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Motivation

• Nominal (observed ) dimensionality = number of  measurements for each 
observation

• Intrinsic (true) dimensionality = dimension of  the space actually covered
by the observations (number of  dimensions needed to describe an 
observation)

• Nominal dimensionality of  a set is higher or equal to the intrinsic
dimensionality → finding a projection from the nominal space to the intrinsic 
space
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Nominal vs intrinsic dimensionality in real data

• Patients observations

• Number of  operations

• Insurance company costs

• Blood preassure

• Wake-up time

• Number of  days spent in hospital
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Principal components analysis

• PCA is a nonparametric tool for extracting relevant information 
from (usually highly dimensional data) data

• Goal of  PCA is to find the linear subspace in which the data reside

• The subspace should fit the data as best as possible 

• E.g., cloud of  points along a diagonal is a linear subspace of  a 2D space
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Application domains

• Machine learning
• Dimension reduction pre-step

• Visualization
• Objects represented by many descriptors

• PCA helps to find structure among objects which could not be visualized 
otherwise

• Compression
• Representation of  objects only by their coordinates in the respective subspace

• E.g. in the eigenfaces (see later), each face can be reasonable approximated by 
only 10 coordinates
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Linear algebra review
Matrices, norm, trace, eigendecomposition, spectral decomposition, SVD
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Variance, covariance (1)

• Variance measures the spread of  data in a dataset from the mean

𝑣𝑎𝑟(𝑋) =
σ𝑖=1
𝑛 𝑋𝑖 − ത𝑋 2

𝑛

• Covariance measures how each of  the dimensions varies from the mean 
with respect to each other

𝑐𝑜𝑣(𝑋, 𝑌) =
σ𝑖=1
𝑛 (𝑋𝑖 − ത𝑋)(𝑌𝑖 − ത𝑌)

𝑛
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Variance, covariance (2)

• Positive covariance of  two dimensions indicates that they change together 
(number of  hours spent studying – grade)

• Negative covariance indicates that change in one dimension causes inverse 
change in the other (number of  hours spent in a pub – balance of  your bank 
account)

• Covariance matrix is a matrix of  all pairwise covariences, e.g., for 3 
dimensions X, Y, Z:

𝑐𝑜𝑣(𝑋, 𝑋) 𝑐𝑜𝑣(𝑋, 𝑌) 𝑐𝑜𝑣(𝑋, 𝑍)
𝑐𝑜𝑣(𝑌, 𝑋) 𝑐𝑜𝑣(𝑌, 𝑌) 𝑐𝑜𝑣(𝑌, 𝑍)
𝑐𝑜𝑣(𝑍, 𝑋) 𝑐𝑜𝑣(𝑍, 𝑌) 𝑐𝑜𝑣(𝑍, 𝑍)

8



PCA formulation (1)

• Let us have a random variable (observations) 𝑥𝑇 = (𝑥1, … , 𝑥𝑝) with 
mean 𝜇 and covariance matrix Σ

• First PC is the linear combination 

𝑦1 = 𝑎1
𝑇𝑥 =෍

𝑖=1

𝑝

𝑎1𝑖𝑥𝑖

where 𝑎1 is chosen such that 𝒗𝒂𝒓(𝒚𝟏) is maximum 

subject to 𝒂𝟏
𝑻𝒂𝟏 = 𝟏 (normalization constraint)
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If  we project the data onto this line, 

we lose as little information as 

possible = we keep as much 

variance as possible.



source: https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues

https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues


PCA formulation (2)

• Second PC is the linear combination 

𝑦2 = 𝑎2
𝑇𝑥 =෍

𝑖=1

𝑝

𝑎2𝑖𝑥𝑖

where 𝑎𝑘 is chosen to maximize 𝒗𝒂𝒓(𝒚𝟐)

subject to 𝒂𝟐
𝑻𝒂𝟐 = 𝟏 and 𝒄𝒐𝒗 𝒚𝟏, 𝒚𝟐 = 𝟎
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PCA formulation (3)

• Generally, k-th PC is the linear combination 

𝑦𝑘 = 𝑎𝑘
𝑇𝑥 =෍

𝑖=1

𝑝

𝑎𝑘𝑥𝑖

where 𝑎𝑘 is chosen such that 𝒗𝒂𝒓(𝒚𝒌) is maximum

subject to 𝒂𝒌
𝑻𝒂𝒌 = 𝟏 and ∀𝐥, 𝐥 < 𝐤: 𝒄𝒐𝒗 𝒚𝒌, 𝒚𝒍 = 𝟎
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Searching for the first PC (1)

• Assumption that the data are normalized, i.e., the mean is subtracted

• Find a 1D  subspace so that the observations have maximum spread 
in it → maximizing variance

𝒗𝒂𝒓(𝒚𝟏) = 𝒗𝒂𝒓 𝒂𝟏
𝑻𝑿 = 𝐸 𝑎1

𝑇𝑋 − 𝐸 𝑎1
𝑇𝑋 𝑎1

𝑇𝑋 − 𝐸 𝑎1
𝑇𝑋 𝑇

= 𝐸 𝑎1
𝑇𝑋 𝑎1

𝑇𝑋 𝑇 = 𝐸 𝑎1
𝑇𝑋𝑋𝑇𝑎1 = 𝐸 𝑎1

𝑇Σ𝑎1 = 𝒂𝟏
𝑻𝚺𝒂𝟏

• The goal is to maximize variance given 𝑎1
𝑇𝑎1 = 1 → Lagrange 

multipliers
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Lagrange multipliers
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source: Wikipedia

• Maximize 𝑓(𝑥, 𝑦) subject to 𝑔 𝑥, 𝑦 = 𝑐 → introduction of  a new variable -
Lagrange multiplier 𝜆 (𝛻𝑓 = 𝜆𝛻𝑔 → 𝛻𝑓 − 𝜆𝛻𝑔 = 0)

Λ 𝑥, 𝑦, 𝜆 = 𝑓 𝑥, 𝑦 + 𝜆 𝑔 𝑥, 𝑦 − 𝑐 →
ΔΛ 𝑥, 𝑦, 𝜆

Δ𝑥, 𝑦, 𝜆
= 0

source: Andrew Chamberlain (The Idea Shop)

Lagrangian



Searching for the first PC (2)

• Transcription into the Lagrangian form

Λ(𝑎1, 𝜆) = 𝑎1
𝑇Σ𝑎1 − 𝜆 𝑎1

𝑇𝑎1 − 1

• Now we need to differentiate the Lagrangian

𝜕Λ(𝑎1, 𝜆)

𝜕𝑎1
=
𝜕Λ(𝑎1, 𝜆)

𝜕

𝑎11
…
𝑎1𝑘

= 2Σ𝑎1 − 2𝜆𝑎1 = 0
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Searching for the first PC (3)

2Σ𝑎1 − 2𝜆𝑎1 = 0

• This leads to the eigenproblem 𝚺𝒂𝟏 = 𝝀𝒂𝟏 → 𝑎1 is an eigenvector of  Σ
with eigenvalue 𝜆

𝒗𝒂𝒓(𝒚𝟏) = 𝒗𝒂𝒓 𝒂𝟏
𝑻𝑿 = 𝑎1

𝑇Σ𝑎1 = 𝜆𝑎1
𝑇𝑎1 = 𝝀

• Suppose that 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑝→ to maximize 𝒗𝒂𝒓 𝒚𝟏 we must 
choose 𝝀 = 𝝀𝟏
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Searching for the next PCs
• The principle is similar, but due to the uncorrelation requirement we must extend the constraint 

with

0 = 𝑐𝑜𝑣 𝑦1, 𝑦2 = 𝑐𝑜𝑣 𝑎1
𝑇𝑥, 𝑎2

𝑇𝑥 = 𝑎1
𝑇Σ𝑎2 = 𝑎2

𝑇Σ𝑎1 = 𝑎2
𝑇𝜆𝑎1 = 𝜆𝑎2

𝑇𝑎1

• Leading to a modified Lagrangian

Λ 𝑎2, 𝜆, 𝜅 = 𝑎2
𝑇Σ𝑎2 − 𝜆 𝑎2

𝑇𝑎2 − 1 − 𝜅(𝑎2
𝑇𝑎1)

𝑎2
𝑇Σ𝑎2 − 𝜆 𝑎2

𝑇𝑎2 − 1 − 𝜅 𝑎2
𝑇𝑎1

𝑑

𝑑𝑎2
= 0

Σ𝑎2 − 𝜆𝑎2 − 𝜅𝑎1 = 0
𝑎1
𝑇Σ𝑎2 − 𝜆𝑎1

𝑇𝑎2 − 𝜅𝑎1
𝑇𝑎1 = 0

0 − 0 − 𝜅 = 0

Σ𝑎2 − 𝜆𝑎2 = 0
𝚺𝒂𝟐 = 𝝀𝒂𝟐 ⇒ 𝝀 = 𝝀𝟐 17



PCA transformation

• Thus, the coefficients of  the linear combination which transform 
the observations onto the PCs are formed by eigenvalues of  the 
covariance matrix

• Let 𝐴 contain the eigenvectors 𝑎𝑖 as its columns and let 𝑥 be a 𝑝-
dimensional vector representing an observation, then

𝒚 = 𝑨𝑻(𝒙 − 𝝁)
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Variance

• PCs are components of  variance explaining the total variation in the 
data
• The sum of  variances of  the original variables 𝑣𝑎𝑟(𝑋) and of  the PCs 
𝑣𝑎𝑟 𝑌 = 𝑣𝑎𝑟 𝐴𝑋 are the same

Σ = 𝐴Λ𝐴𝑇

𝑡𝑟 Σ = 𝑡𝑟 𝐴Λ𝐴𝑇 = 𝑡𝑟 Λ𝐴𝑇𝐴 = 𝑡𝑟 Λ

• Therefore 
𝝀𝒊

𝝀𝟏 +⋯+ 𝝀𝒑

can be interpreted as the total variation in the original data explained by the i-th
principal component
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Scores and loadings

• Scores 
• Transformed variable values corresponding to a particular observation 

• Original data multiplied by the loadings

• Geometrically, scores are the coordinates of  each observation with respect to 
the new axis

• Loadings 
• Weight by which each standardized original variable should be multiplied to get 

the component score → separate loadings for each component

• Expresses which variables have high loading in which PCs 

• Loadings close to zero indicate which variables do not contribute much to given component

• Extent to which given variable is correlated with given component
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Scale invariance

• PCA is NOT scale invariant → variance in consistently large variable 
will dominate the spectrum of  eigenvalues → variables should be of  
comparable scale
• E.g., if  height of  a person was expressed in nanometers, the first PC would 

probably be identical with  the height dimensions (highest variance)

• Often the variables are divided by the square root of  its variance → 
correlation matrix instead of  covariance matrix

𝑐𝑜𝑟(𝑋, 𝑌) =
𝑐𝑜𝑣(𝑋, 𝑌)

𝑐𝑜𝑣 𝑋, 𝑋 𝑐𝑜𝑣(𝑌, 𝑌)
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Iris dataset

• One of  the R datasets

• The measurements in centimeters of  the variables sepal length and 
width and petal length and width, respectively, for 50 flowers from each 
of  3 species of  iris → 𝑛 = 150, 𝑝 = 4
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https://stat.ethz.ch/R-manual/R-patched/library/datasets/html/00Index.html
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PCA in R

• The most common ways to conduct PCA in R is prcomp (stats), princomp 
(stats) or PCA (FactoMineR)
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data(iris)

ir.descriptors <- iris[, 1:4]

ir.species <- iris[, 5]

ir.pca <- prcomp(ir. descriptors, center = TRUE, scale. = TRUE)

print(ir.pca) summary(ir.pca)
Standard deviations:
[1] 1.7083611 0.9560494 0.3830886 0.1439265

Rotation:
PC1         PC2        PC3        PC4

Sepal.Length 0.5210659 -0.37741762  0.7195664  0.2612863
Sepal.Width -0.2693474 -0.92329566 -0.2443818 -0.1235096
Petal.Length 0.5804131 -0.02449161 -0.1421264 -0.8014492
Petal.Width 0.5648565 -0.06694199 -0.6342727  0.5235971

Importance of components:
PC1    PC2     PC3     PC4

Standard deviation     1.7084 0.9560 0.38309 0.14393
Proportion of Variance 0.7296 0.2285 0.03669 0.00518
Cumulative Proportion  0.7296 0.9581 0.99482 1.00000

http://www.r-fiddle.org/#/fiddle?id=L46pBuU5

http://www.r-fiddle.org/#/fiddle?id=L46pBuU5


Scree plot

• Display of  variance of  each of  the 
component

• Plot of  magnitudes of  eigenvalues

• Gives impression of  the intrinsic 
dimensionality
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Score plot

• Closeness in the score plot indicates similar “behavior” between samples
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ir.pca$x

plot(ir.pca$x, col=ir.species,  
pch = c(16))
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pairs(ir.pca$x, col=ir.species)



Loadings plot

• Closeness in the score plot indicates similar “behavior” between variables
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Biplot
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biplot(ir.pca, 
cex=c(0.6, 0.8))
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31
plot3d(ir.pca$x[,1:3], col=as.numeric(factor(iris$Species,levels = 
c("versicolor","virginica","setosa"))), size=7)
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data.orig = rmvnorm(100, mean = 
c(3, 30), sigma = matrix(c(5, 2, 
2, 1), nrow = 2))
plot(data.orig, pch=c(16))

data.pca <- prcomp(data.orig, 
center = TRUE, scale = TRUE)
plot(data.pca$x, pch=c(16), 
ylim=c(-3,3))

restr = data.pca$x[,1] %*% 
t(data.pca$rotation[,1])
plot(restr, pch=16)

restr <- scale(restr, center = 
FALSE , scale=1/data.pca$scale)
restr <- scale(restr, center = -1 
* data.pca$center, scale=FALSE)
plot(restr, pch=16)

restr = data.pca$x %*% 
t(data.pca$rotation)
plot(restr, pch=16)

restr <- scale(restr, center = 
FALSE , scale=1/data.pca$scale)
restr <- scale(restr, center = -1 
* data.pca$center, scale=FALSE)
plot(restr, pch=16)



PCA on grayscale images

• Dataset of  96x96 grayscale images

• PCA allows to compress images by representing the original pixels by 
few linear combinations (scores)

1. Convert each image into a 9216-long (96x96) vector of  numbers (0-255) → 
each image is a point in a 9216-dimensional space

2. Run PCA on the 9216-dimensional objects

3. Take first 𝑘 PCs (first 𝑘 columns of  the matrix 𝐴 → 𝐴𝑘) so that enough 
variability is captured

4. Convert each object 𝑥 into the new 𝑘-dimensional space using 𝐴𝑘𝑥
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https://www.kaggle.com/c/facial-keypoints-detection
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Principal components

Approximations
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