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MDS outline

• Multidimensional scaling (MDS) is a group of  methods allowing one to 
represent (dis)similarities among pairs of  objects as distances 
between points of  a low-dimensional space

• MDS enables 

• to take quantifiable relationships between objects in any space and embed
those objects into low-dimensional space so that the distances in the target 
space approximate the original relationships as close as possible

• to display the structure of  distance-like data as a geometrical picture
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Color similarity perception (1)

• First use of  MDS was in psychometrics [Ekman, 1954]
• Perception of  similarities of all pairs of  14 different colors by 31 subject

• Similarities were ranked 0-4 and normalized into the [0;1] interval
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434  445  465  472  490  504  537  555  584  600  610  628  651

445 0.86                                                            

465 0.42 0.50                                                       

472 0.42 0.44 0.81                                                  

490 0.18 0.22 0.47 0.54                                             

504 0.06 0.09 0.17 0.25 0.61                                        

537 0.07 0.07 0.10 0.10 0.31 0.62                                   

555 0.04 0.07 0.08 0.09 0.26 0.45 0.73                              

584 0.02 0.02 0.02 0.02 0.07 0.14 0.22 0.33                         

600 0.07 0.04 0.01 0.01 0.02 0.08 0.14 0.19 0.58                    

610 0.09 0.07 0.02 0.00 0.02 0.02 0.05 0.04 0.37 0.74               

628 0.12 0.11 0.01 0.01 0.01 0.02 0.02 0.03 0.27 0.50 0.76          

651 0.13 0.13 0.05 0.02 0.02 0.02 0.02 0.02 0.20 0.41 0.62 0.85     

674 0.16 0.14 0.03 0.04 0.00 0.01 0.00 0.02 0.23 0.28 0.55 0.68 0.76



Color similarity perception (2)
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Proximities data collection

• Dissimilarity (distance) vs similarity → proximity

• Direct collection of  proximities
• The proximities are outputs of  the measurement (e.g., the color data)

• Collected data are (almost) immediately ready for analysis

• Derived proximities
• The original data do not have a direct relation, but using an appropriate measure 

the proximities can be derived (e.g., correlation of  features or Euclidian distance 
between coordinates)
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Interest in 

representationInterest in objects 

themselves



Examples of  input proximity matrices

• Aggregate proximity matrix
• Identification of  objects similarity based on respondents preferences (pile sort 

task)

• Correlation matrix 
• Puts objects with high positive correlations near each other, and object with 

strong negative correlations far apart

• Flow matrix
• E.g., information about the number of  transaction between corporations in a 

given time frame → MDS would reveal corporations or clusters of  corporations 
which trade more often between each other
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Idea behind MDS

• There are two basic approaches for MDS
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Classical (metric) MDS Non-metric MDS

• Assume that the dissimilarities are 
distances and then find 
coordinates that explain them → 
projection of  the distances into 
coordinates

• Linear projection based on the 
distance matrix

• Optimize the individual 
distances → works on the level 
of  individual distances



Metric vs nonmetric MDS decision

• Input are dissimilarities close to Euclidean distances and there is a believe 
that a linear transform will suffice to map it into p-dimensional space → 
metric MDS

• Linear transform is not enough → monotonic transform → nonmetric 
MDS
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Metric MDS
(Classical MDS, Classical scaling, Torgerson scaling, Principal Component Analysis)

9



Road distances

• R dataset eurodist - road distance between 21 European cities (almost 
Euclidean, but not quite) 
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Ehm…. 

Invariancy with respect to

• Shift

• Rotation

• Reflection



Classical MDS algorithm outline

• Provides an analytical solution, i.e. no iterative optimization required

• Two-step procedure
• Input: Euclidean distances between 𝑛 objects

• Output: Positions of  the objects up to rotation, reflection, shift

1. Compute scalar product matrix 𝐵 from the input (metric) distances

2. Compute positions from 𝐵
• Singular value decomposition
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• The input is the matrix of  pair-wise Euclidean distances 𝑫(𝑿) for 𝑋
• Suppose we knew X (the coordinates we are searching for), then

𝐷𝑖𝑗
2 𝑋 = 𝑥𝑖 − 𝑥𝑗

𝑇
𝑥𝑖 − 𝑥𝑗 =< 𝑥𝑖 , 𝑥𝑖 > −2𝑥𝑖

𝑇𝑥𝑗 +< 𝑥𝑗 , 𝑥𝑗 >
𝑫𝟐 𝑿 = 𝑚1𝑇 − 2𝑋𝑇𝑋 + 1𝑚𝑇

= 𝒎𝟏𝑻 + 𝟏𝒎𝑻 − 𝟐𝑩

• Let’s multiply both sides by −
1

2
and by centering matrix 𝑪 = 𝑰 − 𝒏−𝟏𝟏𝟏𝑻 from 

both sides → double centering

−
1

2
𝐶𝐷2𝐶 = −

1

2
𝐶𝑚1𝑇𝐶 −

1

2
𝐶1𝑚𝑇𝐶 + 𝐶𝐵𝐶

−
1

2
𝐶𝐷2𝐶 = −

1

2
𝐶𝑚0𝑇 −

1

2
0𝑚𝑇𝐶 + 𝐶𝐵𝐶

−
𝟏

𝟐
𝑪𝑫𝟐𝑪 = 𝐶𝐵𝐶 = 𝑩

• Now we can extract MDS coordinates from 𝑩 by factorizing it
𝑿𝑿𝑻 = 𝑩 = 𝑄Λ𝑄𝑇 = (𝑸𝜦𝟏/𝟐)(𝜦𝟏/𝟐𝑸𝑻)
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𝑚𝑇 = [< 𝑥1, 𝑥1 >,… < 𝑥𝑛, 𝑥𝑛 >]

Distances do not change under translation → we can 

assume X as column-centered (column means = 0)

Positive and symmetric



Classical MDS algorithm steps

1. Compute matrix of  squared dissimilarities Δ2

2. Apply double centering 𝐵Δ = −
1

2
𝐶Δ2C

3. Compute eigendecomposition 𝐵Δ = QΛ𝑄𝑇

4. Let’s denote matrix of  non-zero eigenvalues as Λ+ with eigenvectors 

matrix 𝑄+. Then the coordinate matrix is given by 𝑄+Λ+
1/2
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If Δ is a Euclidean

distance matrix, then

classical MDS finds

the coordinates up to

a rotation.



Goodness of  fit

• To get a low-dimensional representation, we keep 𝑚 eigenvectors (out of  
𝑛 non-null ones) corresponding to the largest eigenvalues

GOF =
σ𝑖=1
𝑚 𝜆+𝑖

σ𝑖=1
𝑛 𝜆+𝑖

• This minimizes



𝑖,𝑗=1

𝑛

𝛿𝑖𝑗 − 𝑑𝑖𝑗 𝑋
2
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PCA vs metric MDS

• In PCA one is given a set of  objects and their attributes, while in metric 
MDS the input is the mutual distances of  the objects

• If  we use Euclidean distances, then PCA yields the same results as 
metric MDS

• PCA searches for eigenvectors of  the covariance matrix 𝑿𝑻𝑿 while MDS
searches for eigenvectors of  the squared distance matrix 𝑿𝑿𝑻

• Eigenvalues 𝑋𝑇𝑋 = eigenvalues 𝑋𝑋𝑇
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Nonmetric MDS
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Motivation for non-metric MDS

• In metric MDS, there is an implicit assumption that there is a true 
configuration in 𝑚 dimensions, i.e., that Δ is a distance matrix.
• The proximities do not always behave like distances (especially true for 

human perception-based data)

• Often all we have is ranking → non-metric MDS ensures that the 
distances in the mapping will respect the ranking

• The data are not exactly distances, but they are “distance-like” → the 
goal is to find positions which best approximate the actual distances
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Error of  the MDS configuration

• Let us have 𝒏 objects with dissimilarity denoted as 𝜹𝒊𝒋 for each pair of  
objects (the between object relationships need to be transformed to 
dissimilarities) 

• 𝑿 denotes a configuration of  the 𝑛 points in 𝑚-dimensional space expressed 
as an 𝑛 ×𝑚 matrix

• 𝒅𝒊𝒋 𝑿 = σ𝑎=1
𝑚 𝑥𝑖𝑎 − 𝑥𝑗𝑎

2 1/2
denotes the Euclidean distance between any 

two points

• The total error of  an MDS configuration 𝑋 is defined as

𝝈𝟐 𝑿 =

𝒊<𝒋

𝒅𝒊𝒋(𝑿) − 𝜹𝒊𝒋
𝟐
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Raw stress

• Raw stress is a weighted version of  the total error

𝝈𝒓
𝟐 𝑿 =

𝒊<𝒋

𝒘𝒊𝒋 𝒅𝒊𝒋(𝑿) − 𝜹𝒊𝒋
𝟐

• The weights can be used to deal with missing values (𝑤𝑖𝑗 = 0 if  𝛿𝑖𝑗 is 
missing)
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Other stress measures

• Normalized raw Stress

𝜎𝑛
2 𝑋 =

σ𝑖<𝑗𝑤𝑖𝑗 𝑑𝑖𝑗(𝑋) − 𝛿𝑖𝑗
2

σ𝑖<𝑗𝑤𝑖𝑗 𝛿𝑖𝑗
2

• 𝜎𝑛
2 is independent of  the scale and the number of  dissimilarities

• Kruskal’s stress-1

𝜎1 𝑋 =
σ𝑖<𝑗𝑤𝑖𝑗 𝑑𝑖𝑗 𝑋 − 𝛿𝑖𝑗

2

σ𝑖<𝑗𝑤𝑖𝑗 𝛿𝑖𝑗
2

1/2
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Stress considerations

Stress Goodness of  fit

> 0.20 Poor

0.10 Fair

0.05 Good

0.025 Excellent

0.00 Perfect
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Kruskal, J. B. Multidimensional scaling by optimizing goodness of fit to a 

nonmetric hypothesis. Psychometrika, 29, 1-27

• There exists a guideline for 𝜎1

• With growing number of  dimensions the stress can’t increase

• The stress is aggregation over all the pairs of  objects → either the stress 
is spread over all pairs more or less equally or some pairs exhibit high 
stress
• Large distances tend to show lower value of  stress → larger patterns (clusters) 

tend to stay visible



Nonmetric MDS algorithm

INPUT: Relation matrix Δ (𝑛 × 𝑛) of  the 𝑛 input objects

1. Initial configuration - project the objects to arbitrary points in 𝑚-
dimensional space.

2. Compute the stress of  the configuration 𝑋. The smaller the value, the 
greater the correspondence.

3. Adjust coordinates of  each point in the direction that minimizes the 
stress.

4. Repeat steps 2 through 3 until convergence.
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Iterative majorization (1)

• Method of  finding minimum of  a complex function 𝑓(𝑥) by iteratively 
replacing it with a simple auxiliary function 𝑔 𝑥, 𝑧 which majorizes 𝑓

• Requirements of  𝒈 𝒙, 𝒛 to be a majorizing function of  𝑓(𝑥)

• 𝑓 𝑥 ≤ 𝑔 𝑥, 𝑧

• 𝑔 must touch the surface of  𝑓 at the supporting point 𝑧 →𝑓 𝑧 = 𝑔(𝑧, 𝑧)

• 𝑔 𝑥, 𝑧 should be simpler then 𝑓(𝑥), e.g. quadratic
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Iterative majorization (2)

• Let minimum of  𝑔(𝑥, 𝑧) over 𝑥 by obtained in 𝑥∗, then

𝑓 𝑥∗ ≤ 𝑔 𝑥∗, 𝑧 ≤ 𝑔 𝑧, 𝑧 = 𝑓(𝑧)
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Iterative majorization (3)

• Iterative majorization algorithm

1. Set 𝑧 = 𝑧0

2. Find 𝑥 so that 𝑔 𝑥, 𝑧 ≤
𝑔 𝑧, 𝑧

3. If  𝑓 𝑧 − 𝑓 𝑥 < 𝜖 , then stop

4. Set 𝑧 = 𝑥 and go to 2.
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Iterative majorization visualization in MDS
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source: Borg, I., Groenen, P. J. F. (2005) Modern Multidimensional Scaling, Second Edition



Majorizing the stress function

𝝈 𝑿 =

𝑖<𝑗

𝑤𝑖𝑗 𝑑𝑖𝑗(𝑋) − 𝛿𝑖𝑗
2

=

𝑖<𝑗

𝑤𝑖𝑗𝛿𝑖𝑗
2 +

𝑖<𝑗

𝑤𝑖𝑗𝑑𝑖𝑗
2 (𝑋) − 2

𝑖<𝑗

𝑤𝑖𝑗𝛿𝑖𝑗𝑑𝑖𝑗(𝑋)

= 𝜼𝜹
𝟐 + 𝜼𝟐 𝑿 − 𝟐𝝆(𝑿)
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Rewriting 𝜂2 𝑋

𝑑𝑖𝑗
2 𝑋 = 

𝑎=1

𝑚

𝑥𝑎
𝑇 𝑒𝑖 − 𝑒𝑗 𝑒𝑖 − 𝑒𝑗

𝑇
𝑥𝑎 =

𝑎=1

𝑚

𝑥𝑎
𝑇𝐴𝑖𝑗𝑥𝑎 = tr 𝑋𝑇𝐴𝑖𝑗𝑋

𝑤𝑖𝑗𝑑𝑖𝑗
2 𝑋 = tr 𝑋𝑇 𝑤𝑖𝑗𝐴𝑖𝑗 𝑋

𝜂2 𝑋 =

𝑖<𝑗

𝑤𝑖𝑗𝑑𝑖𝑗
2 (𝑋) = tr 𝑋𝑇 

𝑖<𝑗

𝑤𝑖𝑗𝐴𝑖𝑗 𝑋 = tr 𝑋𝑇𝑉𝑋

• Thus, we have a compact expression of 𝜂2 𝑋 which is a quadratic
function of 𝑋
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Column 𝑎 of  the 

coordinate matrix

𝑥𝑖𝑎 − 𝑥𝑗𝑎 = 𝑒𝑖 − 𝑒𝑗
𝑇
𝑥𝑎



Majorizing 𝜌(𝑋) (1)

−𝜌 𝑋 = −

𝑖<𝑗

𝑤𝑖𝑗𝛿𝑖𝑗 𝑑𝑖𝑗 𝑋



𝑎=1

𝑚

(𝑥𝑖𝑎 − 𝑥𝑗𝑎)(𝑧𝑖𝑎 − 𝑧𝑗𝑎) ≤ 

𝑎=1

𝑚

𝑥𝑖𝑎 − 𝑥𝑗𝑎
2

1
2



𝑎=1

𝑚

𝑧𝑖𝑎 − 𝑧𝑗𝑎
2

1
2

= 𝑑𝑖𝑗 𝑋 𝑑𝑖𝑗(𝑍)

−𝑑𝑖𝑗 𝑋 ≤ −
σ𝑎=1
𝑚 𝑥𝑖𝑎 − 𝑥𝑗𝑎 𝑧𝑖𝑎 − 𝑧𝑗𝑎

𝑑𝑖𝑗 𝑍
= −

tr 𝑋𝑇𝐴𝑖𝑗𝑍

𝑑𝑖𝑗 𝑍
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Cauchy-Schwarz 

inequality (equality for 

𝑥𝑖 = 𝑧𝑖 and 𝑥𝑗 = 𝑧𝑗



Majorizing 𝜌(𝑋) (2)

−𝜌 𝑋 = −

𝑖<𝑗

𝑤𝑖𝑗𝛿𝑖𝑗 𝑑𝑖𝑗 𝑋 ≤ −

𝑖<𝑗

𝑤𝑖𝑗𝛿𝑖𝑗
tr 𝑋𝑇𝐴𝑖𝑗𝑍

𝑑𝑖𝑗 𝑍

= −tr 𝑋𝑇

𝑖<𝑗

𝑤𝑖𝑗𝛿𝑖𝑗
𝐴𝑖𝑗

𝑑𝑖𝑗 𝑍
𝑍 = −tr 𝑋𝑇 

𝑖<𝑗

𝑤𝑖𝑗𝛿𝑖𝑗

𝑑𝑖𝑗 𝑍
𝐴𝑖𝑗 𝑍

= −tr 𝑋𝑇 

𝑖<𝑗

𝑏𝑖𝑗(𝑍)𝐴𝑖𝑗 𝑍 = −tr 𝑋𝑇𝐵(𝑍)𝑍

• The equality occurs when 𝑍 = 𝑋 → majorizing inequality

−𝝆 𝑿 = −𝐭𝐫 𝑿𝑻𝑩 𝑿 𝑿 ≤ −𝐭𝐫 𝑿𝑻𝑩(𝒁)𝒁
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SMACOF

• Scaling by majorizing a convex function

𝜎 𝑋 = 𝜂𝛿
2 + 𝜂2 𝑋 − 2𝜌 𝑋 ≤ 𝜂𝛿

2 + tr 𝑋𝑇𝑉𝑋 − 2tr 𝑋𝑇𝐵 𝑍 𝑍 = 𝜏(𝑋, 𝑍)

• 𝜏(𝑋, 𝑍) is a quadratic majorizing function to be used in the iterative 
minimization procedure
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1. Set initial configuration 𝑋0 and 

𝑘 = 0
2. 𝑘 = 𝑘 + 1; 𝑍 = 𝑋𝑘−1

3. Update 𝑋𝑘 = min
𝑋

𝜏(𝑋, 𝑍)

4. If 𝜎 𝑋𝑘−1 − 𝜎 𝑋𝑘 < 𝜖 stop, 

else go to 2.

Includes derivation 

of  𝜏, setting it to 0 

and computation of  

the matrix inverse.



Adequacy of  a MDS solution

• Configuration/MDS plot

• Scree plot

• Sheppard diagram

• Stress plot

• Bubble plot
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Configuration plot

• The plot is invariant with respect to 
rotation, reflection and shift

• The axes do not bear any meaning 
by definition, but they can be 
interpreted

34

Data from the New Geographical Digest (1986), analysed in Cox 

and Cox (2001), on which countries traded with other countries. 

For 20 countries the main trading partners are dichotomously 

scored (1 = trade performed, 0 = trade not performed). Based on 

this dichotomous matrix the dissimilarities are computed using the 

Jaccard coefficient.



Axis interpretation

35
person ↔ property

↔

street

hidden



Scree plot

• The amount of  stress is plotted against 
the number of  dimensions

• How decrease in the number of  
dimensions decreases the stress

• It can be used to see the real 
dimensionality of  data irrespective of  the 
inherent noise
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Sheppard plot

• The relationship between the proximities and the distances of  the 
point configuration
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Stress plot

• Stress contribution for each point
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Bubble plot

• Stressplot/confplot combined (the larger bubbles, the better the fit)
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Degenerate solutions

• Missing dissimilarities
• If  it is possible to split the objects into two or more sets with zero between-set 

weights, then we are dealing with separate MDS problems → the missing 
similarities could be inadvertently interpreted

• No information in the data
• Between-object distances fall into a small interval

• The objects will lie on a line in 1D and on concentric circles in 2D

• The solution is to redo MDS with transformed values (e.g., interval 
transformation)

40



Local minima

• MDS algorithms which minimize the stress function cannot guarantee 
obtaining of  a global minimum

• One can limit the risk of  ending in a local optimum by running MDS 
multiple times with different initial configurations

• Ending in the same final configuration indicates that the minimum might be 
global minimum as well
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MDS properties

• MDS does very few assumptions about the nature of  the data and 
distance measure →  well suited for a wide variety of  data
• PCA expects linear relationship between the coordinates

• For large datasets, MDS can be slow (holds for non-metric MDS)

• Can stuck in local optima since it is a numerical optimization technique 
(holds for non-metric MDS)

• Can be easily explained to non-experts
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MDS in R

Classical MDS

• cmdscale (stats)

• Wcmdscale (vegan)

• smacofSym (smacof)

• dudi.pco (ade4)

• pco (ecodist)

Nonmetric MDS

• isoMDS (MASS)

• smacofSym (smacof)

• metaMDS(vegan)
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if (!require("smacof")) {install.packages("smacof"); 
library("smacof")}

data(ekman)

ekman.d <- sim2diss(ekman, method = 1)

res <- smacofSym(ekman.d) 

res.basic

plot(res)  

plot(res, plot.type = "stressplot", ylim = c(2,15)) 
plot(res, plot.type = "bubbleplot") 

plot(res, plot.type = "Shepard")
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