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t-SNE
t-Distributed Stochastic Neighbour Embedding
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t-Distributed Stochastic Neighbour Embedding 
(t-SNE)
• Mapping high-dimensional data to low dimensions (dimensionality reduction)

• Focuses on maintaining local structure (unlike, e.g., PCA)
• Global structure preserved by choosing suitable parametrization (perplexity)

• Used for visualization only (unlike, e.g., PCA)

• Outliers do not impact t-SNE (unlike, e.g., PCA)

• Builds on top of  SNE
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(t-)SNE motivation

• PCA aims at preserving large 
pairwise distances because those 
add most to the variance 
(minimization of  the squared error 
in the original data)

• In case of  data forming non-linear 
manifolds, points close to each 
other in terms of  Euclidean 
distance can be actually far apart
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Swiss roll



SNE

1. Models Euclidian distances with conditional probability-based 
similarities (gaussian)

2. Minimizes difference between similarities in high- (data) vs low-
dimensional (map) data (Kullback-Leibler divergence)

3. Uses gradient descent to minimize the differences (cost function)
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SNE – modeling distances

• High-dimensional distances → conditional probabilities

• 𝑝𝑗|𝑖
• similarity of  datapoint 𝑥𝑖 to 𝑥𝑗
• the conditional probability, that 𝑥𝑖 would pick 𝑥𝑗 as its neighbor if  

neighbors were picked in proportion to their probability density under a 
Gaussian centered at 𝒙𝒊 with variance 𝝈𝒊 (controlled by perplexity)

• 𝑝𝑖|𝑖 = 0

• Low-dimensional distances → conditional probabilities
• Variance set to 

1

2

• 𝑞𝑖|𝑖 = 0

• Good mapping would have 𝑝𝑗|𝑖 and 𝑞𝑗|𝑖 equal for every 𝑗
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Independence on the point's density



Kullback-Leibler (KL) divergence

• Measures information difference between two distributions 𝑝 and 𝑞
• E.g., real, complex distribution of  data (𝑝) vs simple, approximating distribution (𝑞)

• Based on entropy
• Number of  bits needed to encode our data
• Entropy of  a distribution 𝑝

𝐻 = −

𝑖=1

𝑁

𝑝 𝑥𝑖 log 𝑝 𝑥𝑖

• KL divergence

𝐷𝐾𝐿(𝑝| 𝑞 =

𝑖=1

𝑁

𝑝 𝑥𝑖 log 𝑝 𝑥𝑖 − log 𝑞 𝑥𝑖 =

𝑖=1

𝑁

𝑝 𝑥𝑖 log
𝑝 𝑥𝑖
𝑞 𝑥𝑖

• Expectation (střední hodnota) of  the log difference between the probability of  data in 𝑝 vs 𝑞
• In case of  approximating distribution: how much information we expect to lose (bits if  base of  log 

is 2) if  using 𝑞 instead of  𝑝
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SNE - KL divergence

• Cost function in SNE modeled by KL divergence

• 𝑃𝑖 - conditional probability distribution over all other datapoints given 𝑥𝑖
• 𝑄𝑖 - conditional probability distribution over all other map points given 𝑦𝑖

• KL asymmetric → preserving local structure

• large cost for using widely separated map points to represent nearby datapoints

• small cost for using nearby map points to represent widely separated datapoints
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SNE - perplexity

• We do not want to have the same variance for each datapoint

• Choice of  variance driven by perplexity (global parameter)
• With growing variance, the entropy decreases

where 𝐻(𝑃𝑖) is the Shannon entropy of  𝑃𝑖 in bits

• Balances attention between local (low perplexity) and global aspects (high perplexity) 
of  data

• Typical values between 5 and 50 (see t-SNE plots analysis slides)
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SNE – cost function optimization

• We aim at minimization of  𝑪 (sum of  KL divergence over all points)

• Gradient descent (GD) → gradient of  𝐶

• Initialized by sampling map points randomly from a Gaussian centered around 
the origin with small variance

• GD with momentum to speed up the convergence

• After each iteration, a gaussian noise is added to the map points with gradually 
reducing variance of  the noise (kind of  simulated annealing)
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t-SNE

• Replaces SNE with symmetric SNE
• Fixes issue with outliers

• Speeds up convergence

• Replaces gaussian for modeling low-dimensional points with 
Student’s t-distribution with a single degree of  freedom (longer 
tails)
• Fixes crowding problem
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Outliers
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𝑝𝑗|𝑖 extremely small ∀𝑗 ⇒ location of  the low-dim projection has very little 

effect on the cost function ⇒ position not well determined

outlier



Symmetric SNE (1)

• Models joint distributions → optimizes single KL divergence instead 
of  sum of  KLs

• i.e., 𝑝𝑖𝑗 = 𝑝𝑗𝑖 and 𝑞𝑖𝑗 = 𝑞𝑗𝑖
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In the low-dim space, the 

similarities are modeled as
In the high-dim space, the 

similarities are modeled as

𝑝𝑖𝑗 =
𝑝𝑗|𝑖 + 𝑝𝑖|𝑗

2𝑛

Ensures that σ𝑗 𝑝𝑖𝑗 >
1

2𝑛
for all 𝑥𝑖 → each 𝑥𝑖 makes a 

significant contribution to the cost function



Crowding issue

• Moderately equidistant high-dim points tend to get squashed on a single 
point → crowding
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t-Distribution

• In low-dimensional space t-SNE uses t-distribution 
which has heavier tails allowing moderate distances in 
high-dim, to be modeled by larger distance in low-dim
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source: Van der Maaten, Laurens, and Geoffrey Hinton. "Visualizing data using t-SNE." Journal of machine learning research 9.11 (2008).

• Resulting in gradient providing 
repulsion for  too close points in 
low-dim space



Example on MNIST dataset
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source: https://towardsdatascience.com/visualising-high-dimensional-datasets-using-pca-and-t-sne-in-python-8ef87e7915b

source: L.J.P. van der Maaten and G.E. Hinton. Visualizing High-Dimensional Data 

Using t-SNE. Journal of Machine Learning Research 9(Nov):2579-2605, 2008.
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Swiss roll example
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source: https://jlmelville.github.io/uwot/umap-examples.html#swiss_roll



Effect of  perplexity
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Perplexity should by < number of  data points

source: https://distill.pub/2016/misread-tsne/



Effect of  perplexity
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Cluster sizes mean nothing

source: https://distill.pub/2016/misread-tsne/



Effect of  perplexity
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Distances between well-separated clusters are not easily reproducible without fine-tuning perplexity

source: https://distill.pub/2016/misread-tsne/



Effect of  perplexity
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Shapes are preserved with suitable perplexity

source: https://distill.pub/2016/misread-tsne/

50 dim, standard deviation in 
coordinate 𝑖 is 1/𝑖, 1st and 2nd PCs



Effect of  perplexity
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Topology can be preserved with suitable perplexity value

source: https://distill.pub/2016/misread-tsne/



UMAP
Uniform Manifold Approximation and Projection for Dimension Reduction
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UMAP

• Rooted in manifold theory and topological data analysis
• Presumption that data lie on a manifold embedded in a high-dim space which 

we want to detect and project to low-dim

• Representation of  high-dim and low-dim data with k-NN graphs

• Preserves (better than t-SNE] distances between clusters →
preservation of  global structure

• Faster than t-SNE
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UMAP

• Construction of  a weighted graph 
in high dimensions
• Combinatorial representation of  the 

underlying topology (it’s convex hull) 
using simplicial complexes → cover of  
the space

• Finding the most appropriate 
layout in lower dimensions
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simplicial complex



High-dim representation
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Data are considered as samples from 

a continuous manifold 

A cover of  the manifold formed by 

open balls placed on each data point

A simplicial complex of  the cover 

(Nerve of  a covering) formed by 0-

and 1-simplices.

source: https://umap-learn.readthedocs.io/en/latest/how_umap_works.html



High-dim representation - choosing the radius

29

If  the data were uniformly distributed 

on the manifold, the cover would be 

good

Varying the notion of  distance on the 

manifold makes the uniform 

assumption true. The balls above has 

all the same size with respect to local 

distance on the manifold. This can be 

done by defining Riemannian metric  

on the manifold

Generalization of  the cover to fuzzy 

cover, i.e., a point is in the 

neighborhood with a probability 

(fuzzy balls).

Moreover, for the manifold to be 

locally connected, i.e., not to have 

isolated points → 1NN will always be



High-dim representation – graph
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Simplicial complexes of  the fuzzy 

covering have 1-simplices with a given 

probability (based on the local 

distance) → weighted graph 

representation. 

However, for each pair of  points we 

may have up to 2 edges where 

d 𝑎 → 𝑏 ≠ d 𝑏 → 𝑎 . Under a 

probabilistic fuzzy union the 

combination of  weights on the edges 

is given by 𝑓 𝛼, 𝛽 = 𝛼 + 𝛽 − 𝛼 . 𝛽



Practical construction of  the high-dim graph

• Compute 𝑘 nearest neighbors for each 
point

• Compute distance to nearest neighbor 
𝜌𝑖 and 𝜎𝑖

• Define weighted directed graph 𝐺 =
𝑋, 𝐸,𝑤
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hyper-parameter



Low-dim representation

• In low-dim the manifold on which the data should lie is the low-dim 
Euclidean space we are embedding to → no varying notion of  distance 
across the manifold

• We need to set the correct nearest neighbor distance for the local 
connectivity → hyper-parameter min_dist
• controlling how tightly points are clumped together in the resulting layout
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The low-dimensional representation is thus a graph in 2D 

space with edge weights derived from the minimum 

distance between points min_dist



Finding good low-dim representation

• Minimization of  cross-entropy
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set of  all 1-simplices

weight of  1-simplex 𝑒 in high-dim space

weight of  1-simplex 𝑒 in low-dim space

Attractive force 

(preservation of  small distances)

Repulsive force 

(preservation of  large distances)

Optimization via SGD + negative sampling
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source: McInnes, Leland, John Healy, and James Melville. "Umap: Uniform manifold approximation and projection for dimension reduction." arXiv preprint arXiv:1802.03426 (2018)

Comparison on standard datasets

https://jlmelville.github.io/uwot/umap-examples.html

https://jlmelville.github.io/uwot/umap-examples.html


Comparison with t-SNE on 3D mammoth

35https://pair-code.github.io/understanding-umap/

https://pair-code.github.io/understanding-umap/


Comparison on toy datasets

36https://pair-code.github.io/understanding-umap/

https://pair-code.github.io/understanding-umap/


Interpretation

• Similar observations as in case of  t-SNE

• Cluster sizes should not be interpreted

• Distances between cluster should not be interpreted

• Random noise might not look random
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Speed
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source: https://umap-learn.readthedocs.io/en/latest/performance.html
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