Data visualization

Dimension Reduction - Principal Components Analysis (PCA)

Motivation

- Nominal (observed) dimensionality $=$ number of measurements for each observation
- Intrinsic (true) dimensionality = dimension of the space actually covered by the observations (number of dimensions needed to describe an observation)

- Nominal dimensionality of a set is higher or equal to the intrinsic dimensionality \rightarrow finding a projection from the nominal space to the intrinsic space

Nominal vs intrinsic dimensionality in real data

- Patients observations
- Number of operations
- Insurance company costs

Age

- Blood preassure
- Wake-up time
- Number of days spent in hospital

Principal components analysis

- PCA is a nonparametric tool for extracting relevant information from (usually highly dimensional data) data
- Goal of PCA is to find the linear subspace in which the data reside
- The subspace should fit the data as best as possible
- E.g., cloud of points along a diagonal is a linear subspace of a 2 D space

Application domains

- Machine learning
- Dimension reduction pre-step
- Visualization
- Objects represented by many descriptors
- PCA helps to find structure among objects which could not be visualized otherwise
- Compression
- Representation of objects only by their coordinates in the respective subspace
- E.g. in the eigenfaces (see later), each face can be reasonable approximated by only 10 coordinates

Linear algebra review

Matrices, norm, trace, eigendecomposition, spectral decomposition, SVD

Variance, covariance (1)

- Variance measures the spread of data in a dataset from the mean

$$
\operatorname{var}(X)=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{n}
$$

- Covariance measures how each of the dimensions varies from the mean with respect to each other

$$
\operatorname{cov}(X, Y)=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{n}
$$

Variance, covariance (2)

- Positive covariance of two dimensions indicates that they change together (number of hours spent studying - grade)
- Negative covariance indicates that change in one dimension causes inverse change in the other (number of hours spent in a pub - balance of your bank account)
- Covariance matrix is a matrix of all pairwise covariences, e.g., for 3 dimensions X, Y, Z:

$$
\left(\begin{array}{lll}
\operatorname{cov}(X, X) & \operatorname{cov}(X, Y) & \operatorname{cov}(X, Z) \\
\operatorname{cov}(Y, X) & \operatorname{cov}(Y, Y) & \operatorname{cov}(Y, Z) \\
\operatorname{cov}(Z, X) & \operatorname{cov}(Z, Y) & \operatorname{cov}(Z, Z)
\end{array}\right)
$$

PCA formulation (1)

- Let us have a random variable (observations) $x^{T}=\left(x_{1}, \ldots, x_{p}\right)$ with mean μ and covariance matrix Σ
- First PC is the linear combination

$$
y_{1}=a_{1}^{T} x=\sum_{i=1}^{p} a_{1 i} x_{i}
$$

where a_{1} is chosen such that $\boldsymbol{\operatorname { v a r }}\left(\boldsymbol{y}_{\mathbf{1}}\right)$ is maximum subject to $\boldsymbol{a}_{\mathbf{1}}^{\boldsymbol{T}} \boldsymbol{a}_{\mathbf{1}}=\mathbf{1}$ (normalization constraint)

PCA formulation (2)

- Second PC is the linear combination

$$
y_{2}=a_{2}^{T} x=\sum_{i=1}^{p} a_{2 i} x_{i}
$$

where a_{k} is chosen to maximize $\operatorname{var}\left(\boldsymbol{y}_{2}\right)$
subject to $\boldsymbol{a}_{2}^{T} \boldsymbol{a}_{\mathbf{2}}=\mathbf{1}$ and $\boldsymbol{\operatorname { c o v }}\left(\boldsymbol{y}_{1}, \boldsymbol{y}_{2}\right)=\mathbf{0}$

PCA formulation (3)

- Generally, k-th PC is the linear combination

$$
y_{k}=a_{k}^{T} x=\sum_{i=1}^{p} a_{k} x_{i}
$$

where a_{k} is chosen such that $\boldsymbol{v a r}\left(\boldsymbol{y}_{\boldsymbol{k}}\right)$ is maximum subject to $\boldsymbol{a}_{\boldsymbol{k}}^{\boldsymbol{T}} \boldsymbol{a}_{\boldsymbol{k}}=\mathbf{1}$ and $\forall \mathbf{l} \mathbf{l} \mathbf{l}<\mathbf{k}: \operatorname{cov}\left(\boldsymbol{y}_{\boldsymbol{k}}, \boldsymbol{y}_{\boldsymbol{l}}\right)=\mathbf{0}$

Searching for the first PC (1)

- Assumption that the data are normalized, i.e., the mean is subtracted
- Find a 1D subspace so that the observations have maximum spread in it \rightarrow maximizing variance

$$
\begin{aligned}
& \operatorname{var}\left(\boldsymbol{y}_{1}\right)=\operatorname{var}\left(\boldsymbol{a}_{1}^{T} \boldsymbol{X}\right)=E\left[\left(a_{1}^{T} X-E\left[a_{1}^{T} X\right]\right)\left(a_{1}^{T} X-E\left[a_{1}^{T} X\right]\right)^{T}\right] \\
& \quad=E\left[\left(a_{1}^{T} X\right)\left(a_{1}^{T} X\right)^{T}\right]=E\left[a_{1}^{T} X X^{T} a_{1}\right]=E\left[a_{1}^{T} \Sigma a_{1}\right]=\boldsymbol{a}_{1}^{T} \Sigma \boldsymbol{a}_{\mathbf{1}}
\end{aligned}
$$

- The goal is to maximize variance given $a_{1}^{T} a_{1}=1 \rightarrow$ Lagrange multipliers

Lagrange multipliers

source: Wikipedia

source: Andrew Chamberlain (The Idea Shop)

- Maximize $f(x, y)$ subject to $g(x, y)=c \rightarrow$ introduction of a new variable Lagrange multiplier $\lambda(\nabla f=\lambda \nabla g \rightarrow \nabla f-\lambda \nabla g=0)$

$$
\Lambda(x, y, \lambda)=f(x, y)+\lambda(g(x, y)-c) \rightarrow \frac{\Delta \Lambda(x, y, \lambda)}{\Delta x, y, \lambda}=0
$$

Searching for the first PC (2)

- Transcription into the Lagrangian form

$$
\Lambda\left(a_{1}, \lambda\right)=a_{1}^{T} \Sigma a_{1}-\lambda\left(a_{1}^{T} a_{1}-1\right)
$$

- Now we need to differentiate the Lagrangian

$$
\frac{\partial \Lambda\left(a_{1}, \lambda\right)}{\partial a_{1}}=\frac{\partial \Lambda\left(a_{1}, \lambda\right)}{\partial\left[\begin{array}{c}
a_{11} \\
\ldots \\
a_{1 k}
\end{array}\right]}=2 \Sigma a_{1}-2 \lambda a_{1}=0
$$

Searching for the first PC (3)

$$
2 \Sigma a_{1}-2 \lambda a_{1}=0
$$

- This leads to the eigenproblem $\boldsymbol{\Sigma} \boldsymbol{a}_{\mathbf{1}}=\boldsymbol{\lambda} \boldsymbol{a}_{\mathbf{1}} \rightarrow a_{1}$ is an eigenvector of Σ with eigenvalue λ

$$
\operatorname{var}\left(\boldsymbol{y}_{1}\right)=\operatorname{var}\left(\boldsymbol{a}_{1}^{T} \boldsymbol{X}\right)=a_{1}^{T} \Sigma a_{1}=\lambda a_{1}^{T} a_{1}=\lambda
$$

- Suppose that $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{p} \rightarrow$ to maximize $\boldsymbol{\operatorname { v a r }}\left(\boldsymbol{y}_{\mathbf{1}}\right)$ we must choose $\boldsymbol{\lambda}=\boldsymbol{\lambda}_{1}$

Searching for the next PCs

- The principle is similar, but due to the uncorrelation requirement we must extend the constraint with

$$
0=\operatorname{cov}\left(y_{1}, y_{2}\right)=\operatorname{cov}\left(a_{1}^{T} x, a_{2}^{T} x\right)=a_{1}^{T} \Sigma a_{2}=a_{2}^{T} \Sigma a_{1}=a_{2}^{T} \lambda a_{1}=\lambda a_{2}^{T} a_{1}
$$

- Leading to a modified Lagrangian

$$
\begin{gathered}
\Lambda\left(a_{2}, \lambda, \kappa\right)=a_{2}^{T} \Sigma a_{2}-\lambda\left(a_{2}^{T} a_{2}-1\right)-\kappa\left(a_{2}^{T} a_{1}\right) \\
\left(a_{2}^{T} \Sigma a_{2}-\lambda\left(a_{2}^{T} a_{2}-1\right)-\kappa\left(a_{2}^{T} a_{1}\right)\right) \frac{d}{d a_{2}}=0 \\
\Sigma a_{2}-\lambda a_{2}-\kappa a_{1}=0 \\
a_{1}^{T} \Sigma a_{2}-\lambda a_{1}^{T} a_{2}-\kappa a_{1}^{T} a_{1}=0 \\
0-0-\kappa=0 \\
\Sigma a_{2}-\lambda a_{2}=0 \\
\Sigma \boldsymbol{a}_{2}=\lambda \boldsymbol{a}_{2} \Rightarrow \lambda=\lambda_{2}
\end{gathered}
$$

PCA transformation

- Thus, the coefficients of the linear combination which transform the observations onto the PCs are formed by eigenvalues of the covariance matrix
- Let A contain the eigenvectors a_{i} as its columns and let x be a p dimensional vector representing an observation, then

$$
y=A^{T}(x-\mu)
$$

Variance

- PCs are components of variance explaining the total variation in the data
- The sum of variances of the original variables $\operatorname{var}(X)$ and of the PCs $\operatorname{var}(Y)=\operatorname{var}(A X)$ are the same

$$
\begin{gathered}
\Sigma=A \Lambda A^{T} \\
\operatorname{tr}(\Sigma)=\operatorname{tr}\left(A \Lambda A^{T}\right)=\operatorname{tr}\left(\Lambda A^{T} A\right)=\operatorname{tr}(\Lambda)
\end{gathered}
$$

- Therefore

$$
\frac{\lambda_{i}}{\lambda_{1}+\cdots+\lambda_{p}}
$$

can be interpreted as the total variation in the original data explained by the i-th principal component

Scores and loadings

- Scores

- Transformed variable values corresponding to a particular observation
- Original data multiplied by the loadings
- Geometrically, scores are the coordinates of each observation with respect to the new axis
- Loadings
- Weight by which each standardized original variable should be multiplied to get the component score \rightarrow separate loadings for each component
- Expresses which variables have high loading in which PCs
- Loadings close to zero indicate which variables do not contribute much to given component
- Extent to which given variable is correlated with given component

Scale invariance

- PCA is NOT scale invariant \rightarrow variance in consistently large variable will dominate the spectrum of eigenvalues \rightarrow variables should be of comparable scale
- E.g., if height of a person was expressed in nanometers, the first PC would probably be identical with the height dimensions (highest variance)
- Often the variables are divided by the square root of its variance \rightarrow correlation matrix instead of covariance matrix

$$
\operatorname{cor}(X, Y)=\frac{\operatorname{cov}(X, Y)}{\sqrt{\operatorname{cov}(X, X) \operatorname{cov}(Y, Y)}}
$$

Iris dataset

- The measurements in centimeters of the variables sepal length and width and petal length and width, respectively, for 50 flowers from each of 3 species of iris $\rightarrow n=150, p=4$

PCA in R

- The most common ways to conduct PCA in R is prcomp (stats), princomp (stats) or PCA (FactoMineR)

```
    data(iris)
    ir.descriptors <- iris[, 1:4]
    ir.species <- iris[, 5]
    ir.pca <- prcomp(ir. descriptors, center = TRUE, scale. = TRUE)
print(ir.pca)
```

Standard deviations:
[1] 1.70836110 .95604940 .38308860 .1439265
Rotation:
PC1 PC2 PC3 PC4
Sepal.Length 0.5210659 -0.37741762 0.7195664 0.2612863
Sepal.Width -0.2693474 -0.92329566-0.2443818-0.1235096
Petal.Length 0.5804131 -0.02449161 -0.1421264 -0.8014492
Petal.Width 0.5648565 -0.06694199 -0.6342727 0.5235971

| Importance of components: | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: |
| | PC1 | PC2 | PC3 | PC4 |
| Standard deviation | 1.7084 | 0.9560 | 0.38309 | 0.14393 |
| Proportion of Variance | 0.7296 | 0.2285 | 0.03669 | 0.00518 |
| Cumulative Proportion | 0.7296 | 0.9581 | 0.99482 | 1.00000 |

Scree plot

- Display of variance of each of the component
- Plot of magnitudes of eigenvalues
- Gives impression of the intrinsic dimensionality

Score plot

- Closeness in the score plot indicates similar "behavior" between samples

pairs(ir.pca\$x, col=ir.species)

\div

pairs(ir.pca\$x, col=ir.species)

Loadings plot

- Closeness in the score plot indicates similar "behavior" between variables

Loadings Plot for PC1
Loadings Plot for PC2

Biplot

plot3d(ir.pca\$x[,1:3], col=as.numeric(factor(iris\$Species,levels = c("versicolor", "virginica","setosa"))), size=7)

PCA on grayscale images

- Dataset of $96 x 96$ grayscale images
- PCA allows to compress images by representing the original pixels by few linear combinations (scores)

1. Convert each image into a 9216-long (96x96) vector of numbers (0-255) \rightarrow each image is a point in a 9216-dimensional space
2. Run PCA on the 9216 -dimensional objects
3. Take first k PCs (first k columns of the matrix $A \rightarrow A_{k}$) so that enough variability is captured
4. Convert each object x into the new k-dimensional space using $A_{k} x$

중

Principal components

国国國
 Approximations

国国国国国国国目国国国国国园园园园园园园园园园园园园园

Literature

- Jolliffe, I.T. (2002) Principal Component Analysis, Second Edition. Springer-Verlag New York

