

C 0 1 1 2 2 2 2

B 0 1 1 2 2 3 3

D 0 1 2 2 2 3 3

A 0 1 2 2 3 3 4

B 0 1 2 2 3 4 4

B D C A B A
A B C B D A B

LCS - example

• AlVie

• Practise
o LCS (HUMAN, CHIMPANZEE)

	Bioinformatics Algorithms
	Outline
	Sources
	Recursion
	Dynamic Programming (DP)
	Dynamic Programming and Dimension
	Fibonacci Numbers (FN)
	FN - Recursion
	FN – DP – Top-Down
	FN – DP – Bottom-Up
	Matrix Product Ordering (MPO)
	MPO - Recursion
	MPO - DP
	MPO – DP (cont.)
	Longest Common Subsequences (LCS)
	LCS – Brute-Force
	LCS – DP
	LCS – DP (cont.)
	LCS – DP (cont.)
	LCS Matrix
	LCS Backtracking
	LCS - example

