Data visualization

Basic design principles and types

David Hoksza
http://siret.ms.mff.cuni.cz/hoksza

Challenge of data visualization

- Determining the medium (visualization) which tells the story best
- Table
- Graph
- Schema
- ...
- Design the components of the medium in such a way that the story is relayed clearly
- Which data to emphasize and which to play down
- Colors
- ...

Tables vs graphs

Tables

- Looking up individual values
- Required reading of precise values
- Comparing individual items rather than whole series
- More than one unit of measure
- Multiple levels of aggregation are needed (summary, average)

Graphs

- Message is contained in patterns, trends and exceptions
- Set of values needs to be seen as a whole or compared

Encoding quantitative values in graphs

- Means to encode quantitative values (sales, temperature, ...)
- Points
- Lines
- Bars
- Boxes
- Shapes with varying 2D areas
- Shapes with varying color intensity
- Each encoding has its strengths and limitations

Points

- Small, simple geometrical object used to mark a location on a graph - Scatter plot

Lines

Patterns

- Connecting points by a line enables one to see an entire series of values as a single pattern

Trends

- Trend lines (lines of best fits)

Bars (1)

- Bar chart
- Connects well labels with the values
- Well-suited for comparison (better than points)
- Can run both horizontally and vertically
- Adds second dimension (width) which is usually not used (and should not)

Since bars are good for comparison they also good for "cheating"

Boxes

- Comparison of distributions of sets of values \rightarrow every box represents a set of values \rightarrow box plot

Shapes with areas

- Representing values in proportion to their area (rather than location)
- Area graphs \rightarrow pie chart

Age structure in Prague (2013)

data source: Český statistický úřad

- Bubbles \rightarrow bubble chart

Life expectancy by country
(bubble sizes correspond to population size)

Areas are not suitable for comparison

What not to do with pie charts

- Don't use 3D effects or explode your pie
- If the pie is depicting percents, it must sum to $\mathbf{1 0 0 \%}$
- Don't have a ton of slices
- Don't use a pie if the primary goal is to compare the size of the slices
- Don't use multiple pies and ask your audience to compare across them

Shapes with color

- Bubble
plot with varying hue or intensity

(0)

Encoding categorical values in charts

- Position
- Hue
- Point shape
- Fill pattern
- Line style

Position

- Most common to identify categorical items
- Works with bars, points, lines or boxes

Hue

- When position is taken, hue can be used to differentiate categorical items

Point shape

- A bit more difficult to discern than position and color
- When color is not available or already taken

Fill pattern

- Used to encode categorical items when the quantitative values are encoded as bars (or boxes)
- Harder to distinguish than color

I TOOK A PICTURE OF MY COMPUTER SCREEN - WHY IS THE PHOTO COVERED IN THESE WEIRD RAINBOW PATTERNS?
I WHAEN AGRD'S MISALIGNED WITH ANOTHER BEHIND THAT'S A MOIRÉ...

Sales
\$ Direct \$ Indirect

Sales
$\mathbf{~ D i r e c t ~} \boldsymbol{Z}$ Indirect
700000

Line style

- Lines bare a feeling of continuity which might be disrupted by breaks in the lines

Relationships in graphs

- Shaping relationships of quantitative information
- Different types of graphs are suitable for communicating different types of quantitative relationships
- Time series
- Ranking
- Part-to-whole
- Deviation
- Distribution
- Correlation
- Geospatial relation

'Time series

- Series of quantitative values featuring how an attribute changes in time
- Captures patterns and trends
- Quantitative messages involving time series usually include words like
- change, rise, increase, fluctuate, grom, decline, decrease, trend

Time series design (1)

Sales

- Due to convention in most cultures, the layout of time should be from left to right along the X axis \rightarrow vertical designs (bar, boxes) should be avoided in general
- Bars better when the goal is to emphasize individual values
- Lines more suitable for showing a pattern of change throughout the time

Time series design (2)

- Points suitable for display of values recorded at irregular intervals

Ranking

- Also called item comparison
- Display of how a set of quantitative values relate to each other sequentially
- Sorted by size
- Quantitative messages involving ranking usually include words like
- larger than, smaller than, equal to, greater than, less than

Ranking design

- The goal is to emphasize each individual item \rightarrow bars
- Both vertical and horizontal design is acceptable

Purpose	Sort order	Bar position
Emphasize the highest value	Descending	Vertical bars: highest bar on left Horizontal bars: highest value on top
Emphasize the lowest value	Ascending	Vertical bars: lowest bar on left Horizontal bars: lowest value on top

Part-to-whole

- Also called component comparison
- Display of how individual values (parts, components) make up a whole
- Percentages (sum up to 100%), rates (sum up to 1)
- Quantitative messages involving part-to-whole relationship usually include words like
- rate, percent, share, accounts for N percent

Part-to-whole design

- Pie charts, although commonly used, are not very suitable (see slide 11)

Deviation

- Display of how one or more sets of quantitative values differ from a reference set (baseline)
- Usually expressed as positive or negative amount relative to the reference values or positive or negative rates or percentages relative to the reference value
- Quantitative messages involving deviation usually include words like
- plus or minus, variance, difference, relative to

Deviation design (1)

Expenses: Variance from Plan

Deviation design (2)

Sales Compared to January
90000
-

Distribution

- Display of how quantitative values are distributed across an entire range
- Range commonly split into small ranges (intervals)
- A single visualization can cover multiple distributions
- Quantitative messages involving distribution usually include words like
- frequency, distribution, range, concentration

Distribution design (1)

- Emphasis on
- The number of occurrences in each interval \rightarrow bars (histogram)
- The overall shape of the distribution across the entire range \rightarrow line (frequency polygon)

\% of orders Shipping Performance (Days)

Distribution design (2)

- If we have a small number of values and want to see the individual items \rightarrow strip plot

Employees by Age

Distribution design (3)

- Frequency polygon can capture multiple distributions

Distribution design (4)

- Frequency plots do not work for more than a few distributions \rightarrow stacked density chart

Distribution design (5)

- Frequency plots do not work for more than a few distributions \rightarrow box (box-and-whisker) plot \rightarrow candlestick chart

Distribution design (6)

- When more detail about distribution is required \rightarrow violin plot

Correlation

- Display of how (or whether) two sets of quantitative values vary in relation to each other (covary)
- Should show direction (positive, negative) and degree (low, high)
- Correlation does not imply causality ("Correlation does not imply causation")
- Quantitative messages involving correlation usually include words like
- increases with, decreases with, changes with, varies with, caused by, affected by, follows

Correlation design

- Relationship between two quantitative values \rightarrow scatter plot

Uncertainty (1)

- Values of estimates or measures with uncertainty can be visualized with this estimate

Error bars
2D error bars

Uncertainty (2)

- Equivalent of an error bar for line graphs

Geospatial relationship

- Display where quantitative values are located (spatial relation)
- The spatial location is commonly geographic, but does not have to be (e.g. buildings plans)
- Quantitative messages involving geospatial relation include words like
- geography, location, where, region, territory, country, state, city

Geospatial design

Principles of graph design

- Highlight data and suppress everything else
- "Above all else show the data" (Tufte, 1983)
- Maintain visual correspondence with numerical quantities
- Quantity is best expressed as length (bars, boxes) or 2D position (points, lines)
- Distance in the axis scale (distance between tick marks) should always correspond with the difference of the corresponding quantitative values
- Avoid 3D
- Adding third dimension without adding a third scale \rightarrow makes the graph more difficult to read
- Adding third dimension with adding a third scale \rightarrow some values probably won't be visible at all and all will be difficult to compare

Data-ink ratio

- "Above all else show the data" (Tufte, 1983)

$$
\text { DataInkRatio }=\frac{\text { data ink }}{\text { total ink used to print the graphics }}
$$

Misleading (lying) with graphs

- The visual image (perceived visual effect) should represent the underlying numbers \rightarrow how to measure such thing?
- Conduct an experiment on visual perception of graphics
- E.g., approximate laws in perceiving have been discovered (perceived area of a circle $=$ (actual area) ${ }^{\mathrm{x}}, \mathrm{x}=0.8 \pm 0.3$)
- The perception is context dependent
- Define a measure of "misperception" \rightarrow Lie Factor

$$
\text { Lie Factor }=\frac{\text { size of effect shown in graphic }}{\text { size of effect in data }}
$$

- $L F>1.05$ or $L F<.95$ suggests substantial distortion

This line, representing 18 miles per gallon in 1978, is 0.6 inches long.

This line, representing 27.5 miles per gallon in 1985 , is 5.3 inches long.
effect in data $=\frac{27.5-18.0}{18.0} \times 100=53 \%$
effect in graphics $=\frac{5.3-0.6}{0.6} \times 100=783 \%$

$$
\text { Lie Factor }=\frac{783}{53}=14.8
$$

Beware of the effect of size

- If the visualization uses area (or even volume) then the area (not length) should reflect the change in the quantitative value

source: Darrel Huff (1954) How to lie with statistics, W.W. Norton \& Company Inc

MEDIAN FAMILY INCOME
In the 14 most elite ZIP Codes (as of 1960, in today's purchasing power)

SOURCE: 'COMING APART
Inaccurate graph as it appeared in the Wall Street Journal(1/21/2012)

MEDIAN FAMILY INCOME
In the 14 most elite ZIP Codes (as of 1960, in today's purchasing power)

SOURCE: COMING APART'
Accurate graph constructed by EvalBlog.com

Y-axis manipulation (1)

- The distance between tick marks on the scale line should be consistent with the difference in the quantitative values

Y-axis manipulation (2)

- You should never eliminate zero from the scale with bars

Axis scaling

- Scale is a transformation of the data to the axis
- Determines the min and max values on the axis, offsets, intervals between tick marks, ...
- Linear scale
- 1 unit on the axis correspond to n data units
- Logarithmic scale
- 1 unit on the axis correspond to $\log _{m}(n)$ data units

$3 \mathrm{D}(2)$

$■$ North ■East ■South ■West

$■$ North ■ East ■South ■ West

"Less traditional" visualizations

- Combination
- Pareto chart
- Small multipple
- Scatterplot matrix
- Part-to-whole
- Treemap
- Correlation
- Heatmap
- Distribution
- Steam-and-leaf
- Bag plot
- Network
- Arc diagram
- Arc maps
- Radial chart
- Hive plots
- BioFabric
- Hierarchies
- Treemap
- Icicle
- Sunburst
- Circle packing
- Hierarchical edge bundling
- Multivariate data
- Bag plot
- Parallel coordinates
- Parallel sets
- Radar chart
- Time
- Watterfall chart
- Gantt chart
- Slopegraph
- Sparklines
- Others
- Word cloud

Pareto chart

- Combination of one unit of measure and a cumulative percentage (or running total) of that measure
- The individual measures are usually visualized using bar chart
- The cumulative measure visualized as a line graph

Small multiple

- Also called trellis chart, lattice chart, grid chart, or panel chart
- Series of graphs using the same scale and axes
- Allows to see different slices of the same data using the same base graphics

Salary expenses

Engineering

HR
150

140

130

Jul Aug Sep Oct Noy Dec

Operations

1000
Jul Aug Sep Oct Nov Dec

IT

Accounting

Manufacturing

Scatterplot matrix

- All pairwise scatter plot of given variables
- Typically used to get feeling for the data to be investigated

THE TRILOGY METER

Die Hard

Rambo

\#1 In A Series of Pop Cultural Charts

source: http://danmeth.com/post/77471620/my-trilogy-meter-1-in-a-series-of-pop-cultural

Treemap

- Part-to-whole and/or hierarchical design
- Nested rectangles can capture hierarchy (if any is present)

Correlation matrix (1)

- Also known as heatmap or matrix diagram
- Display of how (or whether) two sets of categorical values relate to each other (correlate)
- Can be used for visualization of graphs

Correlation matrix (2)

- The correlation information can be incorporated with the help of dendrograms
- Helps to reveal clusters in data

Stem-and-leaf plot

- Similar to histogram displays frequency of each class
- Unlike histogram, it allows to see the original data points
- Suitable only for small datasets

Grades	
steam	leaf
4	23
5	057
6	0079
7	28
8	111387
9	5

Arc diagram

- Vertices are placed along a line and edges are drawn as semicircles
- 1D layout of a graph \rightarrow suitable when the vertices have a linear ordering
- Arcs represent relationships
- Further visual attributes such as color can encode additional information, e.g.,

 UU方

A map of 63,799 crossreferences found in the Bible. The bottom bars represent number of verses in the given chapter. Color of arcs represents the distance between the two chapters.

Circle size $=$ Number of messages
Circle color $=$ Average message length

- Visualization of IRC
communication behavior: Who is talking to whom?
- Arcs are directional and drawn clockwise:
- In the upper half of a graph they point from left to right, in the bottom half from right to left
- Arc strength corresponds to the number of references from the source to the target
- This visualization favors strong social connections over sociability: Frequent references between the same two users feature more prominently than combined references from several sources to a single target.

Arc maps

- \rightarrow Some people do quite long journeys from those arrival points. Here are routes from Penn station.

Radial chart

- Modification of the arc diagram where the \mathbf{x}-axis forms a ring
- Also called circular layout or chord diagram

Tracking the commercial ties between most countries across the globe. http:// cephea.de/gde/

Money flow from private donators to parties in the German Bundestag (house of the parliament). http://labs.vis4.net/parteispenden/

Hive plots

- Visualization method for drawing networks

EDGE CLASSIFICATION BY CONNECTIVITY IN AN UNDIRECTED NETWORK

- Nodes mapped to and positioned on radially distributed linear axes \rightarrow linear layout of nodes
- Can be divided into segments
- Edges drawn as curved links
- Graph structure can be mapped to
- Axis
- Position
- Color

Showing 764 dependencies among 220 classes.

Each node represents a class in a software library. Nodes are divided into three categories. The 12 o'clock axis (the top) shows source nodesclasses with only outgoing dependencies. The bottom-left axis shows target nodes with only incoming dependencies. The remaining nodes in the bottom-right have both incoming and outgoing dependencies; these are duplicated to reveal dependencies within this category.

BioFabric

- Dealing with large networks
- Nodes as horizontal line segments
- Edges as darker vertical line segments, do not overlap and can originate anywhere on the line segment

Bag plot

- Also called starburst plot

- Bivariate generalization of the well known boxplot
- Consists of three nested polygons
- Bag
- Bag contains 50 percent of all points (IQR)
- Loop
- Convex hull of points within the fence
- Fence
- Inflation of the bag by a factor
- Points outside of the fence are considered outliers

Parallel coordinates

- A way to visualoze highdimensional data in 2D
- Unlike line charts, a line represent a single object along multiple dimensions
- Each dimension is scaled so that each data point ends up somewhere between min (bottom of scale) and max (top of the scale)

source: http://bl.ocks.org/jasondavies/1341281

Radar chart

- Also known as spider/star chart

- Each axis represents one attribute
- Enables display of three or more quantitative variables in 2D

Icicle tree

- Visualization of clusters during successive steps of a cluster analysis

Parallel sets

Titanic Survivors

- Repetitive subdivision of categories
- One horizontal line per dimension and category
- Number of matches represented by width of bar
- Interactivity (both vertical and horizontal)

Sunburst

- Inspired by treemap \rightarrow layout for tree structures
- Root represents center of the plot
- A shell corresponds to a level in the tree \rightarrow leaves on the circumference
- Area of arcs correspond to a value associated with given node

Circle packing

- Inspired by treemap \rightarrow layout for tree structures
- In general, circle packing is a space filling technique dealing with arrangement of circles so that all circles touch each other but do not overlap
- Size of the circle can represent an arbitrary property

Hierarchical edge bundling

- Basically a radial chart including hierarchical clustering

Waterfall chart

- Also known as flying bricks chart
- Display of gradual negative or positive effects on an initial value
- Basically a bar chart

Gantt chart

- Display of the duration of events or activities over time
- Each separate mark (bar) shows a duration

Slopegraph

- Comparison of two sets of items having some relation to each other
- In the original version, slopegraph is basically a line graph where each item has two observations

Obesity is, on average, inversely proportional to the
average education of the population

Sparklines

	1999.1.1	65 months	2004.4.28	low	high		2003.4.28	12 months	2004.4.28	low	high
Euro foreign exchange	1.1608		1.1907	. 8252	1.2858	\$	1.1025		1.1907	1.0783	1.2858
Euro foreign exchange	121.32		130.17	89.30	140.31	¥	132.54	mor	130.17	124.80	140.31
Euro foreign exchange	0.711	1	0.6665	. 5711	0.7235	¢	0.6914	numm	0.6665	0.6556	0.7235

- Small line chart goal of which is to capture general shape (over time) of a measurement (reading of an instrument)
- Small, high-resolution graphics, usually embedded in a full context of words, numbers, images \rightarrow datawords (data-intense, design-simple, word-sized graphics)

Tag cloud

- Also knows as word cloud or weighted list
- Text analysis visualization of word frequencies
- How frequently words appear in a given text reflects in its size
- Inner structure can be revealed with other visual attributes such as color (e.g., to differentiate groups of words)

Literature

- Stephen Few (2012) Show me the numbers - Designing Graphs and Tables to Enlighten
- Edward Tufte (2001) The visual display of Quantitative Information, Second Edition. Graphics Press
- Gene Zelazny (2001) Say It with charts

