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Abstract. The recent interest in function of various RNA structures, re-
flected in the growth of solved RNA structures in PDB, calls for methods
for effective and efficient similarity search in RNA structural databases.
Here, we propose a method called SETTER (RNA SEcondary sTructure-
based TERtiary structure similarity) based on partitioning of RNA
structures into so-called generalized secondary structure units (GSSU).
We introduce a fast similarity method exploiting RMSD-based algorithm
allowing to assess distance to a pair of GSSU, and a method for aggregat-
ing these partial distances into a final distance corresponding to struc-
tural similarity of the examined RNA structures. Our algorithm yields
not only the distance but also a superposition allowing to visualize the
structural similarity. Comparative experiments show that our proposed
method is competitive with the best existing solutions, both in terms of
effectiveness and efficiency.

Keywords: RNA, RNA secondary structure, RNA tertiary structure,
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1 Introduction

The primary components of living organisms - nucleic acids and proteins -
are biopolymers, long linear molecules composed from the sequence of build-
ing blocks called monomers. While proteins are the active elements of cells, the
instruction for their synthesis is stored in deoxyribonucleic acid (DNA). DNA is
a biopolymer consisting of four types of units called nucleotides. Each nucleotide
is composed from three parts: one of four possible bases (adenine (A), guanine
(G), cytosine (C), thymine (T)), a sugar deoxyribose, and a phosphate group.
Gene - the DNA sequence serving as a prescription for protein synthesis (ex-
pression) - determines which protein will be expressed in the organism in the
given time at the given place. The bases within base-pairs are stabilized at their



positions by the chemical interaction called hydrogen bond. In DNA the bases
are complementary meaning that A pairs always with T, and C with G forming
the so-called canonical (or Watson-Crick) base-pairs.

DNA is too valuable material to be used directly in the protein expression.
Instead, the genetic information is first transcribed into another type of nucleic
acid - ribonucleic acid RNA. The basic building blocks of RNA are similar to
that of DNA with two important exceptions: thymine is substituted by uracil
(U), and deoxyribose by ribose. Unlike DNA, most RNA molecules are single-
stranded. However, the RNA chain is not stretched in biological conditions,
instead it maintains a distinct 3D arrangement called conformation (or fold).
The biological function of RNA is directly related to its conformation, and the
study of 3D structure of biopolymers generally is very important for better
understanding of the inner workings of living organisms. Resolved structures
(i.e. xyz coordinates of all atoms in the molecule) are deposited into the PDB
database [4] that is available free of charge to broad scientific community.

Single-stranded RNA molecules adopt very complex 3D structures, as the
presence of ribose introduces additional hydrogen bonding site allowing for for-
mation of various non-canonical base pairs [22]. RNA structure is hierarchical [5],
and can be divided into primary (RNA sequence), secondary, tertiary and quater-
nary levels. RNA secondary structure motifs [17], that are stable independently
of their 3D folds, can be defined as double helices combined with various types
of loop structures, and they can be categorized based on the mutual positions
of these simple elements. A single loop connecting the end of helix is a hairpin
loop, two single strands linking a pair of double-helical segments comprise an
internal loop (if one of these links is of zero length a bulge loop is formed),
and three or more double-helical segments linked by a single-strand sequences
form a junction loop. RNA motifs have been classified according to function,
3D structure or tertiary interaction in the SCOR (Structural classification of
RNA) database [20, 27]. The SCOR classification system is based on the Di-
rected Acyclic Graph (DAG) to reflect the fact, that RNA structural elements
can have several distinct features and may belong to multiple classes. Charac-
terization of secondary RNA motifs is important and it finds application in such
areas as RNA design [18, 9], RNA structure prediction [25], RNA modeling [10]
or RNA gene finding [7]. RNA plays a variety of essential roles in many cellular
processes, including enzymatic activity [26], protein synthesis regulation [12],
gene transcriptional regulation [2, 11] and chromosome replication [12, 16]. The
knowledge of RNA 3D structure is indispensable for characterizing of such func-
tions, and thus the ultimate goal remains the prediction of the tertiary structure.

Currently (January 2011), the PDB database stores 1980 RNA structures.
Such a wealth of data allows the analysis and characterization of the RNA struc-
tural space, which may help to characterize RNA function. Since 3D structure is
typically more evolutionary conserved than sequence, detecting structural simi-
larities between RNA molecules can bring insights into their function that would
not be detected by sequence information alone. The development of automatic
tools capable of efficient and accurate RNA structural alignment and comparison



has become an important part of structural bioinformatics of RNA. Detecting
structural similarities between two RNA (or protein) molecules at the tertiary
level is a difficult task that has been shown to be NP-hard [21]. Therefore cur-
rently available software tools for comparing two RNA 3D structures, such as
ARTS [13, 14], DIAL [15], iPARTS [28], SARA [6] , SARSA [8] or LaJolla [3],
are all based on some heuristic approaches.

The best existing approaches SARA and iPARTS to which SETTER is com-
pared will now be briefly described. The SARA program represents distances
among selected atoms as unit vectors existing in the unit spheres. All-to-all
unit-vector RMS distances of consecutive unit spheres are computed and used
as scoring matrix for subsequent dynamic programming based global alignment.
Dynamic programming is also employed in iPARTS algorithm in which 3D RNA
structures are represented as 1D sequences of 23 possible symbols, each of which
corresponds to the distinct backbone conformational family.

In this paper, we propose a new pairwise RNA comparison method based
on 3D similarity of the so-called general secondary structure units (GSSU) re-
sembling secondary structure motifs. Each of the compared RNA structures
is divided into non-intersecting set of GSSUs. For a pair of GSSUs, similarity
measure is introduced based on executing multiple RMSD transformations on
particular subsets from the GSSUs. The measure is then normalized to obtain
the resulting distance/similarity (we will use the terms distance and similarity
interchangeably throughout the text) of a pair of GSSUs. If the compared RNA
structures contain more GSSUs, all-to-all distances are computed and aggrega-
tion takes place resulting in the pairwise RNA structure comparison. We show in
the experimental section that our method outperforms SARA and iPARTS both
in accuracy and runtime. Moreover, in SETTER there is essentially no limit on
the size of aligned structures. This is in contrast with SARA and iPARTS which
are (due to the use of dynamic programming) limited to structures having at
most 1,000 and 1,900 nucleotides, respectively.

2 Method principles

For the purpose of our method, each nucleotide in an RNA structure is repre-
sented by its C4′ atom although any other backbone atom could be utilized.
RNA structure is represented as a set of GSSUs that can be regarded as fun-
damental units of RNA structure. In contrast to the basic secondary structure
motifs, GSSUs contain more information by comprising larger subsets of RNA.
These subsets represent meaningful RNA partitioning being easy to work with.

Definition 1. Let R be an RNA structure with nucleotide sequence {ni}ni=1

and let WC ⊂ R denote set of ni participating in a Watson-Crick base pair. By
generalized secondary structure unit (GSSU) G, we understand a pair of
substrings of R, {ni}i2i=i1 and {ni}j2i=j1 (i1 ≤ i2 < j1 ≤ j2) of maximum lengths
such that each nucleotide nx:

– i1 ≤ x ≤ i2 : nx /∈ WC or nx is paired with ny where j1 ≤ y ≤ j2



– j1 ≤ x ≤ j2 : nx /∈ WC or nx is paired with ny where i1 ≤ y ≤ i2

Let imax and jmin be highest indices of the Watson-Crick paired bases. We
define loop as L = {ni}jmin−1

i=imax+1 ⊂ R and stem as R \ L and neck as the pair
{nimax , njmin}.

Note that even a structure without a single Watson-Crick pair has a GSSU
which is identical with the structure itself. Usually, a GSSU looks like a hairpin
motif but compared to hairpin, GSSU can contain bulges and internal loops
within its stem part (see e.g. Fig. 1).

Due to the limited space, we will only briefly describe the GSSU extraction
algorithm instead of showing its exact version. In general, extraction processes
an RNA structure in the order of its sequence generating GSSUs based on the
presence/absence of Watson-Crick hydrogen bonding pattern of each nucleotide3.
We differentiate two states — GSSU generation is proceeding and GSSU gener-
ation does not take place. If GSSU is not being generated, the nucleotides are
pushed on the stack to be processed later. If a nucleotide hydrogen-bonded to
the nucleotide in the stack is identified during the process of GSSU generation,
all non hydrogen-bonded nucleotides lying between them and the boundary nu-
cleotides are added to the GSSU. The process of GSSU G is finished when a pair
{nt1, nt2} is found where nt2 /∈ G. An example of GSSUs found in the structure
of glutamine tRNA (PDB code 1EXD) is shown in Fig. 1.

2.1 Single GSSU Pairwise Comparison

When SETTER compares structures consisting of multiple GSSUs, pairwise
GSSU comparison is employed. Therefore, single GSSU comparison can be viewed
as the principle component of SETTER.

Each GSSU is represented by the ordered set of 3D coordinates enhanced
with bonding and nucleotide/atom type information. The common way how
to assess similarity of two sets X and Y of points is to define pairing between
them. The sets are then superposed by finding such translation and rotation that
the mutual distances of individual paired points are minimized. Usually, the root
mean square deviation (RMSD) is chosen as the distance measure, because there
exists a polynomial time algorithm able to optimally superpose two structures
given a pairing/alignment [19]. However, finding the optimal alignment is a hard
problem. To evaluate the quality of alignments that can potentially be a part of
global alignment SETTER uses Kabsch [19] RMSD algorithm. The search for
the optimal superposition (including search for the optimal alignment) is NP-
hard [21]. Because trying each possible alignment is not computationally feasible,
suitable alignments with potential to participate in optimal alignment should be
identified. That is the principle idea behind SETTER’s structure comparison
process.

3 To obtain hydrogen bonding information from PDB files, we used the 3DNA util-
ity [24, 23].



Fig. 1: 4 extracted GSSUs for RNA structure with PDB code 1EXD. The se-
quence starts at the 5’ end and the colored numbers denote order of GSSU
generation (number color corresponds with the respective GSSU’s color). Note
that, as GSSU 4 indicates, GSSU does not have to be comprised of a continuous
chain of nucleotides but it has to correspond to the conditions of the Def. 1.

The nucleotides participating in necks of two GSSUs should not be missed
in the optimal alignment. Otherwise stated, to superpose two GSSUs means to
match their loops which implies also matching their necks. By matching necks,
one can unambiguously superpose the structures in two dimensions but since in
reality GSSUs exist in three dimensional space, at least three points are needed to
define the superposition. We call these points triplet, and an alignment is formed
by matching these points between two processed structures. Two matched points
are further referred to as a ”pair”. Therefore, SETTER aligns necks and then
tries to align each pair of loops’ nucleotides one by one. The loop pair defines
final pair in the triplet necessary to superpose the GSSUs. For example, if two
GSSUs having loops consisting of n and m nucleotides to be aligned, n × m
alignments are generated (see Figure 2)
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Fig. 2: Alignment of GSSU from tRNA domain of transfer-messenger RNA (PDB
code 1P6V) with GSSU from glutamine tRNA (PDB code 1EXD). The final
structural alignment is defined by three nucleotide pairs forming a triplet (the
red lines 1, 2, and 3). To find an optimal superposition for the given neck pairs
(lines 1 and 3), the position of the middle pair is varied (line 2).



For each of the proposed alignments, a rotation matrix and a translation vec-
tor defining optimal superposition of the triplets is generated and subsequently
used to superpose the whole GSSU. After that, nearest neighbor from the second
GSSU in 3D space is identified for each nucleotide, and their distance is added
to the overall distance of the two GSSUs. Finally the distance is normalized. The
whole process can be formalized by equation 1.

NNζ(x,G) =

{
min1≤i≤|G|{dnt(x,Gi)} × ζ if x = y
min1≤i≤|G|{dnt(x,Gi)} otherwise

γ(GA,GB) =

|GA|∑
i=1

{
1 if NN1(GAi,GB) ≤ ε
0 otherwise

δ(GA,GB) = min
t∈T

{ |GA|∑
i=1

NNα(GAi, τ(GB, t))}
}

∆(RA,RB) = ∆(GA,GB) =

δ(GA,GB)
min {|GA|,|GB|} × (1 + ||GA|−|GA||

min {|GA|,|GB|} )

γ(GA, τ(GB, topt))

(1)

In the formula, GA (identified with an RNA structure RA) and GB (identified
with an RNA structure RB) represent the GSSUs to be compared, Gi stands for
i-th nucleotide in the nucleotide sequence of G and |G| for its length. NN(x,G)
is the Euclidean distance from a nucleotide x to its nearest neighbor in G. If x
and its nearest neighbor have identical type, the distance is modified by factor
ζ. δ computes the raw distance - T is a set of transpositions resulting from the
candidate alignments and τ(G, t) transposes GSSU G using the transposition t.
The normalized distance ∆ then employs function γ counting number of nearest
neighbors within the distance ε of the optimal transposition topt.

The whole process can be summarized in the following four steps:

1. Identify candidate set of alignments of triplet pairs (two nucleotides from
neck, one from loop).

2. Compute superpositions (i.e. set of rotation matrices and translations vec-
tors) for each of the alignments.

3. For each rotation matrix and translation vector superpose the structures.
4. For each superposition identify nearest neighbors, sum the distances to get
δ and normalize it to obtain the final distance ∆.

Sometimes identification of hydrogen bonds may not be correct and the real
neck position within the GSSU is shifted. Therefore, SETTER also tries to sim-
ulate the neck shift by aligning the residues next to (under) the necks. Finally,
when aligning the neck {nA1 , nA2 } of a GSSU A with then neck {nB1 , nB2 } of
a GSSU B it is not clear in which direction the loops are oriented in 3D space
(whether the correct alignment is {{nA1 , nB1 }, {nA2 , nB2 }} or {{nA1 , nB2 }, {nA2 , nB1 }})



and therefore both possibilities are investigated. These tweakings are necessary
for accurate GSSU comparison, however they slightly increase the running time
of SETTER.

Though in most cases the GSSU comprises of a stem and a loop, it is not a
strict rule, as demonstrated in Fig. 1, GSSU number 4. Two particular situations
can occur — GSSU has a zero-sized loop or the RNA does not have a single
hydrogen bond (i.e., it does not have a secondary structure at all). In case
of GSSU without the loop we select the third nucleotide for triplet alignment
from the stem and we vary its position within the stem. When dealing with a
GSSU having no secondary structure, several triplets covering whole structure
are formed and used for the alignment.

2.2 Multiple GSSU Structure Comparison

For the comparison of RNA structures containing multiple GSSUs we utilized a
straightforward solution. Consider the comparison of RNA structures RA and
RB consisting of nA and nB GSSUs. We modify the ∆ definition in the following
way:

∆(RA,RB) = min
1≤i≤nA
1≤j≤nB

{
GAi ,GBj

}
× (1 + |nA − nB|)× β (2)

We compute all-to-all distances between the GSSUs and we choose the pair
with minimal distance. Moreover, we multiply the distance by the difference in
GSSUs count to favor structures with similar number of GSSU. The parameter
β allows more distinct separation. Increasing value of β more noticeably favors
similar-sized structures (in our experiment, we use β = 2).

SETTER uses only pairwise GSSU comparisons for matching RNA structures
of any size including the largest ones such as ribosomal subunits. Since the
mutual GSSU positions are rigid, the optimal superposition for a pair of GSSUs
defines superposition for the whole structures which can be easily visualized
(Fig. 3).

Though our solution follows the KISS principle (Keep It Simple and Stupid),
it has several advantages over more elaborate approaches based for example
on finding maximal common subgraphs in the network of interactions between
individual GSSUs. Not only it is much faster, but it also allows to use effective
early termination mechanism leading to additional speed improvements. This
mechanism is introduced in the following section.

3 Speed up

The nearest neighbor search process needed for ∆ computation is highly ex-
pensive since it has O(n2) time complexity with respect to the GSSU’s length.
Moreover, the process has to be done for each of the candidate alignment, notice-
ably decreasing efficiency of SETTER. Therefore we implemented simple early



Fig. 3: The superposition of structures from 23S ribosomal RNA having PDB
codes 1NWY:0 (2880 nucleotides, 84 GSSUs, blue) with 1SM1:0 (2880 nu-
cleotides, 83 GSSUs, red) - RMSD = 2.43.

termination condition into the SETTER’s GSSU comparison process. We iden-
tify alignments that are not likely part of the optimal superposition and for these
alignments the nearest neighbor search is skipped. Because the superposition was
optimized for the aligned triplets, their distance will be low compared to other
nucleotides in the structure and they will very likely stay nearest neighbors also
after the superposition of the whole GSSUs. Thus, ∆ of the triplet-based GSSUs
will be probably lower then ∆ of the GSSU from which they come. If we align
a triplet T A ⊂ GA with a triplet T B ⊂ GB with ∆(GA,GB) = χ being the best
result so far, the comparison computation can be terminated (i.e., we do not
identify all the nearest neighbors) if ∆(T A, T B)× λ > χ. Since the early termi-
nation is a heuristic (∆(T A, T B) < ∆(GA,GB) does not have to be valid), we
strengthen the early termination condition by introducing the parameter λ ≥ 1.
By varying the λ parameter, the trade-off between accuracy and speed can be
set. In case of multiple GSSU comparison, the speed-up can be even more no-
ticeable. The scope of χ variable can span multiple GSSU pairwise comparisons
since we are searching for the minimum distance among all pairs of GSSUs. Such
an approach can further emphasize the effect of the early termination condition.

4 Experimental Results

In order to evaluate SETTER and to compare it with other solutions we run
test on datasets introduced in [6]. It contains three datasets — FSCOR, T-
FSCOR, R-FSCOR based on functional classification obtained from the SCOR
database [20], version 2.0.3. The FSCOR contains all RNA chains with more



than three nucleotides with unique functional classification. The R-FSCOR is a
structurally dissimilar subset of the FSCOR. The T-FSCOR set contains struc-
tures from the FSCOR set not present in the R-FSCOR set. Using these datasets
we can evaluate quality of RNA similarity method in terms of functional assign-
ment/classification ability. The task is to assign the functional (i.e. SCOR) clas-
sification to the query RNA structure by comparison with a database of classified
RNA structure. Specifically, we performed two experiments — a leave-one-out
test on the FSCOR dataset and a test assigning functions to structures from the
T-FSCOR with the R-FSCOR serving as the database set.

When comparing functions of two RNA structures, we differentiate between
possessing identical and possessing similar function. Two structures have identi-
cal function if they share the deepest SCOR classification. If they do not agree
at the deepest level but share classification at the parent level, they are said to
have similar function.

In our experiments, we compute ROC curves and their AUC (area under the
ROC curve) that is considered to be a robust indicator of quality of a classifier [1].
ROC is computed such that for each query we identify the most similar database
structure (nearest neighbor) and the distance to it. The nearest neighbors for
all queries are sorted according to their distances, and a distance threshold is
varied from the most similar to the most dissimilar pair to generate points of the
ROC curve. For a given threshold we identify number of structure pairs above
the threshold with identical/similar function and denote them as true positives
(TP ). Rest of the above-threshold structures are denoted as false positives (FP ).
If P (positives) is the number of pairs with identical/similar function in the whole
result set and N (negatives) the number of pairs with different functions, then
FP
N is called false positive ratio and TP

P true positive ratio. The ROC curve
consists of false positive ratio (x-axis) vs true positive ratio (y-axis) points.

Throughout the experimental section SETTER is used with following settings
— α = 0.2, β = 2, ε = 4 Å and λ = 1 (see sections 2.1, 2.2 and 3 for details).

In Fig. 4, ROC curves of SETTER and iPARTS on FSCOR (Fig. 4a) and T-
FSCOR (Fig. 4a) datasets are compared. We can see that on the FSCOR dataset,
SETTER outperforms iPARTS with AUC equal to 0.74 (identical function) and
0.93 (similar function) in case of SETTER. iPARTS achieves AUC of 0.72 for
identical function and of 0.92 for similar function. For SARA, only AUC values
were presented in [6] being 0.61 and 0.83, respectively. When testing the T-
FSCOR set against the R-FSOR set, SETTER is outperformed by iPARTS as
is demonstrated by ROC curves in Fig. 4a. Specifically, AUC values are equal
to 0.70 and 0.88 in case of SETTER, and to 0.77 and 0.90 in case of iPARTS.
The results of SARA on the T-FSCOR set were again worse then the results of
both SETTER and iPARTS — 0.58 for identical function and 0.85 for similar
function.

We also carried out experiments measuring running time of SARA, SETTER
and iPARTS. The runtime of SETTER was measured on Linux machine with 4
Intel(R) Xeon(R) CPUs E7540, 2GHz (the algorithm is not parallelized) and 132
GB of RAM (although the average memory size needed for an RNA structure
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Fig. 4: ROC curves of SETTER and iPARTS

from the FSCOR set is less then 3.3 MB) running Red Hat Linux. Runtime of
SARA and iPARTS were taken from the output of their web interfaces. Thus,
the comparison is only approximate. However, the variations between SETTER
and SARA/iPARTS are substantial (Tab. 1) and can not be attributed to the
hardware differences only.

Table 1: Runtime comparison of iPARTS, SARA and SETTER. The tRNA
set contains structures 1EHZ:A, 1H3E:B, 1I9V:A, 2TRA:A and 1YFG:A struc-
tures (average length 76 nucleotides), Ribozyme P4-P6 domain contains 1GID:A,
1HR2:A and 1L8V:A (average length 157 nucleotides), Domain V of 23S rRNA
contains 1FFZ:A and 1FG0:A (average length 496 nucleotides) and 16S rRNA
contains 1J5E:A and 2AVY:A (average length 1522 nucleotides).

data set iPARTS SARA SETTER

tRNA 1.1 s 1.7 s 0.1 s
Ribozyme P4-P6 domain 2.6 s 9.2 s 1.8 s
Domain V of 23S rRNA 17.0 s ? 2.1 s
16S rRNA 2.8 min ? 8.1 s

In time of writing this paper, the SARA program was not able to handle

sets Domain V of 23S rRNA and 16S rRNA.

Table 1 shows times of all-to-all comparisons on four data sets. Note the
difference between SETTER and iPARTS for growing structure size. It can be



seen that SETTER’s runtime grows more or less linearly with the size of the
structure, in contrast to iPARTS where the growth is quadratical. That stems
from iPARTS use of dynamic programming when searching for the alignment of
1D representations of the compared structures. In its original version, SETTER
also uses O(n2) nearest neighbor identification procedure, but since it employs
the speed optimization (λ = 1), the runtime of the algorithm, especially for large
structures, is noticeably downsized.

5 Conclusion

In this paper, we have proposed a fast method for effective comparison of two
RNA structures. The comparison is based on reasonably selected subsets of the
nucleotide sequence resembling common secondary structure motifs. These sub-
sets are then compared in three-dimensional space. Our method outperforms
best existing solutions while maintaining high search speed.

In future, we would like to improve efficiency of our method by designing more
sophisticated pruning method. We would also like to improve the effectivity by
implementing multiple GSSU alignment and by introducing statistical methods,
such as expectancy, into the classification process.
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