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Introduction

 Similarity search

 Search for “similar objects” (subjective)

 Content-based similarity search: query by example:
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k nearest neighbors query

(give me the 3 most similar)

range query

(give me the very similar ones – over 80%)
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Introduction

 Application examples of similarity search

 Multimedia retrieval

 Scientific databases

 Biometry

 Pattern recognition

 Manufacturing industry

 Cultural heritage

 Etc.
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Introduction

 Metric similarity

 Dissimilarity function d (the distance), 
universe U, database S  U, objects x,y,z  U

 The higher d(x,y), the more dissimilar objects x,y are

 Topological properties

 Pros of metric approach
 Well-studied in mathematics (many known metrics) 

 Postulates support common assumptions on similarity

 Allows efficient indexing and search (metric indexing)
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Introduction

 Cons of metric approach:
 It may not correctly model the “human” notion of similarity

 Identity and non-negativity:

 single object could be viewed as self-dissimilar

 two distinct object could be viewed as identical

 Symmetry – comparison direction could be important

 Triangle inequality – similarity is not transitive
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The non-metric case of similarity

 What is non-metric?

 Generally: a distance function that does not satisfy some 

(or all) properties of a metric

 This could include:

 Context-dependent similarity functions

 Dynamic similarity functions

 For this tutorial: similarity functions that are “context-

free and static“

 Similarity between two objects is constant whatever the 

context is, i.e., regardless of time, user, query, other 

objects in database, etc.
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The non-metric case of similarity

 Motivation

 Robustness

 A robust function is resistant to outliers (noise or deformed 

objects), that would otherwise distort the similarity distribution 

within a given set of objects

 Having objects x and y and a robust function d, an extreme 

change in a small part of x's descriptor should not imply an 

extreme change of d(x,y).
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The non-metric case of similarity

 Motivation

 Locality

 A locally sensitive function 

is able to ignore some 

portions of the compared 

objects

 The locality is usually used 

to privilege similarity before 

dissimilarity, hence, we 

rather search for similar 

parts in two objects than 

for dissimilar parts

ICDE 2011, Hannover, Germany



The non-metric case of similarity
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 Motivation

 Comfort/freedom of modeling

 The task of similarity search 

should serve just as a computer 

based tool in various professions

 Domain experts should not be 

bothered by some “artificial” 

constraints (metric postulates)

 Enforcement of metric may 

represent an unpleasant obstacle

 Freedom of modeling

 Complex heuristic algorithms

 Black-box similarity



The non-metric case of similarity

 Examples of general non-metric functions

 Fractional Lp distances (p<1)

 Cosine similarity

 Sequence alignment 

distance

 Earth Mover’s distance
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Case study 1 – image retrieval

 The problem: find similar images to a given one

 Query specification: Text (metadata), Content-based, 

Sketch-based, combination

PRISMA Image Search: 

http://prisma.dcc.uchile.cl/ImageSearch/
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Case study 1 – image retrieval

 Image descriptors

 High-level features: concepts

 Metadata

 Title, tags, etc.

 Click information

 Web-logs

 Also carries semantic information
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Case study 1 – image retrieval

 Image descriptors

 Low-level features: visual attributes

 Color, texture, shape, edges

 Global vs. local descriptors
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Case study 1 – image retrieval

 Big problem: semantic gap

 Bridge between high and low features
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Case study 1 – image retrieval

 Non-metric functions for image retrieval

 c2, Kullback-Leibler (KLD), Jeffrey divergence (JD)

 Better suited for image retrieval and classification than metric

distances
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Case study 1 – image retrieval

 Non-metric functions for image retrieval

 Dynamic Partial Function [Goh et al., 2002]

 Dm: set of m smallest coordinate differences

 Better for image classification than Euclidean distance

 Fractional Lp distances

 Robust for image matching and retrieval

 Jeffrey divergence

 Better than Euclidean distance for retrieval of tomographies
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Case study 2 – time series retrieval 

 The problem

 Time series = ordered set of values

 Given a set of time series, find similar ones

 Find the optimal alignment

 Lp distance could be used, but:

 Scaling/different dimensionality

 Shift in time

 Missing values

 Outliers

 Locality

desired alignment

Lp “alignment”

desired alignment
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Case study 2 – time series retrieval

 Applications

 Financial analysis

(e.g., stock prices)

 Medicine 

(e.g.,ECG, EEG)

 Scientific data 

(e.g., seismological

analysis, climate data)

 Shape retrieval

 Many others…
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Case study 2 – time series retrieval
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 Dynamic Time Warping (DTW) 

 Sequences s1, s2

 m x n matrix M, where m = |s1|, n = |s2|

 Matrix cell Mi,j is partial distance d(s1i, s2j)

 Warping path W = {w1, ... , wt}, max{m, n} 

≤ t ≤ m + n –1, is a set of cells from M 

that are contiguous

 w1= M1,1, wt= Mm,n (boundary condition)

 if wk= Ma,b and wk-1= Ma’,b’, then 

 a –a’ ≤ 1 b–b’ ≤ 1 (continuity)

 a –a’ ≥ 0 b–b’ ≥ 0 (monotonicity)

 DTW = L2 distance on optimally aligned 

sequences (optimal warping path)

 non-metric distance

[Berndt and Clifford, 1994]



Case study 2 – time series retrieval
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 Dynamic Time Warping (DTW)

 Exponentially many warping paths, but can be 

computed in O(mn)*O(ground distance) time by 

dynamic programming

 Constrained versions of DTW

 Avoiding pathological paths

 A range parameter w

 By w = 0, m=n, d(x,y) = |x-y| we get the Euclidean 

distance (just the diagonal warping path allowed)

 DTW reduced complexity to O((m+n)w)

 Sakoe-Chiba band – warping paths are only allowed 

near the diagonal

 Itakura Parallelogram – “time warping” in the middle 

of sequences is allowed, but not at the ends

Sakoe-Chiba band

Itakura Parallelogram



Case study 2 – time series retrieval

 Longest Common Subsequence

 x is subsequence of y if there 

is a strictly increasing 

sequence of indices such that 

there is a match between 

symbols in x and y 

(not necessarily adjacent)

 z is a common subsequence 

of x and y if it is a 

subsequence of both x and y

 The longest common 

subsequence (LCS) is the 

maximum length common 

subsequence of x and y

 non-metric (also similarity)
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Case study 3 – protein retrieval

 Similar proteins  similar biological function

 Many applications, like protein function/structure 

prediction (leading to, e.g., drug discovery)

 Protein sequences (primary structure)

 Strings over 20-letter alphabet, i.e., 

symbolic chains of amino acids (AA)

 Biologically augmented string similarity

 Well-established model

 Protein structures (tertiary structure)

 3D geometry (polyline + local chemical properties)

 Biologically augmented shape similarity

 Closer to function than sequence, harder to synthesize
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Case study 3 – protein retrieval

 Protein sequences

 String similarity (like edit distance) enhanced 

by scoring matrices (e.g., PAM, BLOSUM)

 Score between two letters models the probability 

of mutating one amino acid into the other

 Needleman-Wunch (NW)

 Global alignment – a nonmetric measure if scoring matrix 

is nonmetric and/or sequences are of different lengths

 Usually used for solving subtasks (e.g., when sequences 

are split into q-grams which are then indexed/searched)

 Smith-Waterman (SW)

 Local alignment (nonmetric), more applicable than global alignment

 BLAST – approximate SW + an access method in one algorithm

 Used for, e.g., function discovery, phylogenetic analysis, etc.
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Case study 3 – protein retrieval

 Example

 Global alignment (Needlemann-Wunch)

 Local alignment (Smith-Waterman)
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Case study 3 – protein retrieval

 Protein structure

 Structure is more correlated to biological function than 

sequence (but harder to obtain)

 Similarity – two-step optimization process

1) Alignment of structures based on local properties/features

 Shape properties (torsion angles between AAs, density of AAs, 

curvature, surface area)

 Physico-chemical properties (hydrophobicity, AA volume) 

2) Aggregation measure on top of the alignment
 RMSD, TM-score

 Existing top algorithms for function assessment

 DDPIn+iTM, PPM, Vorometric, TM-align, CE

[Hoksza & Galgonek, 2010]
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Case study 3 – protein retrieval

Local feature extraction

Local feature alignment Structure alignment Scoring (final similarity)

Proteins to compare
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Indexing non-metric spaces – framework

 Need to search efficiently (fast query processing)

 Access methods / indexes for similarity search

 Framework

 Metric case similarity

 MAM (metric access methods)

 Useful for mapping approaches

 General non-metric similarity

 General NAM (nonmetric AM)

 Black-box distance only

 Specific non-metric similarity

 Specific NAM

 Additional knowledge needed
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Indexing non-metric spaces – MAM

 The metric case (for completeness & mapping approaches)

 Black-box metric distance d needed

 Metric access methods (MAM), or metric indexes

 Idea: pivot-based lower-bounding

 Different implementations/designs [Zezula et al, 2005]

 Dynamic/static database, serial/parallel/distributed platform, 

main/secondary memory, exact/approximate search

 Index = set/hierarchy of metric regions, filtering

 Examples: M-tree family, pivot tables, 

vp-tree, GNAT, SAT, M-index, D-file, etc.
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Indexing non-metric spaces 

– MAM & intrinsic dimensionality

 The metric postulates alone are 

not a guarantee of efficient indexing

 The structure of distance distribution 

indicates the indexability of the database

 Intrinsic dimensionality r(S,d) (idim) – an indexability indicator

[Chávez et al., 2001]

(m and s2 are the mean and the variance of 

the distance distribution in S under d)
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Indexing non-metric spaces – mapping

 How to index non-metric spaces? 

 Let’s simplify the problem, turn them into metric ones!

 Mapping into an Lp space

 Pros: 

“Easy” target space (cheap Lp distance, mostly Euclidean) 

 Cons: 

Approximate, static, computationally expensive mapping

 Variants of mappings into vector spaces

 Assuming metric distance

 FastMap, MetricMap, SparseMap, BoostMap

 Allowing also nonmetric distance

 Non-metric multidimensional scaling (NMDS) concept

 Query-sensitive embedding (non-metric extension of BoostMap)
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Indexing non-metric spaces – mapping

 Alternative mapping concept: 

 Do not transform whole space (the database S + d), 

but only the distance function d, leaving S unchanged

 Suppose semimetric distance d (metric not satisfying triangle ineq.)

 How to turn semimetric d into a metric?

 Consider increasing function f, such that f(0)=0, and modification f(d)

 i.e., f preserves the similarity ordering wrt any query

 Concave f increases the amount of triangle inequality in d

 However, concave f also increases 

the intrinsic dimensionality of (S, f(d)), 

when compared to (S, d)

 Hence, let’s find a function f that is:

 Concave enough to turn d into metric, 

 yet keeping idim as low as possible
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Indexing non-metric spaces – mapping

 TriGen algorithm [Skopal, 2007]

 “Metrization” of d into f(d)

 Uses T-bases – set of 

modifying functions f, 

additionally parameter-

izable by a concavity/

convexity weight w

 Uses T-error – the proportion of non-triangle triplets

 Distance triplets sampled on S using f(d)

 Given a set of T-bases, d and a sample of the database S, 

the algorithm finds the optimal f (T-base with w)

 f is a candidate if T-error is below a user-defined threshold 

 Among the candidates the one is chosen for which idim is minimal
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Indexing non-metric spaces – general NAM

 NM-tree – nonmetric M-tree

 M-tree combined with TriGen algorithm

 Allows to set the retrieval error vs. 

performance trade-off at query time

 The NM-tree idea [Skopal & Lokoč, 2008]

 Using TriGen, find modifiers fi for several 

T-error thresholds (including zero T-error)

 Build M-tree using the zero T-error modified distance (i.e., full metric)

 At query time, the T-error tolerance is a parameter

 Each required distance value stored in M-tree is inversely modified 

from the metric one back to the original semimetric distance,

 then it is re-modified using a different modifier (appropriate to the query parameter)

 Additional requirement on T-bases – inverse symmetry, i.e., f(f(x,w),-w) = x
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Indexing non-metric spaces – specific NAM

 The general techniques do not use any specific information

 just black-box distance and a sample of the database is provided

 It is always better to use a specific solution (if developed), 

based on an internal knowledge, as: 

 Structure of the universe U (vector, string, set?)

 The formula of d (closed form available?)

 Cardinality of the distance domain (discrete/continuous?)

 Data/distance distribution in S (uniform/skewed?)

 Typical query (e.g., sparse/dense vector?)

 Typically not reusable in other domains

 Hence, hard to find a NAM specific to our setup
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Indexing non-metric spaces – specific NAM

 Example – LB_Keogh for constrained DTW 

[Keogh et al, 2006]

Lower-bounding distance, metric and cheap to compute O(n)

 Envelope W=(DTW_U, DTW_L) created for a time series S

DTW_Ui = max(Si-R : Si+R), 

DTW_Li = min(Si-R : Si+R), 

R is the thickness of Sakoe-Chiba band

(i
m

a
g

e
s
 ©

 E
a

m
o

n
n

K
e

o
g

h
, 

e
a

m
o

n
n
@

c
s
.u

c
r.
e
d

u
)

ICDE 2011, Hannover, Germany



Indexing non-metric spaces – specific NAM

 Example – LB_Keogh for constrained DTW

 Basic approach – filter & refine search

1) Sequential search under LB_Keogh

2) Check remaining candidates by DTW

 Extended approach – wedges 

= descriptors of multiple series 

 Wedge W = (U, L), Ui = max(C1i, …, Cki), Li = min(C1i, …, Cki)

 W = k-dimensional rectangle, let’s index it by, e.g., R-tree

 For constrained DTW, W must be inflated as for single time series, 

i.e.,

DTW_Ui = max(Wi-R : Wi+R), 

DTW_Li = min(Wi-R : Wi+R) 
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Indexing non-metric spaces – specific NAM

 Example – inverted file and cosine similarity 

 Used as an implementation 

of range query in vector model 

of information retrieval

 documents di, terms tj

 term-by-document matrix 

– weights of terms in documents

 Only efficient for cosine similarity (or inner product) 

and sparse query vector

 CosSim = (normed) sum of weight 

multiplications

d1 0.6 0   … 0.2
d2 0 0   … 0.1
: : :               :
: :     :               :
dn 0.2   0.5  … 0.3

t1 t2 tm
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Indexing non-metric spaces – specific NAM

 Example – inverted file and cosine similarity

 Efficient query processing

 Visit only lists of terms having nonzero weights in query

 Early termination provided when lists sorted wrt the weights

 Cannot apply to Euclidean distance (!)

 zero + nonzero weight = nonzero (all lists must be visited) 

d1 0.6 0   … 0.2
d2 0 0   … 0.1
: : :               :
: :     :               :
dn 0.2   0.5  … 0.3

mountain forest nature Query: <0, 0.5, 0.4>, similarity threshold = 0.05, 
inner product used

mountain  d1(0.6), dn(0.2)
forest  dn(0.5)
...
nature  dn(0.3), d1(0.2), d2(0.1)

Answer:

dn(0.37), 

d1(0.08)

di sorted wrt the weights (desc.)
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Indexing non-metric spaces

 Overview 

of methods 

for efficient 

non-metric 

search

 References

to the sections

of [Skopal & 

Bustos, 2011]
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Challenges to the future

 scalability

 mostly sequential scan nowadays, but the databases grow and get 

more complex, hence, indexing would be necessary

 indexability

 how to measure indexability of nonmetric spaces?

 implementation specificity

 specific vs. general NAMs

 efficiency vs. effectiveness

 slower exact vs. faster approximate search

 extensibility

 there exist other related aggregation/scoring (non-metric) 

concepts, to which non-metric indexing could contribute
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Thank you for your attention!

… questions?
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