

http://prisma.dcc.uchile.cl

http://siret.ms.mff.cuni.cz

Non-Metric Similarity Search Problems in Very Large Collections

Benjamin Bustos, University of Chile Tomáš Skopal, Charles University in Prague

Outline of the tutorial

Benjamin

- Introduction
- The non-metric case of similarity
- Case study 1 image retrieval
- Case study 2 time series retrieval

Tomáš

- Case study 3 protein retrieval
- Indexing non-metric spaces
- Challenges

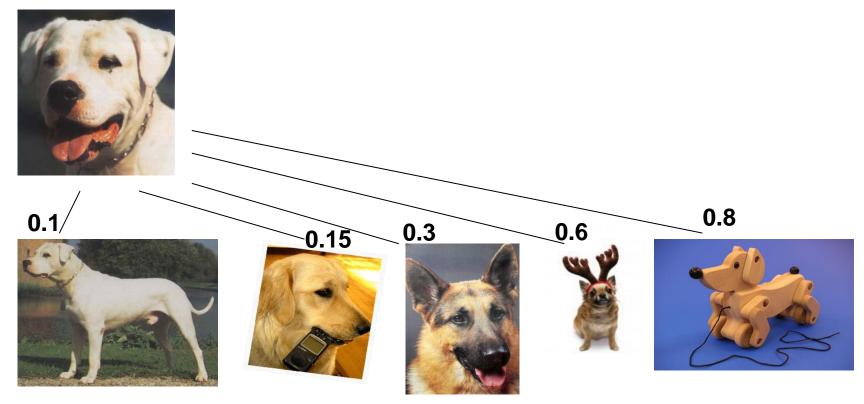
also see the survey [Skopal & Bustos, 2011]

Similarity search

- Search for "similar objects" (subjective)
- Content-based similarity search: query by example:

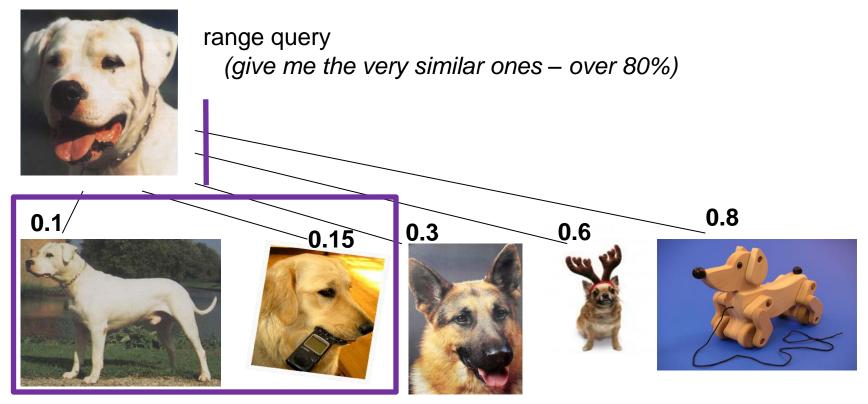
Similarity search

- Search for "similar objects" (subjective)
- Content-based similarity search: query by example:



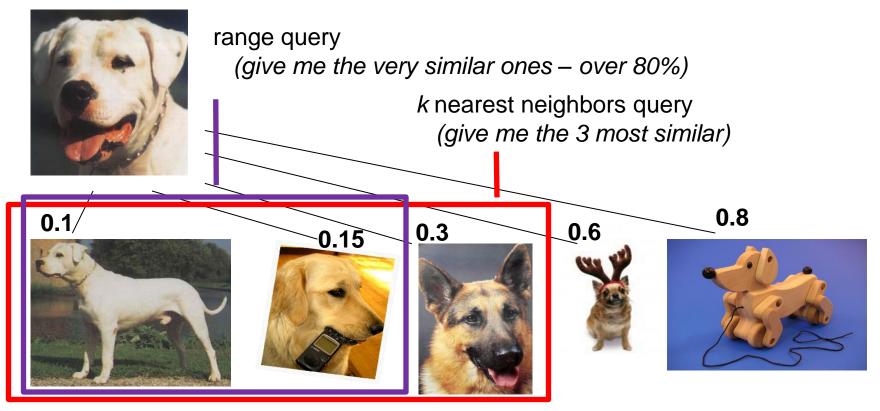
Similarity search

- Search for "similar objects" (subjective)
- Content-based similarity search: query by example:



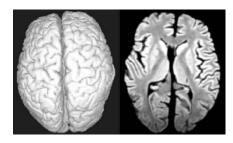
Similarity search

- Search for "similar objects" (subjective)
- Content-based similarity search: query by example:



Application examples of similarity search

- Multimedia retrieval
- Scientific databases
- Biometry
- Pattern recognition
- Manufacturing industry
- Cultural heritage
- Etc.

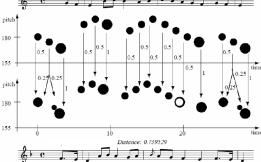


YAHOO!

tiago, Chile

Idivia, Chile 432 Image

Search Options -



Metric similarity

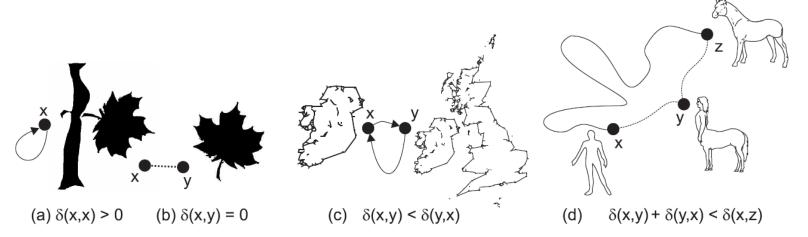
- Dissimilarity function δ (the distance), universe U, database S ⊂ U, objects x,y,z ∈ U
- The higher $\delta(x,y)$, the more dissimilar objects x,y are
- Topological properties

 $\begin{array}{ll} \delta(x,y)=0 \Leftrightarrow x=y & \mbox{identity} \\ \delta(x,y)\geq 0 & \mbox{non-negativity} \\ \delta(x,y)=\delta(y,x) & \mbox{symmetry} \\ \delta(x,y)+\delta(y,z)\geq \delta(x,z) & \mbox{triangle inequality} \end{array}$

- Pros of metric approach
 - Well-studied in mathematics (many known metrics)
 - Postulates support common assumptions on similarity
 - Allows efficient indexing and search (metric indexing)

Cons of metric approach:

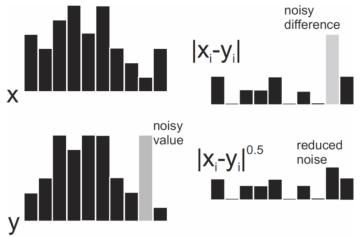
It may not correctly model the "human" notion of similarity



- Identity and non-negativity:
 - □ single object could be viewed as self-dissimilar
 - $\hfill\square$ two distinct object could be viewed as identical
- Symmetry comparison direction could be important
- Triangle inequality similarity is not transitive

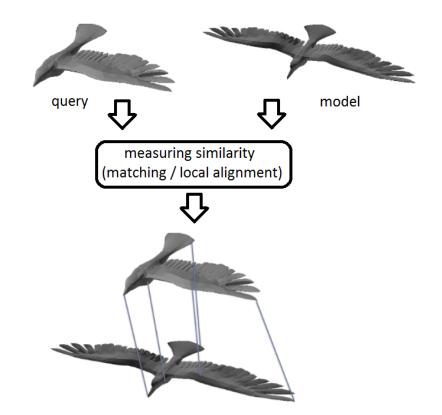
- What is non-metric?
 - Generally: a distance function that does not satisfy some (or all) properties of a metric
- This could include:
 - Context-dependent similarity functions
 - Dynamic similarity functions
- For this tutorial: similarity functions that are "contextfree and static"
 - Similarity between two objects is constant whatever the context is, i.e., regardless of time, user, query, other objects in database, etc.

- Motivation
 - Robustness
 - A robust function is resistant to outliers (noise or deformed objects), that would otherwise distort the similarity distribution within a given set of objects
 - Having objects x and y and a robust function δ, an extreme change in a small part of x's descriptor should not imply an extreme change of δ(x,y).



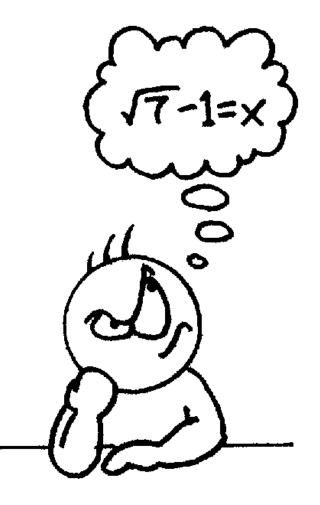
Motivation

- Locality
 - A locally sensitive function is able to ignore some portions of the compared objects
 - The locality is usually used to privilege similarity before dissimilarity, hence, we rather search for similar parts in two objects than for dissimilar parts



Motivation

- Comfort/freedom of modeling
 - The task of similarity search should serve just as a computer based tool in various professions
 - Domain experts should not be bothered by some "artificial" constraints (metric postulates)
 - Enforcement of metric may represent an unpleasant obstacle
 - Freedom of modeling
 - Complex heuristic algorithms
 - □ Black-box similarity



Examples of general non-metric functions

Fractional Lp distances (p<1) Sequence alignment</p> distance

$$L_p(x,y) = \left(\sum_{i=1}^d |x_i - y_i|^p\right)^{1/p} \quad \delta_{SAD}(x,y,i,j) = \min\left\{\begin{array}{l} c(x_i,y_j) + \delta_{SAD}(x,y,i+1,j+1) \\ c(-,y_j) + \delta_{SAD}(x,y,i,j+1) \\ c(x_i,-) + \delta_{SAD}(x,y,i+1,j) \end{array}\right.$$

Cosine similarity

$$s_{\cos}(x,y) = \frac{\sum_{i=1}^{d} x_i y_i}{\sqrt{\sum_{i=1}^{d} x_i^2 \cdot \sum_{i=1}^{d} y_i^2}}$$

Earth Mover's distance

$$\delta_{EMD}(x,y) = \min\left\{\sum_{i=1}^{d} \sum_{j=1}^{d} c_{ij} f_{ij}\right\}$$

subject to

x, y, i + 1, j

$$\begin{array}{rcl}
f_{ij} &\geq 0 \\
\sum_{i=1}^{d} f_{ij} &= y_j \quad \forall j = 1, \dots, d \\
\sum_{j=1}^{d} f_{ij} &= x_i \quad \forall i = 1, \dots, d
\end{array}$$

The problem: find similar images to a given one

Image Search

-	Title: Plumeria cv 'Loretta Description: Loretta Plumeria			
Text	Tags: plumeria frangipani Comments: This one is really b flickr			
	EARCH			

d=0.09150 similar images

Query specification: Text (metadata), Content-based, Sketch-based, combination

d=0.09321 similar images

00000 - 0000

PRISMA Image Search: http://prisma.dcc.uchile.cl/ImageSearch/

Image descriptors

- High-level features: concepts
 - Metadata
 - □ Title, tags, etc.
 - Click information
 - \square Web-logs
 - □ Also carries semantic information

Title: She is a Lady Description: Prissy, sun-lit. Tags: coker spaniel coker ... Comments: Prissy is beautiful.... flickr

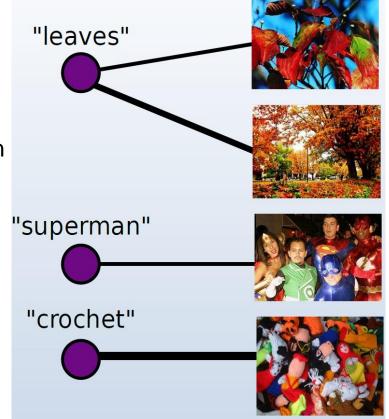


Image descriptors

- Low-level features: visual attributes
 - Color, texture, shape, edges
 - Global vs. local descriptors

Big problem: semantic gap

Bridge between high and low features

(credit: Google)

Non-metric functions for image retrieval

> χ^2 , Kullback-Leibler (KLD), Jeffrey divergence (JD)

$$\delta_{\chi^2}(x,y) = \sum_{i=1}^d \frac{x_i - m(i)}{m(i)} \qquad m(i) = \frac{x_i + y_i}{2}$$
$$\delta_{KLD}(x,y) = \sum_{i=1}^d x_i \cdot \log\left(\frac{x_i}{y_i}\right)$$
$$\delta_{JD}(x,y) = \sum_{i=1}^d x_i \cdot \log\left(\frac{x_i}{\frac{x_i + y_i}{2}}\right) + y_i \cdot \log\left(\frac{y_i}{\frac{x_i + y_i}{2}}\right)$$

 Better suited for image retrieval and classification than metric distances

Non-metric functions for image retrieval

Dynamic Partial Function [Goh et al., 2002]

$$\delta_{DPF}(x,y) = \left(\sum_{c_i \in \Delta_m} |x_i - y_i|^p\right)^{1/p}, \ p \ge 1$$

- Δ_m : set of *m* smallest coordinate differences
- Better for image classification than Euclidean distance
- Fractional Lp distances
 - Robust for image matching and retrieval
- Jeffrey divergence
 - Better than Euclidean distance for retrieval of tomographies

The problem

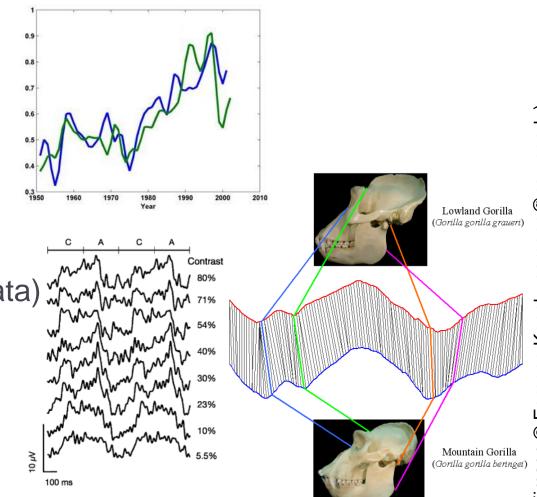
- Time series = ordered set of values
- Given a set of time series, find similar ones
 - Find the optimal alignment
- L_p distance could be used, but: L_p "alignment"
 - Scaling/different dimensionality
 - Shift in time
 - Missing values
 - Outliers desired alignment
 - Locality

desired alignment

Applications

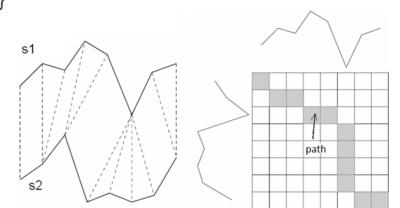
- Financial analysis (e.g., stock prices)
- Medicine (e.g.,ECG, EEG)
- Scientific data

 (e.g., seismological
 analysis, climate data);
- Shape retrieval
- Many others...



- Dynamic Time Warping (DTW) [Berndt and Clifford, 1994]
 - Sequences s1, s2
 - m x n matrix M, where $m = |s_1|$, $n = |s_2|$
 - Matrix cell M_{i,j} is partial distance d(s₁, s₂)
 - Warping path W = {w₁, ..., wt}, max{m, n}
 ≤ t ≤ m + n −1, is a set of cells from M
 that are contiguous
 - ▶ w₁= M_{1,1}, w_t= M_{m,n} (boundary condition)
 - if $w_{k} = M_{a,b}$ and $w_{k-1} = M_{a',b'}$, then
 - \Box a –a' ≤ 1 b–b' ≤ 1 (continuity)
 - \Box a -a' \geq 0 b-b' \geq 0 (monotonicity)
 - DTW = L₂ distance on optimally aligned sequences (optimal warping path)
 - non-metric distance

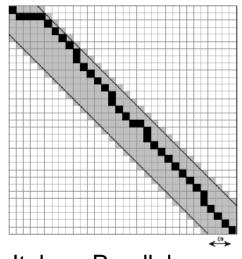
$$\delta_{DTW}(x,y) = \min_{W} \left\{ \sqrt{\sum_{k=1}^{t} w_k} \right\}$$

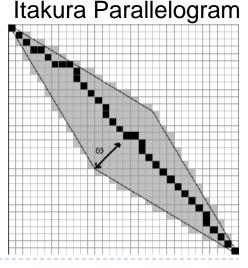


Dynamic Time Warping (DTW)

- Exponentially many warping paths, but can be computed in O(mn)*O(ground distance) time by dynamic programming
- Constrained versions of DTW
 - Avoiding pathological paths
 - $\hfill\square$ A range parameter ω
 - By ω = 0, m=n, d(x,y) = |x-y| we get the Euclidean distance (just the diagonal warping path allowed)
 - DTW reduced complexity to O((m+n)ω)
 - Sakoe-Chiba band warping paths are only allowed near the diagonal
 - Itakura Parallelogram "time warping" in the middle of sequences is allowed, but not at the ends

Sakoe-Chiba band





- Longest Common Subsequence (LCS)
 - x is subsequence of y if there is a strictly increasing sequence of indices such that there is a match between symbols in x and y (not necessarily adjacent)
 - z is a common subsequence of x and y if it is a subsequence of both x and y
 - The longest common subsequence (LCS) is the maximum length common subsequence of x and y
 - non-metric (also similarity)

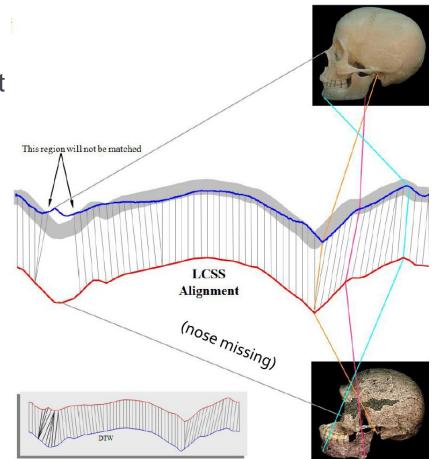
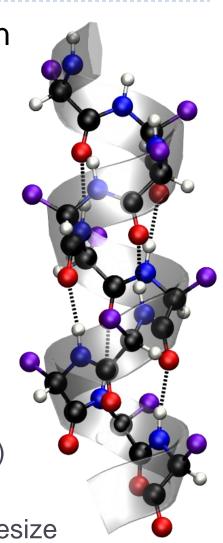


image © Eamonn Keogh, eamonn@cs.ucr.edu)

• Similar proteins \rightarrow similar biological function

- Many applications, like protein function/structure prediction (leading to, e.g., drug discovery)
- Protein sequences (primary structure)
 - Strings over 20-letter alphabet, i.e., symbolic chains of amino acids (AA)
 - Biologically augmented string similarity
 - Well-established model
- Protein structures (tertiary structure)
 - 3D geometry (polyline + local chemical properties)
 - Biologically augmented shape similarity
 - Closer to function than sequence, harder to synthesize



- Protein sequences
- String similarity (like edit distance) enhanced by scoring matrices (e.g., PAM, BLOSUM)
 - Score between two letters models the probability of mutating one amino acid into the other

Needleman-Wunch (NW)

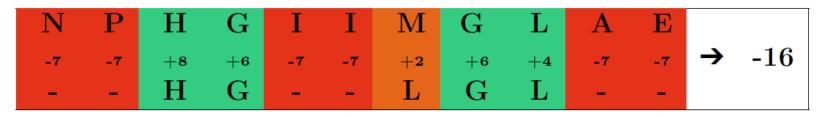
- Global alignment a nonmetric measure if scoring matrix is nonmetric and/or sequences are of different lengths
- Usually used for solving subtasks (e.g., when sequences are split into q-grams which are then indexed/searched)

Smith-Waterman (SW)

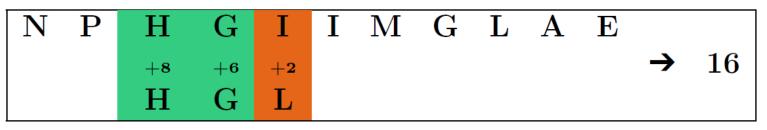
- Local alignment (nonmetric), more applicable than global alignment
- BLAST approximate SW + an access method in one algorithm
- Used for, e.g., function discovery, phylogenetic analysis, etc.

Example

Global alignment (Needlemann-Wunch)



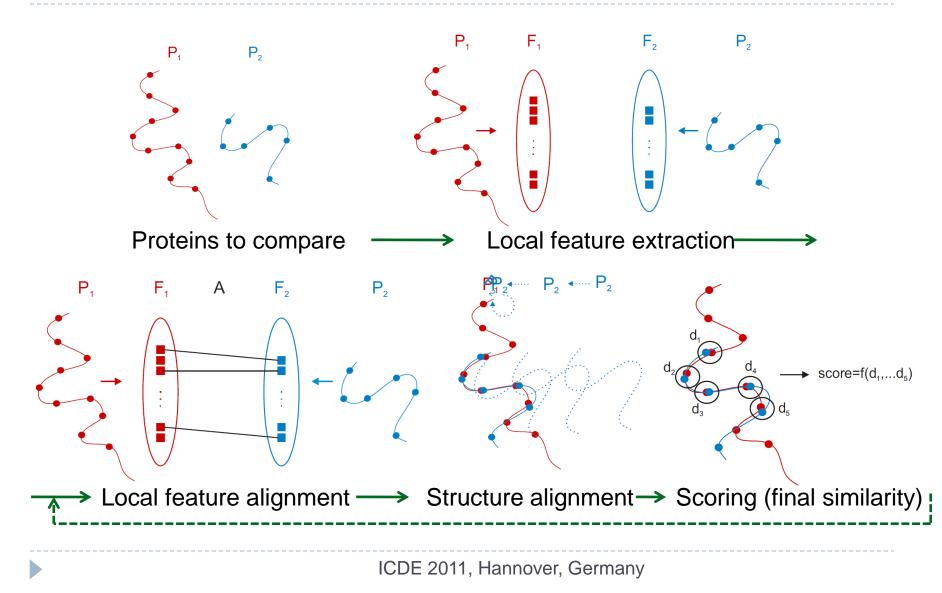
Local alignment (Smith-Waterman)



Protein structure

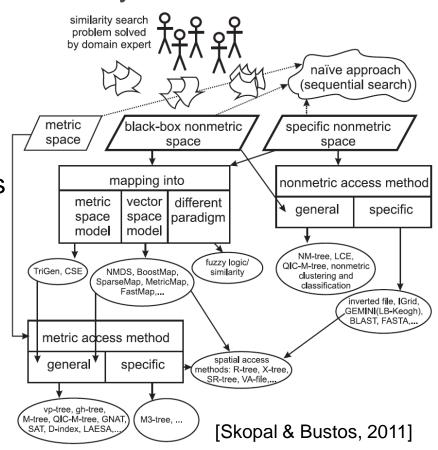
- Structure is more correlated to biological function than sequence (but harder to obtain)
- Similarity two-step optimization process
 - 1) Alignment of structures based on local properties/features
 - Shape properties (torsion angles between AAs, density of AAs, curvature, surface area)
 - Physico-chemical properties (hydrophobicity, AA volume)
 - Aggregation measure on top of the alignment
 RMSD, TM-score
- Existing top algorithms for function assessment
 - DDPIn+iTM, PPM, Vorometric, TM-align, CE

[Hoksza & Galgonek, 2010]



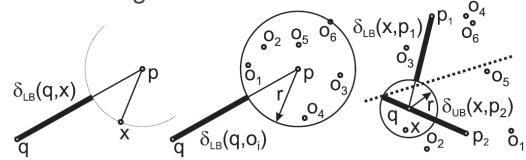
Indexing non-metric spaces – framework

- Need to search efficiently (fast query processing)
 - Access methods / indexes for similarity search
- Framework
 - Metric case similarity
 - MAM (metric access methods)
 - Useful for mapping approaches
 - General non-metric similarity
 - General NAM (nonmetric AM)
 - Black-box distance only
 - Specific non-metric similarity
 - Specific NAM
 - Additional knowledge needed



Indexing non-metric spaces – MAM

- The metric case (for completeness & mapping approaches)
 - Black-box metric distance δ needed
- Metric access methods (MAM), or metric indexes
 - Idea: pivot-based lower-bounding



Index

equivalence classes search in candidate

classes

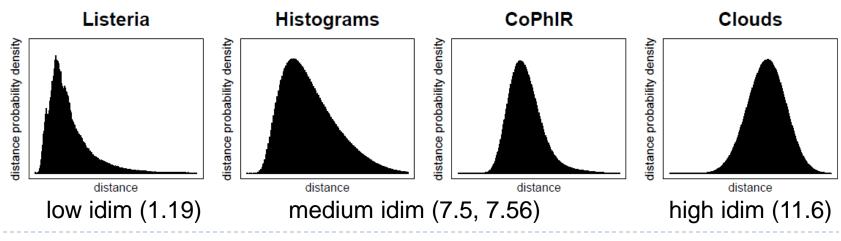
- Different implementations/designs [Zezula et al, 2005]
 - Dynamic/static database, serial/parallel/distributed platform, main/secondary memory, exact/approximate search
 - Index = set/hierarchy of metric regions, filtering
- Examples: M-tree family, pivot tables, vp-tree, GNAT, SAT, M-index, D-file, etc.

Indexing non-metric spaces – MAM & intrinsic dimensionality

- The metric postulates alone are not a guarantee of efficient indexing
- The structure of distance distribution indicates the **indexability** of the database
 - Intrinsic dimensionality ρ(S,δ) (idim) an indexability indicator
 [Chávez et al., 2001]

$$\rho(\mathbb{S},\delta) = \frac{\mu^2}{2\sigma^2}$$

(μ and σ^2 are the mean and the variance of the distance distribution in **S** under δ)



Indexing non-metric spaces – mapping

- How to **index non-metric spaces**?
- Let's simplify the problem, turn them into metric ones!
- Mapping into an L_p space
 - Pros:

"Easy" target space (cheap L_p distance, mostly Euclidean)

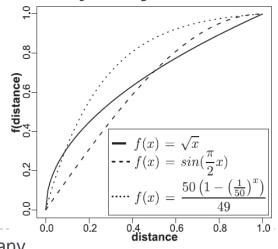
Cons:

Approximate, static, computationally expensive mapping

- Variants of mappings into vector spaces
 - Assuming metric distance
 - FastMap, MetricMap, SparseMap, BoostMap
 - Allowing also nonmetric distance
 - Non-metric multidimensional scaling (NMDS) concept
 - Query-sensitive embedding (non-metric extension of BoostMap)

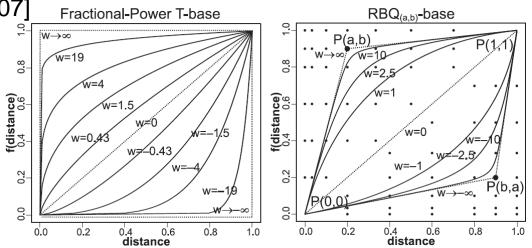
Indexing non-metric spaces – mapping

- Alternative mapping concept:
 - Do not transform whole space (the database $S + \delta$), but only the distance function δ , leaving S unchanged
 - Suppose semimetric distance δ (metric not satisfying triangle ineq.)
- How to turn semimetric δ into a metric?
 - Consider increasing function f, such that f(0)=0, and modification $f(\delta)$
 - i.e., f preserves the similarity ordering wrt any query
 - Concave f increases the amount of triangle inequality in δ
 - However, concave f also increases the intrinsic dimensionality of (S, f(δ)), when compared to (S, δ)
- Hence, let's find a function f that is:
 - Concave enough to turn δ into metric,
 - yet keeping idim as low as possible



Indexing non-metric spaces – mapping

- TriGen algorithm [Skopal, 2007]
 - "Metrization" of δ into f(δ)
 - Uses T-bases set of modifying functions f, additionally parameterizable by a concavity/ convexity weight w

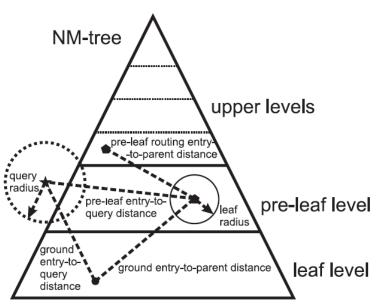


- Uses T-error the proportion of non-triangle triplets
 - Distance triplets sampled on S using f(δ)
- Given a set of T-bases, δ and a sample of the database S, the algorithm finds the optimal f (T-base with w)
 - \blacktriangleright f is a candidate if T-error is below a user-defined threshold θ
 - Among the candidates the one is chosen for which idim is minimal

Indexing non-metric spaces – general NAM

NM-tree – nonmetric M-tree

- M-tree combined with TriGen algorithm
- Allows to set the retrieval error vs.
 performance trade-off at query time
- The NM-tree idea [Skopal & Lokoč, 2008]
 - Using TriGen, find modifiers f_i for several
 T-error thresholds (including zero T-error)



- Build M-tree using the zero T-error modified distance (i.e., full metric)
- At query time, the T-error tolerance is a parameter
 - Each required distance value stored in M-tree is inversely modified from the metric one back to the original semimetric distance,
 - > then it is **re-modified** using a different modifier (appropriate to the query parameter)
- Additional requirement on T-bases inverse symmetry, i.e., f(f(x,w),-w) = x

- The general techniques do not use any specific information
 - just black-box distance and a sample of the database is provided
- It is always better to use a specific solution (if developed), based on an internal knowledge, as:
 - Structure of the universe U (vector, string, set?)
 - The formula of δ (closed form available?)
 - Cardinality of the distance domain (discrete/continuous?)
 - Data/distance distribution in S (uniform/skewed?)
 - Typical query (e.g., sparse/dense vector?)
- Typically not reusable in other domains
 - Hence, hard to find a NAM specific to our setup

Example – LB_Keogh for constrained DTW

[Keogh et al, 2006]

DTW U

DTW I

Lower-bounding distance, metric and cheap to compute O(n)

• Envelope W=(DTW_U, DTW_L) created for a time series S $DTW_U_i = max(S_{i-R} : S_{i+R}),$ $DTW_L_i = min(S_{i-R} : S_{i+R}),$ R is the thickness of Sakoe-Chiba band

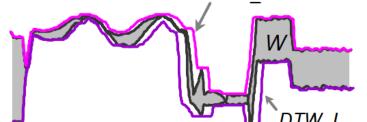
$$LB_Keogh_{DTW}(Q,W) = \sqrt{\sum_{i=1}^{n} \begin{cases} (q_i - DTW_U_i)^2 & \text{if } q_i > DTW_U_i \\ (q_i - DTW_L_i)^2 & \text{if } q_i < DTW_L_i \\ 0 & \text{otherwise} \end{cases}}$$

(images © Eamonn Keogh, eamonn@cs.ucr.edu)

Example – LB_Keogh for constrained DTW

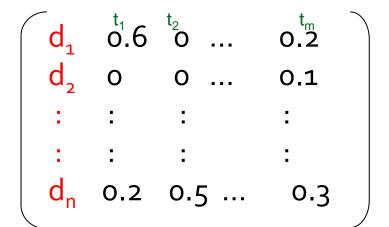
- Basic approach filter & refine search
 - 1) Sequential search under LB_Keogh
 - 2) Check remaining candidates by DTW
- Extended approach wedges
 = descriptors of multiple series
 - Wedge W = (U, L), $U_i = max(C_{1i}, ..., C_{ki}), L_i = min(C_{1i}, ..., C_{ki})$
 - W = k-dimensional rectangle, let's index it by, e.g., R-tree
 - For constrained DTW, W must be inflated as for single time series, *DTW_U* i.e.,

 $DTW_U_{i} = max(W_{i-R} : W_{i+R}),$ $DTW_L_{i} = min(W_{i-R} : W_{i+R})$



Example – inverted file and cosine similarity

- Used as an implementation of range query in vector model of information retrieval
 - documents d_i, terms t_j
 - term-by-document matrix
 weights of terms in documents



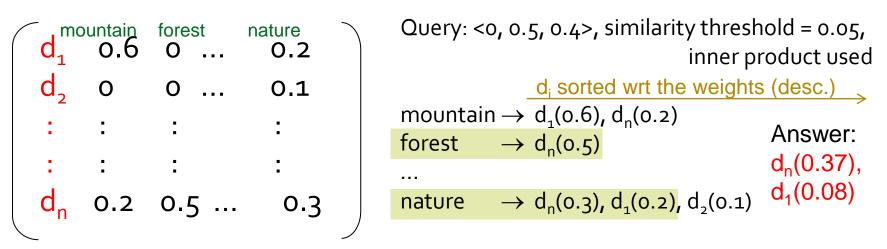
- Only efficient for cosine similarity (or inner product) and sparse query vector
 - CosSim = (normed) sum of weight multiplications

$$\operatorname{CosSim}(\boldsymbol{d}_{j}, \boldsymbol{q}) = \frac{\vec{d}_{j} \cdot \vec{q}}{\left| \vec{d}_{j} \right| \cdot \left| \vec{q} \right|} = \frac{\sum_{i=1}^{t} (w_{ij} \cdot w_{iq})}{\sqrt{\sum_{i=1}^{t} w_{ij}^{2} \cdot \sum_{i=1}^{t} w_{iq}^{2}}}$$

Example – inverted file and cosine similarity

Efficient query processing

- Visit only lists of terms having nonzero weights in query
- Early termination provided when lists sorted wrt the weights



- Cannot apply to Euclidean distance (!)
 - zero + nonzero weight = nonzero (all lists must be visited)

Indexing non-metric spaces

Overview

 of methods
 for efficient
 non-metric
 search

 References to the sections of [Skopal & Bustos, 2011]

	Method Sequential scan	D specialized/ g general	approximate/ aract search	static/dynamic database	a main-memory/	other characteristics Bednines uo jugar	v details in section
general NAMs mapping	-						,
	CSE	Gen.	Exact	Static	Main-mem.	$\begin{array}{c} \text{Requires} & O(n^2) \\ \text{space} & \\ \end{array}$	4.5.2
	TriGen	Gen.	Approx.	Static	Main-mem.	Simplifies the prob- lem to metric case	4.5.3
	Embeddings into vector spaces	Gen.	Approx.	Static	Main-mem.	Simplifies the prob- lem to L_p space	4.5.4
	Fuzzy logic	Gen.	Approx.	Static	Main-mem.	Provides transitive inequality, not im- plemented yet	4.5.5
	NM-tree	Gen.	Approx.	Dynamic	Persistent	Based on M-tree, uses TriGen	4.6.1
	QIC-M-Tree	Gen.	Exact	Dynamic	Persistent	Based on M-tree, requires user-defined metric lower bound distance	4.6.2
	LCE	Gen.	Approx.	Static	Main-mem.	Exact only for database objects	4.6.3
	Classification	Gen.	Approx.	Static	Main-mem.	Requires cluster analysis, limited scalability	4.6.4
	Combinatorial approach	Gen.	Approx.	Static	Main-mem.	No implementation yet, only for NN search. Exact for large enough D .	4.6.5
specific NAMs	Inverted file	Spec.	Exact	Dynamic	Persistent	Cosine measure	4.7.2
	IGrid	Spec.	Exact	Static	Main-mem.	Specific L_p -like distance	4.7.3
	GEMINI(LB-Keogh)	Spec.	Exact	Both	Main-mem.	Uses lower bound distances	4.7.4
speci	FASTA/BLAST	Spec.	Approx.	Dynamic	Main-mem.	Approximate align- ment	4.7.5

Challenges to the future

scalability

 mostly sequential scan nowadays, but the databases grow and get more complex, hence, indexing would be necessary

indexability

how to measure indexability of nonmetric spaces?

implementation specificity

specific vs. general NAMs

efficiency vs. effectiveness

- slower exact vs. faster approximate search
- extensibility
 - there exist other related aggregation/scoring (non-metric) concepts, to which non-metric indexing could contribute

Thank you for your attention!

Þ

... questions?

References

- T. Skopal, B. Bustos, On Nonmetric Similarity Search Problems in Complex Domains, ACM Computing Surveys, 43(4), December 2011 http://siret.ms.mff.cuni.cz/skopal/pub/nmsurvey.pdf
- D. Berndt, J. Clifford. Using dynamic time warping to find patterns in time series. AAAI Workshop On Knowledge Discovery in Databases, 1994
- E. Chávez, G. Navarro, R. Baeza-Yates, J.L. Marroquín, Searching in metric spaces, ACM Computing Surveys, 33(3), 2001
- K.-S. Goh, B. Li, and E. Chang. DynDex: A dynamic and non-metric space indexer. 10th ACM International Conference on Multimedia, 2002
- D. Hoksza, J. Galgonek, Alignment-Based Extension to DDPIn Feature Extraction, International Journal of Computational Bioscience, Acta Press, 2010
- E. Keogh, L. Wei, X. Xi, S. Lee and M. Vlachos (2006) LB_Keogh Supports Exact Indexing of Shapes under Rotation Invariance with Arbitrary Representations and Distance Measures. VLDB 2006
- T. Skopal, Unified Framework for Fast Exact and Approximate Search in Dissimilarity Spaces, ACM Transactions on Database Systems, 32(4), 2007
- T. Skopal, J. Lokoč, NM-tree: Flexible Approximate Similarity Search in Metric and Non-metric Spaces, DEXA 2008, LNCS 5181, Springer
- P. Zezula, G. Amato, V. Dohnal, and M. Batko, Similarity Search: The Metric Space Approach, volume 32 of Advances in Database Systems. Springer, 2005