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Preface

The proposed thesis presents selected results of the author’s research in the area
of similarity search in multimedia databases (and related ones). The research has
been carried out at VŠB-Technical University of Ostrava, Faculty of Electrical
Engineering and Computer Science (2001–2004), and at the Charles University
in Prague, Faculty of Mathematics and Physics (2004–2006).

The area of similarity search in multimedia databases could be identified as
an important and quickly emerging research topic in the modern database tech-
nologies. In a broader meaning, as a multimedia database we understand a
collection of data instances which have no unique structure and semantics, like
audio/video/image documents, document-centric XML and full-text documents,
biometric databases, DNA/protein databases, databases of 3D models, time se-
ries, and many others. Since we usually want to retrieve the mentioned data
based on its content, it cannot be processed by conventional dabatase technolo-
gies, like the (object-)relational DBMS. Thus, there is a need to process the data
by specific access methods, in a way that queries can be evaluated efficiently
(quickly) and effectively (following the human’s expectations with respect to the
quality of query result).

This thesis addresses mainly the efficiency issues and to some extent also the
effectiveness issues. We present the results as a collection of 8 selected papers
fit into a single framework, where each paper is focused on a particular problem.
The papers are presented in separate chapters (2–9) in their camera-ready forms
(6 in LNCS-Springer proceedings, 1 in ACM proceedings, 1 in local proceedings),
while the unifying commentary is included in Chapter 1. Prior to summarizing the
papers, the commentary briefly surveys selected state-of-the-art results. In order
to provide quick navigation, the references to the author’s original contributions
are marked with a bulb (see on the left). Every bulb occurrence refers to a
publication included as a single chapter in this thesis. In Chapter 10 we conclude
the thesis and outline some directions of current and future research.

The selected papers have been chosen in order to highlight the author’s main
achievements in the area of similarity search. The modifications of M-tree and
PM-tree index structures have been proved to significantly speedup the retrieval
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of objects from a multimedia database, based solely on their content (i.e. we
consider the content-based similarity retrieval). Furthermore, the author has pro-
posed an approach to exact indexing of non-metric data. To the best of author’s
knowledge, there was not proposed a solution of this problem before (omitting the
trivial sequential search). Moreover, the proposed non-metric approach reuses the
metric access methods (e.g. the M-tree or PM-tree), thus an integration of the
non-metric search into the existing metric retrieval systems can be accomplished
simply by adding a preprocessing module. The approximate metric search by
semi-metric transformations is another result, allowing to trade the precision of
metric similarity search for a gain in performance.

The papers and the respective related work served as a foundation for a brand
new course (DBI030 - Similarity search in multimedia databases) lectured at
the Department of Software Engineering, FMP (started by the author in 2005).
Furthermore, since 2006 the author supervises a Ph.D. student whose thesis topic
is focused into the area of similarity search in biological databases.

The research included in the selected papers has been supported by several
grants – GAČR 201/05/P036 (author’s post-doc grant), GAČR 201/06/0756,
”Information society” 1ET100300419, GAČR 201/03/0912, GAČR 201/03/1318,
GAČR 201/00/1031. The author is a member of DISG research group at the
Department of Software Engineering, FMP, where he carries out research in the
area of similarity search and database indexing.
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Chapter 1

The Commentary

1.1 Introduction

In recent years, the volume of available multimedia data has grown rapidly, so
the multimedia retrieval systems and multimedia databases are becoming more
important than ever. As we see the progress in the fields of acquisition, storage,
and dissemination of various multimedia formats, the application of effective and
efficient multimedia management systems becomes indispensable in order to han-
dle all these formats. The application domains for multimedia retrieval include
image/audio/video databases, CAD databases, but also molecular-biologic and
medicine databases, geographical information systems, biometric databases and
many others. In particular, more than 95% of web space is considered to store
multimedia content, other multimedia data is stored in corporate and scientific
databases, personal archives and digital libraries.

Due to the quick growth of multimedia data volumes, the text-based multime-
dia retrieval systems become useless, since the requirements on textual annotation
(often manual) exceed human possibilities and resources. The metadata-based
search systems are of a similar kind, we need an additional explicit information
to effectively describe multimedia objects (e.g. structured semantic description,
as class hierarchies or ontologies), which is not available in most cases.1

The only practicable way how to process and retrieve the vast volumes of
raw multimedia data is the content-based similarity search2, i.e. we consider the
real content of each particular DB object. Because the multimedia objects have
no universal syntactic and semantic structure (unlike traditional strong-typed
rows in relational database tables or XML with a schema), the most general and
feasible abstraction used in multimedia retrieval is the query-by-example concept,

1The image search provided by Google is a successful example of text/metadata-based search
engine, where the metadata is extracted from web pages wherein the images are encapsulated.

2Actually, there exist more models for unstructured search, like probabilistic models or
simply a ranking, however, all these approaches perform a kind of aggregation that is used
when offering query results to the user.

1
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where the database objects are ranked according to similarity to a given query
object (the example). Only such database objects are retrieved by the system,
which have been ranked as sufficiently similar to the query object. The similarity
measure returns a real-valued similarity score for any two models of multimedia
objects on the input.

1.1.1 Dissimilarity spaces

The models of similarity retrieval depend on simplifying dissimilarity abstraction.
Let a multimedia object O be modeled by a model object O ∈ U, where U is a
model universe. The universe can be a cartesian product of attribute sets, a
domain of various structures (polygons, graphs, other sets, etc.), string closure,
sequence closure, etc. A multimedia database S is then represented by a dataset
S ⊂ U.

The similarity measure is defined as s : U × U 7→ R, where s(Oi, Oj) is
considered as a similarity score of multimedia objects Oi and Oj. In many cases
it is more suitable to use a dissimilarity measure δ : U × U 7→ R equivalent to
a similarity measure s(·, ·) as s(Q,Oi) > s(Q,Oj) ⇔ δ(Q,Oi) < δ(Q,Oj). A
dissimilarity measure (or distance) assigns a higher score to less similar objects,
and vice versa. The pair D = (U, δ) is called a dissimilarity space.

1.1.2 Metric distances

The distance measures often satisfy some of the metric properties (∀Oi, Oj , Ok ∈ U):

δ(Oi, Oj) = 0 ⇔ Oi = Oj reflexivity

δ(Oi, Oj) > 0 ⇔ Oi 6= Oj non-negativity

δ(Oi, Oj) = δ(Oj, Oi) symmetry

δ(Oi, Oj) + δ(Oj, Ok) ≥ δ(Oi, Ok) triangle inequality

The reflexivity permits the zero distance just for identical objects. Both
reflexivity and non-negativity guarantee every two distinct objects are somehow
positively dissimilar. If δ satisfies reflexivity, non-negativity and symmetry, we
call δ a semimetric. Finally, if a semimetric δ satisfies also the triangle inequality,
we call δ a metric (or metric distance). The triangle inequality is a kind of
transitivity property; it says if Oi, Oj and Oj, Ok are similar, then also Oi, Ok

are similar. If there is an upper bound d+ such that δ : U×U 7→ 〈0, d+〉, we call
δ a bounded metric. In such case M = (U, δ) is called a (bounded) metric space.

To complete the enumeration, we also distinguish pseudometrics (not satisfy-
ing the reflexivity), quasimetrics (not satisfying symmetry) and ultrametrics (a
stronger type of metric, where the triangle inequality is restricted to ultrametric
inequality – max{δ(Oi, Oj), δ(Oj, Ok)} ≥ δ(Oi, Ok)).
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1.1.3 Non-metric distances

The metric properties have been argued against by some theories in psychology
and computer vision as restrictive in similarity modeling [40, 53]. In particular,
the reflexivity and non-negativity have been refuted [32, 53] by claiming that
different objects could be differently self-similar. For instance, in Figure 1.1a the
image of a leaf on trunk can be viewed as positively self-dissimilar if we consider
a distance which measures the less similar parts of the objects (here the trunk
and the leaf). Conversely, in Figure 1.1b the leaf-on-trunk and leaf are treated
as identical if we consider a distance which measures the most similar parts of
the objects (the leaves). Nevertheless, the reflexivity and non-negativity are the
less problematic properties.

The symmetry was questioned by showing that a prototypical object can be
less similar to an indistinct one than vice versa [37, 38]. In Figure 1.1c, the more
prototypical ”Great Britain and Ireland” image is more distant to ”Ireland” image
than vice versa.

The triangle inequality is the most attacked property. Some theories point out
the similarity has not to be transitive [3, 52]. Demonstrated by the well-known
example, a man is similar to a centaur, the centaur is similar to a horse, but the
man is completely dissimilar to the horse (see Figure 1.1d).

Figure 1.1: Objections against metric properties in similarity measuring:
(a) reflexivity (b) non-negativity (c) symmetry (d) triangle inequality

1.1.4 Learning & Dynamic distances

We can identify also a kind of dynamics preference declaring whether the similar-
ity can or cannot evolve over the time (and also during the process of retrieval)
[29, 9]. The reason could be either learning (the similarity learns the human’s
cognition by e.g. relevance feedback) or just evolving due to the dynamic nature
of similarity (some objects appear more or less similar in different time periods;
we can also consider user profiles which adjust the similarity for each user).

When related to the process of retrieval, some approaches consider the query
object as one of the factors which modifies the actual semantic of similarity in
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given query context. In particular, in [13] the authors suggest dynamic com-
binations of metrics for more effective 3D retrieval. We can observe that such
”multi-metric” approach improves the flexibility of similarity measuring, how-
ever, in a different way than the rich but ”static” non-metric measuring. Unlike
the static similarity measures, the topological properties of learning and dynamic
distances can vary over the time.

1.1.5 Similarity Queries

In the following we consider the query-by-example concept; we look for objects
similar to a query object Q ∈ U (Q is derived from an example multimedia
object). Necessary to the query-by-example retrieval is a notion of similarity
ordering, where the objects Oi ∈ S are ordered according to the distances to Q.
For a particular type of query there is specified a portion of the ordering returned
as the query result. The range query and the k nearest neighbors (kNN) query
are the most popular ones3. A range query (Q, rQ) selects all objects from the
similarity ordering for which δ(Q,Oi) ≤ rQ, where rQ ≥ 0 is a distance threshold
(or query radius). A kNN query (Q, k) selects the k most similar objects (first k
objects in the ordering).

Each particular query region is represented by a ball in the dissimilarity space,
centered in Q and of radius rQ. In a kNN query the rQ radius is not known in ad-
vance, so it must be incrementally refined during the kNN query processing. The
simplest implementation of similarity query evaluation is the sequential search
over the entire dataset. The query object is compared against every object in the
dataset, resulting in a similarity ordering which is used for the query evaluation.
The sequential search often provides a baseline for other search methods.

1.2 Exact Metric Search

When considering (static) metric distances, the metric access methods (MAMs)
provide data structures and algorithms by use of which the objects relevant to
a similarity query can be efficiently (i.e. quickly) retrieved [57]. The MAMs
build an auxiliary data structure, called metric index, so we also talk about
metric indexing. The main principle behind all MAMs is a utilization of the
triangle inequality property (satisfied by any metric), due to which MAMs can
organize/index the objects of S into distinct classes. When a query is to be
processed, only the candidate classes are searched (such classes which overlap
the query), so the searching becomes more efficient (see Figure 1.2).

3There are more types of similarity queries – like reverse kNN query, (k-)closest pairs,
similarity join, etc. – however, the range and kNN queries serve as primitives used to compose
more complex query types.
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The efficiency of a MAM depends not only on I/O costs (like spatial ac-
cess methods, e.g. R-tree, do), the second important (and often the dominant)
component are the computation costs – the number of distance computations
needed to answer a query. The reason for focusing just on the computation
costs is due to time complexities of the algorithms implementing dissimilarity
measures. Although some distances are quite cheap, say of linear complexity
according to the size of compared objects (as e.g. Minkowski Lp distances),
some other distances are expensive. The sequence alignment distances (which
cover also string-matching distances), e.g. dynamic time warping distance, edit
distance, longest common subsequence, are typically implemented by dynamic
programming, which exhibits quadratic time complexity. Some other distances
are even extremely expensive, such as the earth mover’s distance [39], which can
be computed in exponential time by linear programming.

Figure 1.2: Classes of similar objects indexed by a metric access method.

There were developed many MAMs for different scenarios (e.g. designed to
either secondary storage or main memory management). Besides others we name
the M-tree [22], vp-tree [56], (m)vp-tree [8], gh-tree [54], GNAT [10], SAT [36],
LAESA [35], or D-index [25]. The MAM-based similarity search is accomplished
by applying metric properties to quickly prune the search space. Basically, the
MAM classes are represented by data regions in the metric space which are de-
scribed either by ball regions (or their compositions, e.g. rings), which is the
most used representation (M-tree family, (m)vp-tree, D-index) or by hyper-plane
partitioning (gh-tree, GNAT). During query processing, a candidate data region
is checked whether it is overlapped by the query ball. In case of an overlap, the
region has to be searched – this means either filtering of data objects (if the region
contains already the data objects e.g. a tree leaf) or filtering of nested regions
(when considering hierarchical MAMs, e.g. trees or D-index). In Figure 1.3 see
several examples of MAMs – the M-tree, PM-tree, GNAT, mvp-tree, D-index.

Mapping Methods

An indirect way how to accomplish metric search is a mapping of the dataset
into a low-dimensional vector space. There have been proposed various mapping
(or embedding) methods [26, 30], e.g. MDS, FastMap, MetricMap, SparseMap,
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Figure 1.3: Several MAMs: (a) M-tree (b) PM-tree (c) GNAT (d) mvp-tree
(e) D-index

to name a few. The dataset S is embedded into a vector space (Rk, δV ) by a
mapping F : S 7→ Rk, where the distances δ(·, ·) are (approximately) preserved
by a cheap vector metric δV (often the L2 distance). In many cases the map-
ping F is contractive, i.e. δV (F (Oi), F (Oj)) ≤ δ(Oi, Oj), which allows to filter
out some irrelevant objects using δV , but some other irrelevant objects, called
false hits, must be re-filtered by δ (see e.g. [27]). The mapped vectors can be in-
dexed/searched by any MAM, however, since the data is mapped to vector space,
we can utilize also spatial access methods [7], like R-tree, X-tree or VA-file.

A particular method based on mapping is LAESA, where a contractive map-
ping of the metric space to (Rk, L∞) is constructed using k pivots Pi ∈ S. The
mapping function F turns an object Oi to a vector (δ(P1, Oi), δ(P2, Oi), . . . , δ(Pk, Oi)).
When searching, a range query (Q, rQ) is mapped to the target space as (F (Q), rQ),
see Figure 1.4 (kNN queries are processed in a similar way). The retrieved can-
didate objects (here O1, O4) have to be refiltered to eliminate possible false hits
(here O4). There have been proposed many heuristics to choose the optimal set
of pivots, in general, the good pivots are far from each other and tend to be
outliers (outside the dataset) [15]. To say the drawbacks, mapping methods are
expensive, while the distances are preserved only approximately, which leads to
false dismissals (i.e. to relevant objects being not retrieved). The contractive
methods eliminate the false dismissals but suffer from a great number of false
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Figure 1.4: Mapping from (a) source metric space to (b) target vector space

hits (especially when k is low), which leads to lower retrieval efficiency. In most
cases the methods need to process the dataset (or choose the pivots) in a batch,
so they are suitable for static MAMs only.

1.3 The M-tree Family

The M-tree [22] (and its variants) is a popular MAM designed for database en-
vironments. As based on B+-tree, the M-tree is a paged, dynamic and balanced
index structure (see Figure 1.3a). Its inner nodes contain routing entries which
describe ball-shaped metric regions which (recursively) bound the underlying
data objects in leaves. The leaf nodes consist of ground entries – the indexed
data objects themselves. In addition to the B-tree-inherited invariants (minimal
node utilization and balance), a correct M-tree hierarchy must satisfy the nesting
condition. The nesting condition says every region ball (in a routing entry) must
spatially bound all the data objects stored in leaves of the respective subtree, i.e.
all the data in subtree must fall into that ball. During query processing, all such
nodes must be visited the region balls of which overlap the query ball.

In recent years, the M-tree has been modified or improved either to achieve
better performance, or to extend the query model. The former case modifications
include the Slim-tree [49] (cheaper splitting of nodes and redistribution of ground
entries to obtain more compact regions), and the M+-tree [59] (employs twin-
nodes to better partition the dataset when using an Euclidean space). The latter
case includes the QIC-M-tree [21] (support of user-defined query distance lower-
bounding the indexing metric), and the M2-tree [20] (support of multiple metrics
within a single index).
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1.3.1 Compact Hierarchy of M-tree

Since the M-tree’s nesting condition is very weak, the efficiency of search in a
given dataset is significantly affected by particular M-tree hierarchy, even though
the correctness and the logic of search are guaranteed for all M-tree hierarchies
satisfying the nesting condition. The key problem of M-tree search efficiency
resides in:

1. the overall volume4 of M-tree regions defined by routing entries. The larger
volume, the higher probability of an overlap with query region and, conse-
quently, the higher search costs.

2. the quantity of overlaps among metric regions. We must realize the query
processing has to access all nodes the parent metric regions of which overlap
the query region. If the query region lies (even partially) in an overlap of
two or more regions, all the appropriate nodes must be accessed, thus the
search costs grow.

Originally, the algorithms on M-tree have been developed to achieve a trade-
off, an efficient construction and a (relatively) efficient searching. Consequently,
the M-tree construction techniques incorporate decision moments, that regard
only a partial knowledge about the distance distribution in a given dataset. To
obtain quick insertion of a new object, the original algorithm guides the insertion
along just a single path in the M-tree (the single-way insertion). Using this
single-way insertion, the M-tree hierarchy is constructed locally – at a moment
when the nodes are about to split. On the other side, the bulk loading algorithm
[19] on M-tree works with the entire dataset, however, it also works locally –
according to several sample objects. The local construction methods cause the
M-tree hierarchies are not compact enough, which increases the overall volume
of metric regions as well as the quantity of overlaps among them.

In our approach, we wanted to utilize also global techniques of (re)building
M-tree, so that the M-tree hierarchy becomes reasonably optimized. In order to
improve the search efficiency at the expense of construction costs, in Chapter 2 we
propose two global methods of constructing more compact M-tree hierarchies [46]
– the generalized slim-down algorithm and the multi-way object insertion. The
motivation for such efforts has been well-founded by a common DBMS scenario,
in which the database (the dataset S, respectively) is updated only occasionally
(the dynamic insertions/deletions are not frequent) but, on the other hand, there
are many queries issued at a moment. In such a scenario, we rather favor to
speedup the search process, while the costs of index updating are not so impor-
tant. Following this idea, the two proposed methods decrease both the overlaps

4Actually, in metric spaces we cannot speak about volume in the vector-spatial meaning,
nevertheless, without the loss of generality, we can assume larger covering radius implies larger
volume and vice versa.
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among metric regions as well as the overall volume, which leads to a higher search
efficiency.

In the former case, the slim-down algorithm is a post-processing technique
which tries to move entries (both ground and routing entries) from their source
nodes to ”better” nodes located at the same level of the M-tree. A ”better” node
is that one, the region ball of which has not to be enlarged due to the movement
and, moreover, the region ball of the source node can be (spatially) reduced. In
the latter case, the multi-way insertion extends the searching for a target leaf in
a way that multiple paths of the M-tree are traversed in order to find the globally
optimal leaf for insertion of a new object. This leads to compact M-tree hierarchy
as well as to higher utilization of nodes (we prefer insertion into non-full nodes).

1.3.2 Compact Region Shape: PM-tree

As we have discussed previously, the efficiency of search in M-tree is dependent
on the overall volume of metric regions. The higher volume, the lower search
efficiency. In the previous section, we have presented two ways of reducing the
overall volume using object redistribution but, however, the redistribution alone
is not an ultimate solution and, moreover, it is computationally expensive.

In order to achieve even higher volume reduction and to keep the construction
costs low, we consider also another reduction of region volume – a modification
of metric region shape. Each metric region of M-tree is described by a bounding
ball (defined by a local pivot and a covering radius). However, the shape of ball
region is far from optimal, because it does not bound the data objects tightly
together, thus the region volume is too large. In other words, relatively to the ball
volume, there is only ”few” objects spread inside the ball, while a huge proportion
of empty space5 is covered. Consequently, for ball regions of large volumes the
probability of overlap with a query region is high, thus query processing becomes
less efficient.

On the other side, the tightest possible boundary for a set of objects (i.e. a
boundary for which the proportion of dead space is zero) is the set of objects
themselves. Unfortunately, the simple description of such a ”grain region” is
useless, since storage of all the objects is too large, and an overlap check with a
query region would take many distance computations. In fact, checking a ”grain
region” for an overlap is equivalent to sequential search over all the objects stored
in the appropriate covering subtree.

Keeping the previous observations in mind, we can formulate four require-
ments on a compact metric region shape (a trade-off between region volume and
storage/computation costs), bounding a given set of objects:

• The representation of a region stored in a routing entry should be as small
as possible, so that storage of all inner nodes is (by far) smaller than storage

5The uselessly indexed empty space is often referred to as the ”dead space” [7].
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of all leaves.

• The shape of region should be easy to check for an overlap with the query
region (query ball respectively).

• The shape should be compact , it should bound the objects tightly together,
so that probability of an empty overlap with the query region (i.e. a case
that no indexed objects are located in the overlap) is minimal.

• Given a set of regions, it should be easy to create a super-region which
bounds all the (data in the) regions. This requirement is tree-specific – it
ensures that creating a super-region (when splitting an inner node) can be
automatically handled. Moreover, the requirement guarantees the nesting
condition (introduced for M-tree) is still preserved.

As a rise to the challenge described above, we have proposed an extended
variant of M-tree – the PM-tree [43, 47], where the shape of ball regions is further
cut off by a combination of rings (see Figure 1.3b and Chapter 3). The rings
share a single set of p global pivots, so the PM-tree can be regarded as a hybrid
structure combining the local pivot hierarchies with global pivot-based methods.
In more detail, each of the p rings belonging to a given routing/ground entry is
stored as two real numbers – the smaller and the larger radius (coded to a two-
byte approximation in case of routing entry and one-byte approximation in case
of ground entry). The pivots themselves are stored separately, while the numbers
of pivots used for routing entries and ground entries are chosen separately. We
present theoretical cost model for range queries performed on the PM-tree. It
has been experimentally shown that the PM-tree can outperform the M-tree
significantly (by up to an order of magnitude).

Besides the range query algorithm, we have introduced also the kNN algorithm
for PM-tree [48] (see Chapter 4). In addition to the filtering extensions used in
PM-tree’s range query, for the kNN query we have proposed modifications to
the distance lower and upper bounds being used by the branch-and-bound kNN
algorithm (the lower bounds are used in the priority queue of pending requests,
while the upper bounds are used in the array of kNN candidates). We have
proved that the modified kNN algorithm is optimal in terms of I/O costs (i.e.
that I/O costs of equivalent range query are the same). The cost model for kNN
search in PM-tree was presented in [42].

1.4 Search in Multi-metric Spaces

A recent proposal aiming to improve the effectiveness of similarity search (i.e.,
the quality of the retrieved answer) resorts to the use of combinations of metrics
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[11, 12]. Instead of using a single metric to compare two objects, the search sys-
tem uses a linear combination of metrics to compute the (dis)similarity between
two objects. The Figure 1.5 shows an example of the benefits obtained by using
combinations of metrics. The first two rows show objects retrieved by a 3D sim-
ilarity search system using two different single-feature vectors. In both queries,
the result includes some non-relevant objects (false hits). The third row shows
the result of the search when using a combination of both feature vectors – only
relevant objects are retrieved in this case.

Figure 1.5: Improving effectiveness of 3D similarity search by combining two 3D
feature vectors.

To further improve the effectiveness of the search system, methods for dy-
namic combinations of metrics have been proposed [13], where the query pro-
cessor weighs the contribution of each metric depending on the query object (as
mentioned in Section 1.1.4). Therefore, instead of a single metric, to perform a
given similarity query the system uses a dynamic metric function (multi-metric) –
a query-weighted linear combination of the partial metrics. The weights for a par-
ticular query object can be computed arbitrarily (they have to be in 〈0, 1〉), while
as a successful technique for query-dependent weights construction the entropy
impurity has been used in 3D retrieval [12].

In Chapter 5 the Multi-Metric M-tree (M3-tree) is presented, a dynamic index
structure that extends the M-tree to support multi-metric similarity queries [16].
We first describe how to adapt the search algorithms of the original M-tree to
directly support multi-metric queries. The idea is to index the dataset by an
upper-bounding metric, which is a linear combination (of the underlying partial
metrics) where all the weights are set to 1. Then, any query-dependent combi-
nation is a lower bound to the index metric and can be thus utilized in filtering
non-relevant M-tree subtrees. The disadvantage of this approach arises at a mo-
ment when the weights span a substantial part of the interval 〈0, 1〉 (we suppose
at least one weight is always set to 1). In such case the indexing metric is a very
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loose upper bound to the respective query metric, so the filtering effectiveness
deteriorates.

To overcome this drawback, we describe the M3-tree data structure and new
similarity search algorithms. The radii/distances stored in the M3-tree rout-
ing/ground entries are extended by a compact signature which approximates the
partial distances aggregated within the radii/distance values. Due to this exten-
sion we can create a tight upper bound to a query metric, regardless of which
weights have been used. We show experimentally that the M3-tree outperforms
the adapted M-tree, and that its efficiency is very close to having multiple M-
trees, one for each used multi-metric, which is the optimal achievable efficiency
regarding to this index structure.

1.5 Non-metric Search

As mentioned in Section 1.1.3, the metric properties can be viewed as a serious
limitation in similarity modeling. The similarity search, therefore, should allow
also non-metric measures. The non-metric measures have already been used
in multimedia databases and in information retrieval. A common rationale for
their usage is the robustness – a robust measure is resistant to outliers, i.e. to
anomalous or ”noisy” objects. In an ”intra-object” meaning, a robust measure
can neglect some portions of the measured objects which appear as the most
dissimilar.

Another ”vote” for non-metric measures is the complexity of similarity mod-
eling. In addition to distance measures based on simple description (like the Lp

distances), some measures are very complex and, therefore, for them a ”man-
ual” enforcement of metric properties is nearly impossible. As an example, the
COSIMIR model [34] consists of three-layer backpropagation network, which can
be trained to model an arbitrary user-defined similarity measure (but hardly a
metric one).

The third reason for non-metric measuring is the fact we have often insuffi-
cient information about a dissimilarity measure provided by the user. Besides
the analytical descriptions of various measures (even the very complex ones like
the COSIMIR), we can design a similarity measure which can be described solely
by an algorithm written in context-free language – as a black box returning a
real-value output on a two-object input. The topological properties (the metric
axioms, in our case) of an algorithmically described similarity measure are gen-
erally undecidable, so we have to treat such a measure as a non-metric. Due to
the black-box abstraction, we can even consider hardware-supported similarity
measures (e.g. the FPGA devices) [28].

In our recent research [41], we have proposed a general method of non-metric
search by metric access methods (see Chapter 6). We show the triangle inequality
can be enforced for any semimetric (reflexive, non-negative and symmetric dissim-
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ilarity measure), resulting in a metric that preserves the original similarity order-
ings (and so the retrieval effectiveness). The idea is to apply a concave increasing
function (so-called triangle-generating modifier) on the semimetric. When con-
sidering all triplets of the dataset’s objects and the appropriate distances among
them, the distance triplets generated by a semimetric are not triangular, i.e. they
represent the direct effect of a triangle inequality violation. However, the concave
modifiers have an interesting property – they turn the non-triangular distance
triplets into triangular ones, hence, when given a suitable modifier, the triangle
inequality becomes valid for the modified semimetric (making it a metric). Natu-
rally, among the infinitely many triangle-generating modifiers, only some of them
are suitable to be used for metric indexing. This is due to the ”declustering”
effect of triangle-violating modifiers – the modified distances ”inflate” the space
so that clusters become more or less indistinct. From another point of view, the
”inflating” modifications lead to a kind of analogy to the curse of dimensionality,
however, in metric spaces we rather speak about a high intrinsic dimensional-
ity [18]. A high intrinsic dimensionality implies more overlapped data regions
maintained by a MAM, so the intrinsically high-dimensional datasets are hard to
be indexed. Keeping these observations in mind, we have designed the TriGen
algorithm for turning any black-box semimetric into (approximated) metric, just
by use of distance distribution in a fraction of the database. The algorithm finds
such a modification for which the intrinsic dimensionality is minimized (so the
retrieval efficiency is maximized), considering any metric access method. Fur-
thermore, since some semimetrics can be turned into exact metrics only at the
cost of very inefficient search (deteriorating to almost sequential scan), we could
prefer a modification into an approximated metric where the triangle inequality
is preserved only partially. This allows us to trade the retrieval performance for
a certain level of retrieval imprecision.

1.6 Approximate Search

Unlike exact-match queries in traditional databases, the similarity measuring
and retrieval in multimedia databases is inherently imprecise, subjective and
changing over time. Thus, we might prefer faster but approximate methods
which could retrieve some non-relevant objects (false hits) and miss some relevant
ones (false dismissals). In many cases, the efficiency gain can be traded for an
acceptable loss in effectiveness. Nevertheless, in some cases the similarity is
precisely defined and then we require the search to be as exact as possible (e.g.
biometric identification tasks). The problem of efficient search is especially hard
when considering high-dimensional databases. Nowadays, an efficient search in
(intrinsically) high-dimensional datasets is feasible solely by usage of approximate
methods.

Many of the (exact) metric access methods have been modified to accomplish
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also the approximate search. In particular, in [58] authors suggest three heuris-
tics for approximately correct search (AC), where the objects in the answer are
guaranteed to be close to the desired results. However, the AC search is still
quite exact and the gain in efficiency is not very high when considering high-
dimensional data. Hence, to obtain a method that is by an order of magnitude
faster than the exact ones, we have to resort to probabilistic search [18, 14, 2].
Unlike the AC methods where all the objects in the query result are more or
less close to our expectations, the probabilistic methods mostly cannot guarantee
any level of ”result goodness”. They rather guarantee an answer will contain the
desired objects with a certain probability. A hybrid approach to AC and proba-
bilistic search are the probably approximately correct (PAC) methods, which even
more reduce the search costs, but also even more back off the precision require-
ments [20]. Besides exact methods adjusted to be usable also for the approximate
case, there were special indexing structures developed, e.g. the Clindex [33], the
VQ-file [51], or the buoy indexing [55].

1.6.1 Semimetric Modifications

A way to an approximate search in metric spaces can be a transformation of
the metric space into another space. However, unlike the mapping methods which
perform a mapping into a vector space (see Section 1.2), in our approach [45]
(see Chapter 7) we have proposed a transformation into a semimetric space. The
mapping is achieved by so-called triangle-violating functions (convex increasing
functions), which preserve the original similarity orderings but violate the triangle
inequality of the metric being modified. Thus, we obtain a semimetric which is
used instead of the metric.

In fact, this is an opposite approach to the non-metric triangle-generation
modifications (as presented in the previous section), hence, also the effects of
the modifications are inverse. In particular, the distance distribution (according
to the modified semimetric) exhibits increased variance and lower mean, so the
intrinsic dimensionality is lower than that of the original non-modified metric.
From another point of view, some of the triangular triplets generated by the
original metric are turned into non-triangular ones, so the metric becomes only a
semimetric, while usage of such a measure by MAMs leads to only approximate
retrieval (e.g. some subtrees in M-tree are filtered incorrectly). Nevertheless, the
loss in retrieval precision (the effectiveness, actually) is traded for a significant
gain in retrieval efficiency. The efficiency improvement can reach up to an order
of magnitude, while the loss in retrieval precision could be less than a few percent.
The level of retrieval precision (relative precision and recall) can be controlled by
a convexity weight of the modifying triangle-violating function.

The experimental results performed on extremely high-dimensional datasets
(240,000-dimensional vectors representing text documents) have shown that semi-
metric search can successfully fight the curse of dimensionality, while the loss in
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effectiveness can be low or moderate (a few percent).

1.6.2 Modified LSI for Efficient Indexing

We have reused the concept of triangle-violating modifiers in another area related
to similarity search – in the latent semantic indexing (LSI). The classic LSI
model applies the singular-value decomposition (SVD) to the vector model in
Text retrieval [5].

Basically, a text collection consists of m unique terms and each of the n doc-
uments in the collection is represented by an m-dimensional vector of frequencies
(or weights) of terms in that document. The entire collection is represented by a
matrix A. Using the singular-value decomposition (SVD) of the matrix A

A = UΣV T

we obtain so-called concept vectors (left-singular vectors – the columns in U),
which can be interpreted as individual (semantic) topics hidden in the collection.
The concept vectors form a basis in the original high-dimensional vector space,
while they are actually linear combinations of terms (the terms are supposed to
be independent). An important property of SVD is a fact that concept vectors
are ordered according to their ”significance”, which is determined by values of the
singular values σi stored in descending order in the diagonal matrix Σ. Informally,
the concept significance says in what quantity is the appropriate concept globally
present (or missing) in the collection. It also says which concepts are semantically
important and which are not (that is where the ”latent semantics” came from)
– such unimportant concepts are, in fact, a ”semantic noise”. The columns of
ΣV T contain document vectors Oi ∈ S (the pseudo-document vectors), but these
are now represented in the basis U , i.e. in the concept basis (unlike the original
term basis). Every pseudo-document vector describes a linear combination of the
concept vectors, i.e. the appropriate document consists somehow (positively or
negatively) of every concept found. The pseudo-document vectors are then used
to perform similarity search on the text collection, where the cosine measure is
widely used as similarity measure (in both LSI and classic vector model).

Moreover, because of varying significance of the concept vectors, the less sig-
nificant concepts can be omitted, so we get a kind of dimensionality reduction –
the k-reduced SVD (we consider just the k most significant concepts; in practice
this means a reduction from 105 to a few hundred dimensions/concepts). Inter-
estingly, it was experimentally shown that the k-reduced SVD does not worsen
the precision of similarity search [24, 6]. In fact, the k-reduced SVD can perform
even better that the classic vector model – in particular, it can partially eliminate
some negative aspects, like the problems of synonymy and homonymy.

Since the values in columns of V T are distributed uniformly, the ”descend
rate” of singular values σi in the matrix Σ determines the amount of correlation
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between individual coordinates of vectors in ΣV T . The higher descend rate, the
greater correlations and also the lower intrinsic dimensionality of the vectors
(considering any Lp metric and also the cosine measure). In [44] (see Chapter 8)
we have proposed a variant of LSI (the σ-LSI ) where the descend rate of singular
values is increased by application of a suitable triangle-violating modifier. We
can understand the modification of Σ as an additional dimensionality reduction,
in this case a reduction of intrinsic dimensionality. Although the σ-LSI leads to
an approximation of the original decomposition (thus we get data representations
which lead to only an approximate search with respect to the original LSI), the
gains in search efficiency can be considerable. Note that, unlike the previous
approach to semimetric search where the modifiers have been used directly on
the metric employed, here the modifiers are applied on the data, i.e. we perform
a kind of data transformation rather than a dissimilarity transformation.

1.7 Similarity search in XML databases

During the last decade, the XML (eXtensible Markup Language) has flooded
many branches of computer science [1]. The XML structure became a basis for
many communication protocols (like SOAP, XMLP), document and presentation
formats (e.g. DocBook, XHTML, OpenOffice and MS Word 2003 documents) as
well as various data exchange formats (e.g. WSDL used by web services). The
XML phenomenon has penetrated even into the stronghold of relational databases
– many DBMSs use a kind of XML-based format as an exchange medium for
migration or export/import of data. Besides classic DBMSs supporting XML,
there arise new database systems designed to store XML data in its native form
(so-called native XML databases). The management of native XML databases
cannot be efficiently performed by traditional methods of data management used
in (object-)relational DBMSs, hence, specialized techniques have been developed
during last years [23, 17].

Unlike the relational data, the XML data (or documents) can be fully struc-
tured (data-oriented XML), semi-structured (document-oriented XML), but also
completely unstructured (also document-oriented XML). The former two cases
assume a kind of database schema which the data must conform to, e.g. a DTD or
XML Schema. Such a schema provides syntactic and also semantic information
about the content of a particular XML document; in a similar way as a relational
schema describes a particular table. In the unstructured case, however, the XML
documents are completely unrestricted, so we are not able to exactly interpret
individual XML elements and so we have to treat such documents in a different
way. In particular, due to the absence of schema, the user cannot issue well-
formed queries (written in XPath or XQuery languages), he or she rather has to
use some other means of querying; similarly as a full-text querying is performed.
A possible approach to querying unstructured XML data is similarity search,
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where the (parts of) documents are matched against a similarity query. Unlike
the full-text search, there is an additional information that should be taken into
account, the document hierarchy (an XML tree or graph)6.

In [31] (see Chapter 9) we have proposed an approach to similarity search
in XML databases, where all the XML paths extracted from all the documents
in a database are indexed (the paths are labeled with the particular XML doc-
ument id they belong to). The paths are indexed using a cumulated metric (a
linear combination of metrics on individual elements), while the similarity can
be measured either on the names of path elements/attributes, on the content of
elements/attributes, or on both.

6The mentioned query languages (XPath and XQuery) have been recently extended to sup-
port full-text-like similarity search [4, 50].
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1 Introduction

Multidimensional and spatial databases have become more and more impor-
tant for different industries and research areas in the past decade. In the areas
of CAD/CAM, geography, or conceptual information management, it is often to
have applications involving spatial or multimedia data. Consequently, data man-
agement in such databases is still a hot topic of research. Efficient indexing and
querying spatial databases is a key necessity to many interesting applications in
information retrieval and related disciplines.

In general, the objects of our interests are spatial data objects. Spatial data
objects can be points, lines, rectangles, polygons, surfaces, or even objects in
higher dimensions. Spatial operations are defined according to the functionality
of the spatial database to support efficient querying and data management. A
spatial access method (SAM) organizes spatial data objects according to their
position in space. As the structure of how the spatial data objects are organized
can greatly affect performance of spatial databases, SAM is an essential part in
spatial database systems (see e.g. [12] for a survey of various SAM).

So far, many SAM were developed. We usually distinguish them according to
which type of space is a particular SAM related. One class of SAM is based on
vector spaces, the second one uses metric spaces. For example, well-known data
structures like kd-tree [2], quad-tree [11], and R-tree [8], or more recent ones like
UB-tree [1], X-tree [3], etc. are based on a form of vector space. Methods for



indexing metric spaces include e.g. metric tree [14], vp-tree [15], mvp-tree [5],
Slim-tree [13], and the M-tree [7].

Searching for objects in multimedia databases is based on the concept of
similarity search. In many disciplines, similarity is modelled using a distance
function. If the well-known triangular inequality is fulfilled by this function, we
obtain metric spaces. Authors of [9] remind that if the elements of the metric
space are tuples of real numbers then we get a finite dimensional vector space.

For spatial and multimedia databases there are three interesting types of
queries in metric spaces: range queries, nearest neighbours queries, and k-nearest
neighbours queries. A performance of these queries differs in vector and metric
spaces. For example, the existing vector space techniques are very sensitive to
the space dimensionality. Closest point search algorithms have an exponential
dependency on the dimensionality of the space (this is called the curse of dimen-
sionality, see [4] or [16]).

On the other hand, metric space techniques seem to be more attractive for
a large class of applications of spatial and multimedia databases due to their
advantages in querying possibilities. In the paper, we focus particularly on im-
provement of the dynamic data structure M-tree. The reason for M-tree lies in
the fact that, except Slim-trees, it is still the only persistent metric index. In
existing approaches to M-tree algorithms there is a static bulk loading algorithm
with a small construction complexity. Unfortunately, a querying performance of
above-mentioned types of queries is not too high on such tree.

We introduce two dynamic techniques of building the M-tree. The first one
incorporates a multi-way object insertion while the second one exploits the gen-
eralized slim-down algorithm. Usage of these techniques or even combination of
them significantly increases the querying performance of the M-tree. We also
present comparative experimental results on large datasets showing that the
new techniques outperform by far even the static bulk loading algorithm. By the
way, the experiments have shown that the querying performance of the improved
M-tree has grown by more than 300%.

In Section 2 we introduce shortly general concepts of the M-tree, discuss the
quality of the M-tree structure, and introduce the multi-way insertion method.
In Section 3 we repeat the slim-down algorithm and we also introduce here a
generalization of this algorithm. Experimental results and their discussion are
presented in Section 4. Section 5 concludes the results.

2 General Concepts of the M-tree

M-tree, introduced in [7] and elaborated in [10], is a dynamic data structure
for indexing objects of metric datasets. The structure of M-tree was primarily
designed for multimedia databases to natively support the similarity queries.

Let us have a metric spaceM = (D, d) where D is a domain of feature objects
and d is a function measuring distance between two feature objects. A feature
object Oi ∈ D is a sequence of features extracted from the original database



object. The function d must be a metric, i.e. d must satisfy the following metric
axioms:

d(Oi, Oi) = 0 reflexivity
d(Oi, Oj) > 0 (Oi 6= Oj) positivity
d(Oi, Oj) = d(Oj , Oi) symmetry

d(Oi, Oj) + d(Oj , Ok) ≥ d(Oi, Ok) triangular inequality

The M-tree is based on a hierarchical organization of feature objects according to
a given metric d. Like other dynamic and persistent trees, the M-tree structure is
a balanced hierarchy of nodes. As usually, the nodes have a fixed capacity and a
utilization threshold. Within the M-tree hierarchy, the objects are clustered into
metric regions. The leaf nodes contain entries of objects themselves (here called
the ground objects) while entries representing the metric regions are stored in
the inner nodes (the objects here are called the routing objects). For a ground
object Oi, the entry in a leaf has a format:

grnd(Oi) = [Oi, oid(Oi), d(Oi, P (Oi))]

where Oi ∈ D is the feature object, oid(Oi) is an identifier of the original DB
object (stored externally), and d(Oi, P (Oi)) is a precomputed distance between
Oi and its parent routing object.

For a routing object Oj , the entry in an inner node has a format:

rout(Oj) = [Oj , ptr(T (Oj)), r(Oj), d(Oj , P (Oj))]

where Oj ∈ D is the feature object, ptr(T (Oj)) is pointer to a covering subtree,
r(Oj) is a covering radius, and d(Oj , P (Oj)) is a precomputed distance between
Oj and its parent routing object (this value is zero for the routing objects stored
in the root). The entry of a routing object determines a metric region in space
M where the object Oj is a center of that region and r(Oj) is a radius bounding
the region. The precomputed value d(Oj , P (Oj)) is redundant and serves for
optimizing the algorithms upon the M-tree. In Figure 1, a metric region and

Fig. 1. A metric region and its routing object in the M-tree structure.



its appropriate entry rout(Oj) in the M-tree is presented. For the hierarchy of
metric regions (routing objects rout(O) respectively) in the M-tree, only one
invariant must be satisfied. The invariant can be formulated as follows:

• All the ground objects stored in the leafs of the covering subtree of rout(Oj)
must be spatially located inside the region defined by rout(Oj). •

Formally, having a rout(Oj) then ∀O ∈ T (Oj), d(O,Oj) ≤ r(Oj). If we real-
ize, this invariant is very weak since there can be constructed many M-trees of
the same object content but of different structure. The most important conse-
quence is that many regions on the same M-tree level may overlap. An example

Fig. 2. Hierarchy of metric regions and the appropriate M-tree.

in Figure 2 shows several objects partitioned into metric regions and the ap-
propriate M-tree. We can see that the regions defined by rout1(Op), rout1(Oi),
rout1(Oj) overlap. Moreover, object Ol is located inside the regions of rout(Oi)
and rout(Oj) but it is stored just in the subtree of rout1(Oj). Similarly, the
object Om is located even in three regions but it is stored just in the subtree of
rout1(Op).

2.1 Similarity Queries

The structure of M-tree natively supports similarity queries. A similarity mea-
sure is here represented by the metric function d. Given a query object Oq, a
similarity query returns (in general) objects close to Oq. The similarity queries
are of two basic kinds: a range query and a k-nearest neighbour query.

Range Queries. A range query is specified as a query region given by a query
object Oq and a query radius r(Oq). The purpose of a range query is to return
all the objects O satisfying d(Oq, O) ≤ r(Oq). A query with r(Oq) = 0 is called
a point query.



k-Nearest Neighbours Queries. A k-nearest neighbours query (k-NN query)
is specified by a query object Oq and a number k. A k-NN query returns the
first k nearest objects to Oq. Technically, the k-NN query can be implemented
using the range query with a dynamic query radius. In practice, the k-NN query
is used more often than the range query since the size of the k-NN query result
is known in advance.

By the processing of a range query (k-NN query respectively), the M-tree
hierarchy is being passed down. Only if a routing object rout(Oj) (its metric
region respectively) intersects the query region, the covering subtree of rout(Oj)
is relevant to the query and thus further processed.

2.2 Quality of the M-tree

As of many other indexing structures, the main purpose of the M-tree is its abil-
ity to efficiently process the queries. In other words, when processing a similarity
query, a minimum of disk accesses as well as computations of d should be per-
formed. The need of minimizing the disk access costs3 (DAC) is a requirement
well-known from other index structures (B-trees, R-trees, etc.). Minimization
of the computation costs (CC), i.e. the number of the d function executions, is
also desirable since the function d can be very complex and its execution can
be computationally expensive. In the M-tree algorithms, the DAC and CC are
highly correlated, hence in the following we will talk just about ”costs”.

The key problem of the M-tree’s efficiency resides in a quantity of overlaps
between the metric regions defined by the routing objects. If we realize, the
query processing must examine all the nodes the parent routing objects of which
intersect the query region. If the query region lies (even partially) in an overlap
of two or more regions, all the appropriate nodes must be examined and thus
the costs grow.

In generic metric spaces, we cannot quantify the volume of two regions overlap
and we even cannot compute the volume of a whole metric region. Thus we
cannot measure the goodness of an M-tree as a sum of overlap volumes. In [13],
a fat-factor was introduced as a way to classify the goodness of the Slim-tree,
but we can adopt it for the M-tree as well. The fat-factor is tightly related to
the M-tree’s query efficiency since it informs about the number of objects in
overlaps using a sequence of point queries.

For the fat-factor computation, a point query for each ground object in the
M-tree is performed. Let h be the height of an M-tree T , n be the number of
ground objects in T , m be the number of nodes, and Ic be the total DAC of all
the n point queries. Then,

fat(T ) =
Ic − h · n

n
· 1
(m− h)

3 considering all logical disk accesses, i.e. disk cache is not taken into account



is the fat-factor of T , a number from interval 〈0, 1〉. For an ideal tree, the fat(T )
is zero. On the other side, for the worst possible M-tree the fat(T ) is equal to
one. For an M-tree with fat(T ) = 0, every performed point query costs h disk
accesses while for an M-tree with fat(T ) = 1, every performed point query costs
m disk accesses, i.e. the whole M-tree structure must be passed.

2.3 Building the M-tree

By revisiting the M-tree building principles, our objective was to propose an M-
tree construction technique keeping the fat-factor minimal even if the building
efforts would increase.

First, we will discuss the dynamic insertion of a single object. The insertion
of an object into the M-tree has two general steps:

1. Find the ”most suitable” leaf node where the object O will be inserted as a
ground object. Insert the object into that node.

2. If the node overflows, split the node (partition its content among two new
nodes), create two new routing objects and promote them into the parent
node. If now the parent node overflows, repeat step 2 for the parent node. If
a root is split the M-tree grows by one level.

Single-Way Insertion. In the original approach presented in [7], the basic
motivation used to find the ”most suitable” leaf node is to follow a path in the M-
tree which would avoid any enlargement of the covering radius, i.e. at each level
of the tree, a covering subtree of rout(Oj) is chosen, for which d(Oj , O) ≤ r(Oj).
If multiple paths with this property exist, the one for which object O is closest
to the routing object rout(Oj) is chosen.

If no routing object for which d(Oj , O) ≤ r(Oj) exists, an enlargement of a
covering radius is necessary. In this case, the choice is to minimize the increase
of the covering radius. This choice is thightly related to the heuristic criterion
that suggests to minimize the overall ”volume” covered by routing objects in the
current node.

The single-way leaf choice will access only h nodes, one node on each level,
as depicted in Figure 3a.

Multi-Way Insertion. The single-way heuristic was designed to keep the
building costs as low as possible and simultaneously to choose a leaf node for
which the insertion of the object O will not increase the overall ”volume”. How-
ever, this heuristic behaves very locally (only one path in the M-tree is examined)
and thus the most suitable leaf may be not chosen.

In our approach, the priority was to choose the most suitable leaf node at all.
In principle, a point query defined by the inserted object O is performed. For
all the relevant leafs (their routing objects rout(Oj) respectively) visited during
the point query, the distances d(Oj , O) are computed and the leaf for which the



distance is minimal is chosen. If no such leaf is found, i.e. no region containing
the O exists, the single-way insertion is performed.

This heuristic behaves more globally since multiple paths in the M-tree are
examined. In fact, all the leafs the regions of which spatially contain the object
O are examined. Naturally, the multi-way leaf choice will access more nodes than
h as depicted in Figure 3b.

Fig. 3. a) Single path of the M-tree is passed during the single-way insertion. b) Mul-
tiple leafs are examined during the multi-way insertion.

Node Splitting. When a node overflows it must be split. According to keep
the minimal overlap, a suitable splitting policy must be applied. Splitting policy
determines how to split a given node, i.e. which objects to choose as the new
routing objects and how to partition the objects into the new nodes.

As the experiments in [10] have shown, the minMAX RAD method of choos-
ing the routing objects causes the best querying performance of the M-tree.
The minMAX RAD method examines all of the n(n−1)

2 pairs of objects candidating
to the two new routing objects. For every such a pair, the remaining objects
in the node are partitioned according to the objects of the pair. For the two
candidate routing objects a maximal radius is determined. Finally, such a pair
(rout(Oi), rout(Oj)) for which is the maximal radius (the greater of the two radii
r(Oi), r(Oj)) minimal is chosen as the two new routing objects.

For the object partition, a distribution according to general hyperplane is
used as the beneficial method. An object is simply assigned to the routing object
that is closer. For preservation of the minimal node utilization a fixed amount
of objects is distributed according to the balanced distribution.

2.4 Bulk Loading the M-tree

In [6] a static algorithm of the M-tree construction was proposed. On a given
dataset a hierarchy is built resulting into a complete M-tree.

The basic bulk loading algorithm can be described as follows: Given the set
of objects S of a dataset, we first perform an initial clustering by producing
k sets of objects F1, . . . ,Fk. The k-way clustering is achieved by sampling k
objects Of1 , . . . , Ofk

from the S set, inserting them in the sample set F , and then



assigning each object in S to its nearest sample, thus computing k · n distance
matrix. In this way, we obtain k sets of relatively ”close” objects. Now, we invoke
the bulk loading algorithm recursively on each of these k sets, obtaining k sub-
trees T1, . . . , Tk. Then, we have to invoke the bulk loading algorithm one more
time on the set F , obtaining a super-tree Tsup. Finally, we append each sub-tree
Ti to the leaf of Tsup corresponding to the sample object Ofi

, and obtain the
final tree T .

The algorithm, as presented, would produce a non-balanced tree. To resolve
this problem we use two different techniques:

– Reassign the objects in underfull sets Fi to other sets and delete correspond-
ing sample object from F .

– Split the taller sub-trees, obtaining a shorter sub-trees. The roots of the
sub-trees will be inserted in the sample set F , replacing the original sample
object.

A more precise description of the bulk loading algorithm can be found in [6] or [10].

3 The Slim-Down Algorithm

Presented construction mechanisms incorporate decision moments that regard
only a partial knowledge about the data distribution. By the dynamic insertion,
the M-tree hierarchy is constructed in a moment when the nodes are about to
split. However, splitting a node is only a local redistribution of objects. From this
point of view, the dynamic insertion of the whole dataset will raise a sequence
of node splits – local redistributions – which may lead to a hierarchy that is not
ideal.

On the other side, the bulk loading algorithm works statically with the whole
dataset, but it also works locally – according to a randomly chosen sample of
objects.

In our approach we wanted to utilize a global mechanism of (re)building the
M-tree. In [13] a post-construction method was proposed for the Slim-tree, called
as slim-down algorithm. The slim-down algorithm was used for an improvement
of a Slim-tree already built by dynamic insertions. The basic idea of the slim-
down algorithm was an assumption that a more suitable leaf exists for a ground
object stored in a leaf. The task was to examine the most distant objects (from
the routing object) in the leaf and try to find a better leaf. If such a leaf existed
the object was inserted to the new leaf (without the need of its covering radius
enlargement) and deleted from the old leaf together with a decrease of its cover-
ing radius. This algorithm was repeatedly applied for all the ground objects as
long as the object movements occured.

However, the experiments have shown that the original (and also cheaper)
version of the slim-down algorithm presented in [13] improves the querying per-
formace of the Slim-tree only by 35%.



3.1 Generalized Slim-Down Algorithm

We have generalized the slim-down algorithm and applied it for the M-tree as
follows:

The algorithm separately traverses each level of the M-tree, starting on the
leaf level. For each node N on a given level, a better location for each of the
objects in the node N is tried to find. For a ground object O in a leaf N , a set of
relevant leafs is retrieved, similarly like the point query does it by the multi-way
insertion. For a routing object O in a node N , a set of relevant nodes (on the
appropriate level) is retrieved. This is achieved by a modified range query, where
the query radius is r(O) and only such nodes are processed the routing objects
of which entirely contain rout(O). From the relevant retrieved nodes a node
is chosen the parent routing object rout(Oi) of which is closest to the object
O. If the object O is closer to rout(Oi) more than to the routing object of N
(i.e. d(O, rout(Oi)) < d(O, rout(N)), the object O is moved from N to the new
node. If O was the most distant object in N , the covering radius of its routing
object rout(N) is decreased. Processing of a given level is repeated as long as
any object movements are occuring. When a level is finished the algorithm for
the next higher level starts.

The slim-down algorithm reduces the fat-factor of the M-tree via decreasing
the covering radii of routing objects. The number of nodes on each M-tree level
is preserved since only redistribution of objects on the same level is performed
during the algorithm and no node overflows or underflows (and thus node split-
ting or merging) by the object movements are allowed.

Example (generalized slim-down algorithm):
Figure 4 shows an M-tree before and after the slim-down algorithm application.

Fig. 4. a) M-tree before slimming down. b) M-tree after slimming down.



Routing objects stored in the root of the M-tree are denoted as A, B while the
routing objects stored in the nodes of first level are denoted as 1, 2, 3, 4. In the
leafs are stored the ground objects (denoted as crosses). Before slimming down,
the subtree of A contains 1 and 4 while the subtree of B contains 3 and 2. After
slimming down the leaf level, one object was moved from 2 to 1 and one object
was moved from 4 to 1. Covering radii of 2 and 4 were decreased. After slimming
down the first level, 4 was moved from A to B, and 2 was moved from B to A.
Covering radii of A and B were decreased.

4 Experimental Results

We have completely reimplemented the M-tree in C++, i.e. we have not used the
original GiST implementation (our implementation is stable and about 15-times
faster than the original one). The experiments ran on an Intel Pentiumr4 2.5GHz,
512MB DDR333, under Windows XP.

The experiments were performed on synthetic vector datasets of clustered
multidimensional tuples. The datasets were of variable dimensionality, from 2 to
50. The size of dataset was increasing with the dimensionality, from 20,000 2D
tuples to 1 million 50D tuples. The integer coordinates of the tuples were ranged
from 0 to 1,000,000.

Fig. 5. Two-dimensional dataset distribution.

The data were randomly distributed inside hyper-spherical (L2) clusters (the
number of clusters was increasing with the increasing dimensionality – 50 to
1,000 clusters) with radii increasing from 100,000 (10% of the domain extent)



for 2D tuples to 800,000 (80% of the domain extent) for 50D tuples. In such
distributed datasets, the hyper-spherical clusters were highly overlapping due to
their quantity and large radii. For the 2D dataset distribution, see Figure 5.

4.1 Building the M-tree

The datasets were indexed in five ways. The single-way insertion method and the
bulk loading algorithm (in the graphs denoted as SingleWay and Bulk Loading)
represent the original methods of the M-tree construction. In addition to these
methods, the multi-way insertion method (denoted as MultiWay) and the gen-
eralized slim-down algorithm represent the new building techniques introduced
in this article. The slim-down algorithm, as a post-processing technique, was
applied on both SingleWay and MultiWay indexes which resulted into indexes de-
noted as SingleWay+SlimDown and MultiWay+SlimDown. Some general M-tree
statistics are presented in Table 1.

Table 1. M-tree statistics.
Metric: L2 (euclidean) Node capacity: 20 Dimensionality: 2 – 50
Tuples: 20,000 – 1,000,000 Tree height: 3 – 5 Index size: 1 – 400 MB

Fig. 6. Building the M-tree: a) Disk access costs. b) Realtime costs per one object.

The first experiment shows the M-tree building costs. In Figure 6a, the disk
access costs are presented. We can see that the SingleWay and Bulk Loading in-
dexes were built much cheaply than the other ones, but the construction costs
were not the primary objective of our approach. Figure 6b illustrates the average
realtime costs per one inserted object. In Figure 7a, the fat-factor characteristics
of the indexes are depicted. The fat-factor of SingleWay+SlimDown and Multi-
Way+SlimDown indexes is very low, which indicates that these indexes contain
relatively few overlapping regions. An interesting fact can be observed from the
Figure 7b showing the average node utilization.



Fig. 7. Building the M-tree: a) Fat-factor. b) Node utilization.

The MultiWay index utilization is by more than 10% better than the utiliza-
tion of the SingleWay index. Studying this value is not relevant for the Sin-
gleWay+SlimDown and MultiWay+SlimDown indexes since the ”slimming-down”
does not change the average node utilization, thus the results are the same as
those achieved for SingleWay and MultiWay.

4.2 Range Queries

The objective of our approach was to increase the querying performace of the
M-tree. For the query experiments, sets of query objects were randomly selected
from the datasets. Each query test consisted from 100 to 750 queries (according
to the dimensionality and dataset size). The results were averaged.

Fig. 8. Range queries: a) Range query selectivity. b) Range query realtimes.



In Figure 8a, the average range query selectivity is presented for each dataset.
The selectivity was kept under 1% of all the objects in the dataset. For an
interest, we also present the average query radii. In Figure 8b, the realtime costs
are presented for the range queries. We can see that the query processing of the
SingleWay+SlimDown and MultiWay+SlimDown indexes is almost twice faster
when compared with the SingleWay index.

Fig. 9. Range queries: a) Disk access costs. b) Computation costs.

The disk access costs and the computation costs for the range queries are pre-
sented in Figure 9. The computation costs comprise the total number of the d
function executions.

4.3 k-NN Queries

The performace gain is even more noticeable by the k-NN queries processing. In
Figure 10a, the disk access costs are presented for 10-NN queries.

As the results show, querying the SingleWay+SlimDown index consumes 3.5-times
less disk accesses than querying the SingleWay index. Similar behaviour can
be observed also for the computation costs presented in Figure 10b. The most
promising results are presented in Figure 11 where the 100-NN queries were
tested. The querying performance of the SingleWay+SlimDown index is here bet-
ter by more than 300% than the performance of the SingleWay index.



Fig. 10. 10-NN queries: a) Disk access costs. b) Computation costs.

Fig. 11. 100-NN queries: a) Disk access costs. b) Realtime costs.

5 Conclusions

In this paper we have introduced two dynamic techniques of building the M-tree.
The cheaper multi-way insertion causes superior node utilization and thus smaller
indexes, while the querying performance for the k-NN queries is improved by up
to 50%. The more expensive generalized slim-down algorithm causes superior
querying performance for both the range and the k-NN queries, for the 100-NN
queries even by more than 300%.

Since the M-tree construction costs used by the multi-way insertion and
mainly by the generalized slim-down algorithm are considerable, the methods
proposed in this paper are suited for DBMS scenarios where relatively few in-
sertions to a database are requested and, on the other hand, many similarity
queries must be quickly answered at a moment.

From the DBMS point of view, the static bulk loading algorithm can be
considered as a transaction, hence the database is not usable during the bulk
loading algorithm run. However, the slim-down algorithm, as a dynamic post-



processing method, is not a transaction. Moreover, it can operate continuously in
a processor idle time and it can be, whenever, interrupted without any problem.
Thus the construction costs can be spread over the time.
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Abstract. In this paper we introduce the Pivoting M-tree (PM-tree),
a metric access method combining M-tree with the pivot-based approach.
While in M-tree a metric region is represented by a hyper-sphere, in
PM-tree the shape of a metric region is determined by intersection of
the hyper-sphere and a set of hyper-rings. The set of hyper-rings for each
metric region is related to a fixed set of pivot objects. As a consequence,
the shape of a metric region bounds the indexed objects more tightly
which, in turn, significantly improves the overall efficiency of similarity
search. We present basic algorithms on PM-tree and two cost models for
range query processing. Finally, the PM-tree efficiency is experimentally
evaluated on large synthetic as well as real-world datasets.

Keywords: PM-tree, M-tree, pivot-based methods, efficient similarity search

1 Introduction

The volume of various multimedia collections worldwide rapidly increases and
the need for an efficient content-based similarity search in large multimedia
databases becomes stronger. Since a multimedia document is modelled by an
object (usually a vector) in a feature space U , the whole collection of documents
(the multimedia database) can be represented as a dataset S ⊂ U . A similarity
function is often modelled using a metric, i.e. a distance function d satisfying
reflexivity, positivity, symmetry, and triangular inequality.

Given a metric space M = (U , d), the metric access methods (MAMs) [4]
organize (or index) objects in dataset S just using the metric d. The MAMs try
to recognize a metric structure hidden in S and exploit it for an efficient search.
Common to all MAMs is that during search process the triangular inequality of
d allows to discard some irrelevant subparts of the metric structure.

2 M-tree

Among many of metric access methods developed so far, the M-tree [5, 8] (and
its modifications Slim-tree [11], M+-tree [14]) is still the only indexing technique
suitable for an efficient similarity search in large multimedia databases.



The M-tree is based on a hierarchical organization of data objects Oi ∈ S
according to a given metric d. Like other dynamic and paged trees, the M-tree
structure consists of a balanced hierarchy of nodes. The nodes have a fixed capac-
ity and a utilization threshold. Within M-tree hierarchy the objects are clustered
into metric regions. The leaf nodes contain ground entries of the indexed data
objects while routing entries (stored in the inner nodes) describe the metric
regions. A ground entry looks like:

grnd(Oi) = [Oi, oid(Oi), d(Oi,Par(Oi))]

where Oi ∈ S is an indexed data object, oid(Oi) is an identifier of the original
DB object (stored externally), and d(Oi,Par(Oi)) is a precomputed distance
between Oi and the data object of its parent routing entry. A routing entry
looks like:

rout(Oi) = [Oi, ptr(T (Oi)), rOi , d(Oi,Par(Oi))]

where Oi ∈ S is a data object, ptr(T (Oi)) is pointer to the covering subtree,
and rOi

is the covering radius. The routing entry determines a hyper-spherical
metric region in M where the object Oi is a center of that region and rOi

is
a radius bounding the region. The precomputed value d(Oi,Par(Oi)) is used
for optimizing most of the M-tree algorithms. In Figure 1 a metric region and

Fig. 1. A routing entry and its metric region in the M-tree structure

its appropriate routing entry rout(Oi) in an inner node are presented. For a
hierarchy of metric regions (routing entries rout(Oi) respectively) the following
condition must be satisfied:
All data objects stored in leaves of covering subtree T (Oi) of rout(Oi) must be
spatially located inside the region defined by rout(Oi).
Formally, having a rout(Oi) then ∀Oj ∈ T (Oi), d(Oi, Oj) ≤ rOi

. If we realize,
such a condition is very weak since there can be constructed many M-trees of the
same object content but of different hierarchy. The most important consequence
is that many regions on the same M-tree level may overlap. An example in
Figure 2 shows several data objects partitioned among (possibly overlapping)
metric regions and the appropriate M-tree.



Fig. 2. Hierarchy of metric regions and the appropriate M-tree

2.1 Similarity Queries

The structure of M-tree was designed to natively support similarity queries
(proximity queries actually). Given a query object Q, a similarity/proximity
query returns objects Oi ∈ S close to Q.

In the context of similarity search we distinguish two main types of queries. A
range query rq(Q, rQ, S) is specified as a hyper-spherical query region defined by
a query object Q and a query radius rQ. The purpose of a range query is to return
all the objects Oi ∈ S satisfying d(Q,Oi) ≤ rQ. A k-nearest neighbours query
(k-NN query) knn(Q, k, S) is specified by a query object Q and a number k.
A k-NN query returns the first k nearest objects to Q. Technically, a k-NN
query can be implemented using a range query with dynamic query radius [8].

During a similarity query processing the M-tree hierarchy is being traversed
down. Only if a routing entry rout(Oi) (its metric region respectively) overlaps
the query region, the covering subtree T (Oi) of rout(Oi) is relevant to the query
and thus further processed.

2.2 Retrieval Efficiency

The retrieval efficiency of an M-tree (i.e. the performance of a query evalua-
tion) is highly dependent on the overall volume3 of the metric regions described
by routing entries. The larger metric region volumes the higher probability of
overlap with a query region.

Recently, we have introduced two algorithms [10] leading to reduction of the
overall volume of metric regions. The first method, the multi-way dynamic in-
sertion, finds the most suitable leaf for each object to be inserted. The second
post-processing method, the generalized slim-down algorithm, tries to ”horizon-
tally” (i.e. separately for each M-tree level) redistribute all entries among more
suitable nodes.
3 We consider only an imaginary volume since there exists no universal notion of

volume in general metric spaces. However, without loss of generality, we can say
that a hyper-sphere volume grows if its covering radius increases.



3 Pivoting M-tree

Each metric region of M-tree is described by a bounding hyper-sphere (defined
by a center object and a covering radius). However, the shape of hyper-spherical
region is far from optimal since it does not bound the data objects tightly to-
gether thus the region volume is too large. In other words, relatively to the
hyper-sphere volume, there is only ”few” objects spread inside the hyper-sphere
and a huge proportion of an empty space4 is covered. Consequently, for hyper-
spherical regions of large volumes the query processing becomes less efficient.

In this section we introduce an extension of M-tree, called Pivoting M-tree
(PM-tree), exploiting pivot-based ideas for metric region volume reduction.

3.1 Pivot-based Methods

Similarity search realized by pivot-based methods (e.g. AESA, LAESA) [4, 7]
follows a single general idea. A set of p objects {P1, ..., Pt, ..., Pp} ⊂ S is selected,
called pivots (or vantage points). The dataset S (of size n) is preprocessed so as
to build a table of n · p entries, where all the distances d(Oi, Pt) are stored for
every Oi ∈ S and every pivot Pt. When a range query rq(Q, rQ, S) is processing,
we compute d(Q, Pt) for every pivot Pt and then try to discard such Oi that
|d(Oi, Pt)− d(Q,Pt)| > rQ. The objects Oi which cannot be eliminated by this
rule have to be directly compared against Q.

The simple sequential pivot-based approach is suitable especially for appli-
cations where the distance d is considered expensive to compute. However, it is
obvious that the whole table of n · p entries must be sequentially loaded during
a query processing which significantly increases the disk access costs. Moreover,
each non-discarded object (i.e. an object required to be directly compared) must
be processed which means further disk access as well as computation costs.

There were developed also hierarchical pivot-based structures, e.g. the vp-tree
[13] (vantage point tree) or the mvp-tree [2] (multi vp-tree). Unfortunately, these
structures are not suitable for similarity search in large multimedia databases
since they are static (i.e. they are built in top-down manner while the whole
dataset must be available at construction time) and they are not paged (i.e. a
secondary memory management is rather complicated for them).

3.2 Structure of PM-tree

Since PM-tree is an extension of M-tree we just describe the new facts instead
of a comprehensive definition. To exploit advantages of both, the M-tree and
the pivot-based approach, we have enhanced the routing and ground entries by
a pivot-based information.

First of all, a set of p pivots Pt ∈ S must be selected. This set is fixed for
all the lifetime of a particular PM-tree index. Furthermore, a routing entry in a

4 The uselessly indexed empty space is sometimes referred as the ”dead space” [1].



PM-tree inner node is defined as:

routPM (Oi) = [Oi, ptr(T (Oi)), rOi , d(Oi,Par(Oi)),HR]

The HR attribute is an array of phr hyper-rings (phr ≤ p) where the t-th hyper-
ring HR[t] is the smallest interval covering distances between the pivot Pt and
each of the objects stored in leaves of T (Oi), i.e. HR[t] = 〈HR[t].min, HR[t].max〉
where HR[t].min = min({d(Oj , Pt)}) and HR[t].max = max({d(Oj , Pt)}), for
∀Oj ∈ T (Oi). Similarly, for a PM-tree leaf we define a ground entry as:

grndPM (Oi) = [Oi, oid(Oi), d(Oi,Par(Oi)),PD]

The PD attribute stands for an array of ppd pivot distances (ppd ≤ p) where the
t-th distance PD[t] = d(Oi, Pt).

Since each hyper-ring region (Pt, HR[t]) defines a metric region containing
all the objects stored in T (Oi), an intersection of all the hyper-rings and the
hyper-sphere forms a metric region bounding all the objects in T (Oi) as well.
Due to the intersection with hyper-sphere the PM-tree metric region is always
smaller than the original M-tree region defined just by a hyper-sphere. For a
comparison of an M-tree region and an equivalent PM-tree region see Figure 3.
The numbers phr and ppd (both fixed for a PM-tree index lifetime) allow us to
specify the ”amount of pivoting”. Obviously, using a suitable phr > 0 and ppd > 0
the PM-tree can be tuned to achieve an optimal performance (see Section 5).

Fig. 3. (a) Region of M-tree (b) Reduced region of PM-tree (using three pivots)

3.3 Building the PM-tree

In order to keep HR and PD arrays up-to-date, the original M-tree construction
algorithms [8, 10] must be adjusted. We have to mention the adjusted algorithms
still preserve the logarithmic time complexity.



Object Insertion. After a data object Oi is inserted into a leaf the HR arrays
of all routing entries in the insertion path must be updated by values d(Oi, Pt),
∀t ≤ phr. For the leaf node in insertion path the PD array of the new ground
entry must be updated by values d(Oi, Pt),∀t ≤ ppd.

Node Splitting. After a node is split a new HR array of the left new routing
entry is created by merging all appropriate intervals HR[t] (or computing HR in
case of a leaf split) stored in routing entries (ground entries respectively) of the
left new node. A new HR array of the right new routing entry is created similarly.

3.4 Query Processing

Before processing a similarity query the distances d(Q,Pt), ∀t ≤ max(phr, ppd)
have to be computed. During a query processing the PM-tree hierarchy is being
traversed down. Only if the metric region of a routing entry rout(Oi) is over-
lapping the query region (Q, rQ), the covering subtree T (Oi) is relevant to the
query and thus further processed. A routing entry is relevant to the query in
case that the query region overlaps all the hyper-rings stored in HR. Hence,
prior to the standard hyper-sphere overlap check (used by M-tree), the overlap
of hyper-rings HR[t] against the query region is checked as follows (note that no
additional distance computation is needed):

phr∧
t=1

d(Q,Pt)− rQ ≤ HR[t].max ∧ d(Q, Pt) + rQ ≥ HR[t].min

If the above condition is false, the subtree T (Oi) is not relevant to the query
and thus can be discarded from further processing. On the leaf level an irrelevant
ground entry is determined such that the following condition is not satisfied:

ppd∧
t=1

|d(Q,Pt)− PD[t]| ≤ rQ

In Figure 3 a range query situation is illustrated. Although the M-tree metric
region cannot be discarded (see Figure 3a), the PM-tree region can be safely
ignored since the hyper-ring HR[2] is not overlapped (see Figure 3b).

The hyper-ring overlap condition can be integrated into the original M-tree
range query as well as k-NN query algorithms. In case of range query the ad-
justment is straightforward – the hyper-ring overlap condition is combined with
the original hyper-sphere overlap condition. However, the optimal M-tree k-NN
query algorithm (based on priority queue heuristics) must be redesigned which
is a subject of our future research.

3.5 Object-to-pivot Distance Representation

In order to minimize storage volume of HR and PD arrays in PM-tree nodes,
a short representation of object-to-pivot distance is required. We can represent



interval HR[t] by two 4-byte reals and a pivot distance PD[t] by one 4-byte real.
However, when (a part of) the dataset is known in advance we can approximate
the 4-byte representation by a 1-byte code. For this reason a distance distribu-
tion histogram for each pivot is created by random sampling of objects from
the dataset and comparing them against the pivot. Then a distance interval
〈dmin, dmax〉 is computed so that most of the histogram distances fall into the
interval, see an example in Figure 4 (the d+ value is an (estimated) maximum
distance of a bounded metric space M).

Fig. 4. Distance distribution histogram, 90% distances in interval 〈dmin, dmax〉

Distance values in HR and PD are scaled into interval 〈dmin, dmax〉 as 1-byte
codes. Using 1-byte codes the storage savings are considerable. As an example,
for phr = 50 together with using 4-byte distances, the hyper-rings stored in an
inner node having capacity 30 entries will consume 30 · 50 · 2 · 4 = 12000 bytes
while by using 1-byte codes the hyper-rings will take 30 · 50 · 2 · 1 = 3000 bytes.

3.6 Selecting the Pivots

The methods of selecting an optimal set of pivots have been intensively studied
[9, 3] while, in general, we can say that a set of pivots is optimal such that dis-
tances among pivots are maximal (close pivots give almost the same information)
and the pivots are located outside the data clusters.

In the context of PM-tree the optimal set of pivots causes that the M-tree
hyper-spherical region is effectively ”chopped off” by hyper-rings so that the
smallest overall volume of PM-tree regions (considering the volume of intersec-
tion of hyper-rings and the hyper-sphere) is obtained.

In experiments presented in Section 5 we have used a cheap but effective
method which samples N groups of p pivots from the dataset S at random. The
group is selected for which the sum of distances among pivots is maximal.



4 Range Query Cost Models

In this section we present a node-based and a level-based cost models for range
query processing in PM-tree, allowing to predict the PM-tree retrieval perfor-
mance. Since PM-tree is an extension of M-tree, we have extended the original
cost models developed for M-tree [6]. Like the M-tree cost models, the PM-tree
cost models are conditioned by the following assumptions:

– The only information used is (an estimate of) the distance distribution of ob-
jects in a given dataset since no information about data distribution is known.

– A biased query model is considered, i.e. the distribution of query objects is
equal to that of data objects.

– The dataset is supposed to have high ”homogeneity of viewpoints” (for de-
tails we refer to [6, 8]).

The basic tool used in the cost models is a probability estimation that two
hyper-spheres overlap, i.e. (using triangular inequality of d)

Pr{spheres (O1, rO1) and (O2, rO2) overlapped} = Pr{d(O1, O2) ≤ rO1 + rO2}

where O1, O2 are center objects and rO1 , rO2 are radii of the hyper-spheres.
For this purpose the overall distance distribution function is used, defined as:

F (x) = Pr{d(Oi, Oj) ≤ x},∀Oi, Oj ∈ U

and also the relative distance distribution function is used, defined as:

FOk
(x) = Pr{d(Ok, Oi) ≤ x}, Ok ∈ U ,∀Oi ∈ U

For an approximate F(Ok) evaluation a set O of s objects Oi ∈ S is sampled.
The F is computed using the s× s matrix of pairwise distances between objects
in O. For the FOk

evaluation only the vector of s distances d(Oi, Ok) is needed.

4.1 Node-based Cost Model

In the node-based cost model (NB-CM) a probability of access to each PM-tree
node is predicted. Basically, a node N is accessed if its metric region (described
by the parent routing entry of N) is overlapping the query hyper-sphere (Q, rQ):

Pr{node N is accessed} = Pr{metric region of N is overlapped by (Q, rQ)}

Specifically, a PM-tree node N is accessed if its metric region (defined by a
hyper-sphere and phr hyper-rings) overlaps the query hyper-sphere:

Pr{N is accessed} = Pr{hyper-sphere is inter.}·
phr∏
t=1

Pr{t-th hyper-ring is inter.}



and finally (for query radius rQ and the parent routing entry of N)

Pr{N accessed} ≈ F (rN+rQ)·
phr∏
t=1

FPt
(HRN [t].max+rQ)·(1−FPt

(rQ−HRN [t].min))

To determine the estimated disk access costs (DAC) for a range query, it is
sufficient to sum the above probabilities over all the m nodes in the PM-tree:

DAC =
m∑

i=1

F (rNi +rQ)·
phr∏
t=1

FPt(HRNi [t].max+rQ)·(1−FPt(rQ−HRNi [t].min))

The computation costs (CC) are estimated considering the probability that
a node is accessed multiplied by the number of its entries, e(Ni), thus obtaining

CC =
m∑

i=1

e(Ni)·F (rNi
+rQ)·

phr∏
t=1

FPt
(HRNi

[t].max+rQ)·(1−FPt
(rQ−HRNi

[t].min))

4.2 Level-based Cost Model

The problem with NB-CM is that maintaining statistics for every node is very
time consuming when the PM-tree index is large. To overcome this, we consider a
simplified level-based cost model (LB-CM) which uses only average information
collected for each level of the PM-tree. For each level l of the tree (l = 1 for root
level, l = L for leaf level), LB-CM uses this information: ml (the number of nodes
at level l), rl (the average value of covering radius considering all the nodes at
level l), HRl[i].min and HRl[i].max (the average information about hyper-rings
considering all the nodes at level l). Given these statistics, the number of nodes
accessed by a range query can be estimated as

DAC ≈
L∑

l=1

ml ·F (rl +rQ) ·
phr∏
t=1

FPt
(HRl[t].max+rQ) ·(1−FPt

(rQ−HRl[t].min))

Similarly, we can estimate computation costs as

CC ≈
L∑

l=1

ml+1 ·F (rl +rQ) ·
phr∏
t=1

FPt
(HRl[t].max+rQ) ·(1−FPt

(rQ−HRl[t].min))

where mL+1
def= n is the number of indexed objects.

4.3 Experimental Evaluation

In order to evaluate accuracy of the presented cost models we have made several
experiments on a synthetic dataset. The dataset consisted of 10,000 10-dimensional
tuples (embedded inside unitary hyper-cube) uniformly distributed among 100
L2-spherical clusters of diameter d+

10 (where d+ =
√

10). The labels ”PM-tree(x,y)”
in the graphs below are described in Section 5.



Fig. 5. Number of pivots, query sel. 200 objs. (a) Disk access costs (b)
Computation costs

The first set of experiments investigated the accuracy of estimates according to
the increasing number of pivots used by the PM-tree. The range query selectivity
(the average number of objects in the query result) was set to 200. In Figure
5a the estimated DAC as well as the real DAC are presented. The relative error
of NB-CM estimates is below 0.2. Surprisingly, the relative error of LB-CM
estimates is smaller than for NB-CM, below 0.15. The estimates of computation
costs, presented in Figure 5b, are even more accurate than for the DAC estimates,
below 0.05 (for NB-CM) and 0.04 (for LB-CM).

The second set of experiments was focused on the accuracy of estimates according
to the increasing query selectivity. The relative error of NB-CM DAC estimates
(see Figure 6a) is below 0.1. Again, the relative error of LB-CM estimates is very
small, below 0.02. The error of computation costs (see Figure 6b) is below 0.07
(for NB-CM) and 0.05 (for LB-CM).

5 Experimental Results

In order to evaluate the overall PM-tree performance we present some results
of experiments made on large synthetic as well as real-world vector datasets. In
most of the experiments the retrieval efficiency of range query processing was
examined. The query objects were randomly selected from the respective dataset
while each particular query test consisted of 1000 range queries of the same
query selectivity. The results were averaged. Euclidean (L2) metric was used.
The experiments were aimed to compare PM-tree with M-tree – a comparison
with other MAMs was out of scope of this paper.



Fig. 6. Query selectivity: (a) Disk access costs (b) Computation costs

Abbreviations in Figures. Each label of form ”PM-tree(x,y)” stands for
a PM-tree index where phr = x and ppd = y. A label ”<index> + SlimDown”
denotes an index subsequently post-processed using the slim-down algorithm
(for details about the slim-down algorithm we refer to [10]).

5.1 Synthetic Datasets

For the first set of experiments a collection of 8 synthetic vector datasets of
increasing dimensionality (from D = 4 to D = 60) was generated. Each dataset
(embedded inside unitary hyper-cube) consisted of 100,000 D-dimensional tuples
uniformly distributed within 1000 L2-spherical uniformly distributed clusters.
The diameter of each cluster was d+

10 where d+ =
√

D. These datasets were
indexed by PM-tree (for various phr and ppd) as well as by M-tree. Some statistics
about the created indices are described in Table 1 (for explanation see [10]).

Table 1. PM-tree index statistics (synthetic datasets)

Construction methods: SingleWay + MinMax (+ SlimDown)
Dimensionalities: 4,8,16,20,30,40,50,60 Inner node capacities: 10 – 28

Index file sizes: 4.5 MB – 55 MB Leaf node capacities: 16 – 36
Pivot file sizes5: 2 KB – 17 KB Avg. node utilization: 66%

Node (disk page) sizes: 1 KB (D = 4, 8), 2 KB (D = 16, 20), 4 KB (D ≥ 30)

5 Access costs to the pivot files, storing pivots Pt and the scaling intervals for all pivots
(see Section 3.5), were not considered because of their negligible sizes.



Fig. 7. Construction costs (30D indices): (a) Disk access costs (b) Computation costs

Index construction costs (for 30-dimensional indices) according to the increasing
number of pivots are presented in Figure 7. The disk access costs for PM-tree
indices with up to 8 pivots are similar to those of M-tree index (see Figure 7a).
For PM-tree(128, 0) and PM-tree(128, 28) indices the DAC are about 1.4 times
higher than for the M-tree index. The increasing trend of computation costs
(see Figure 7b) depends mainly on the p object-to-pivot distance computations
made during each object insertion – additional computations are needed after
leaf splitting in order to create HR arrays of the new routing entries.

Fig. 8. Number of pivots (30-dim. indices, query selectivity 50 objs.): (a) DAC (b) CC



In Figure 8 the range query costs (for 30-dimensional indices and query selec-
tivity 50 objects) according to the number of pivots are presented. The DAC
rapidly decrease with the increasing number of pivots. The PM-tree(128, 0) and
PM-tree(128, 28) indices need only 27% of DAC spent by the M-tree index.
Moreover, the PM-tree is superior even after the slim-down algorithm post-
processing, e.g. the ”slimmed” PM-tree(128, 0) index needs only 23% of DAC
spent by the ”slimmed” M-tree index (and only 6.7% of DAC spent by the or-
dinary M-tree). The decreasing trend of computation costs is even more steep
than for DAC, the PM-tree(128, 28) index needs only 5.5% of the M-tree CC.

Fig. 9. Dimensionality (query selectivity 50 objects): (a) Disk access costs (b) Com-
putation costs

The influence of increasing dimensionality D is depicted in Figure 9. Since
the disk page sizes for different indices vary, the DAC as well as the CC are
related (in percent) to the DAC (CC resp.) of M-tree indices. For 8 ≤ D ≤ 40
the DAC stay approximately fixed, for D > 40 the DAC slightly increase.

5.2 Image Database

For the second set of experiments a collection of about 10,000 web-crawled images
[12] was used. Each image was converted into a 256-level gray scale and a fre-
quency histogram was extracted. For indexing the histograms (256-dimensional
vectors actually) were used together with the euclidean metric. The statistics
about image indices are described in Table 2.



Table 2. PM-tree index statistics (image database)

Construction methods: SingleWay + MinMax (+ SlimDown)
Dimensionality: 256 Inner node capacities: 10 – 31
Index file sizes: 16 MB – 20 MB Leaf node capacities: 29 – 31
Pivot file sizes: 4 KB – 1 MB Avg. node utilization: 67%

Node (disk page) size: 32 KB

In Figure 10a the DAC for increasing number of pivots are presented. We can
see that e.g. the ”slimmed” PM-tree(1024,50) index consumes only 42% of DAC
spent by the ”slimmed” M-tree index. The computation costs (see Figure 10b)
for p ≤ 64 decrease (down to 36% of M-tree CC). However, for p > 64 the overall
computation costs grow since the number of necessarily computed query-to-pivot
distances (i.e. p distance computations for each query) is proportionally too large.
Nevertheless, this fact is dependent on the database size – obviously, for 100,000
objects (images) the proportion of p query-to-pivot distance computations would
be smaller when compared with the overall computation costs.

Fig. 10. Number of pivots (query selectivity 50 objects): (a) DAC (b) CC

Finally, the costs according to the increasing range query selectivity are pre-
sented in Figure 11. The disk access costs stay below 73% of M-tree DAC (below
58% in case of ”slimmed” indices) while the computation costs stay below 43%
(49% respectively).



Fig. 11. Query selectivity: (a) Disk access costs (b) Computation costs

5.3 Summary

The experiments on synthetic datasets and mainly on the real dataset have
demonstrated the general benefits of PM-tree. The index construction (object
insertion respectively) is dynamic and still preserves the logarithmic time com-
plexity. For suitably high phr and ppd the index size growth is minor. This is
true especially for high-dimensional datasets (e.g. the 256-dimensional image
dataset) where the size of pivoting information stored in ground/routing entries
is negligible when compared with the size of the data object (i.e. vector) it-
self. A particular (but not serious) limitation of the PM-tree is that a part of
the dataset must be known in advance (for the choice of pivots and when used
object-to-pivot distance distribution histograms).

Furthermore, the PM-tree could serve as a constructionally much cheaper
alternative to the slim-down algorithm on M-tree – the above presented experi-
mental results have shown that the retrieval performance of PM-tree (with suffi-
ciently high phr, ppd) is comparable or even better than an equivalent ”slimmed”
M-tree. Finally, a combination of PM-tree and the slim-down algorithm makes
the PM-tree a very efficient metric access method.

6 Conclusions and Outlook

In this paper the Pivoting M-tree (PM-tree) was introduced. The PM-tree com-
bines M-tree hierarchy of metric regions with the idea of pivot-based methods.
The result is a flexible metric access method providing even more efficient simi-
larity search than the M-tree. Two cost models for range query processing were
proposed and evaluated. Experimental results on synthetic as well as real-world
datasets have shown that PM-tree is more efficient when compared with the
M-tree.



In the future we plan to develop new PM-tree construction algorithms ex-
ploiting the pivot-based information. Second, an optimal PM-tree k-NN query
algorithm has to be designed and a cost model formulated. Finally, we would like
to modify several spatial access methods by utilizing the pivoting information,
in particular the R-tree family.

This research has been partially supported by grant Nr. GAČR 201/00/1031 of
the Grant Agency of the Czech Republic.
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Tomáš Skopal1, Jaroslav Pokorný1, and Václav Snášel2
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Abstract. We introduce a method of searching the k nearest neighbours
(k-NN) using PM-tree. The PM-tree is a metric access method for sim-
ilarity search in large multimedia databases. As an extension of M-tree,
the structure of PM-tree exploits local dynamic pivots (like M-tree does
it) as well as global static pivots (used by LAESA-like methods). While
in M-tree a metric region is represented by a hyper-sphere, in PM-tree
the ”volume” of metric region is further reduced by a set of hyper-rings.
As a consequence, the shape of PM-tree’s metric region bounds the in-
dexed objects more tightly which, in turn, improves the overall search
efficiency. Besides the description of PM-tree, we propose an optimal
k-NN search algorithm. Finally, the efficiency of k-NN search is experi-
mentally evaluated on large synthetic as well as real-world datasets.

1 Introduction

The volume of multimedia databases rapidly increases and the need for efficient
content-based search in large multimedia databases becomes stronger. In partic-
ular, there is a need for searching for the k most similar documents (called the
k nearest neighbours – k-NN) to a given query document.

Since multimedia documents are modelled by objects (usually vectors) in
a feature space U, the multimedia database can be represented by a dataset
S ⊂ U, where n = |S| is size of the dataset. The search in S is accomplished by
an access method, which retrieves objects relevant to a given similarity query.
The similarity measure is often modelled by a metric, i.e. a distance d satisfying
properties of reflexivity, positivity, symmetry, and triangular inequality. Given
a metric space M = (U, d), the metric access methods (MAMs) [4] organize
objects in S such that a structure in S is recognized (i.e. a kind of metric index
is constructed) and exploited for efficient (i.e. quick) search in S. To keep the
search as efficient as possible, the MAMs should minimize the computation costs
(CC) and the I/O costs. The computation costs represent the number of (com-
putationally expensive) distance computations spent by the query evaluation.
The I/O costs are related to the volume of data needed to be transfered from
secondary memory (also referred to as the disk access costs).

In this paper we propose a method of k-NN searching using PM-tree, which
is a metric access method for similarity search in large multimedia databases.



2 M-tree

Among the MAMs developed so far, the M-tree [5, 7] (and its modifications) is
still the only dynamic MAM suitable for efficient similarity search in large mul-
timedia databases. Like other dynamic and paged trees, the M-tree is a balanced
hierarchy of nodes. Given a metric d, the data objects Oi ∈ S are organized in a
hierarchy of nested clusters, called metric regions. The leaf nodes contain ground
entries of the indexed data objects, while the routing entries (stored in the inner
nodes) describe the metric regions. A ground entry is denoted as:

grnd(Oi) = [Oi, oid(Oi), d(Oi,Par(Oi))]

where Oi ∈ S is the data object, oid(Oi) is identifier of the original DB object
(stored externally), and d(Oi,Par(Oi)) is precomputed distance between Oi and
the data object of its parent routing entry. A routing entry is denoted as:

rout(Oi) = [Oi, ptr(T (Oi)), rOi , d(Oi,Par(Oi))]

where Oi ∈ S is a routing object (local pivot), ptr(T (Oi)) is pointer to the
covering subtree, and rOi is the covering radius. The routing entry determines a
hyper-spherical metric region (Oi, rOi) in M, for which routing object Oi is the
center and rOi

is the radius bounding the region. In Figure 1 see several data
objects partitioned among (possibly overlapping) metric regions of M-tree.

Fig. 1. Hierarchy of metric regions and the appropriate M-tree.

2.1 Similarity Queries in M-tree

The structure of M-tree was designed to support similarity queries (proximity
queries actually). We distinguish two basic kinds of queries. The range query is
specified as a hyper-spherical query region (Q, rQ), defined by a query object
Q and a covering query radius rQ. The purpose of range query is to select all
objects Oi ∈ S satisfying d(Q,Oi) ≤ rQ (i.e. located inside the query region). The
k nearest neighbours query (k-NN query) is specified by a query object Q and a
number k. A k-NN query selects the first k nearest (most similar) objects to Q.
Technically, the k-NN query can be formulated as a range query (Q, d(Q,Ok)),
where Ok is the k-th nearest neighbour. During query processing, the M-tree
hierarchy is traversed down. Given a routing entry rout(Oi), the subtree T (Oi)
is processed only if the region defined by rout(Oi) overlaps the query region.



Range Search. The range query algorithm [5, 7] has to follow all M-tree paths
leading to data objects Oj inside the query region, i.e. satisfying d(Q,Oj) ≤ rQ.
In fact, the range query algorithm recursively accesses nodes the metric regions
of which (described by the parent routing entries rout(Oi)) overlap the query
region, i.e. such that d(Oi, Q) ≤ rOi

+ rQ is satisfied.

2.2 Nearest Neighbours Search

In fact, the k-NN query algorithm for M-tree is a more complicated range query
algorithm. Since the query radius rQ is not known in advance, it must be de-
termined dynamically (during the query processing). For this purpose a branch-
and-bound heuristic algorithm has been introduced [5], quite similar to that one
for R-trees [8]. The k-NN query algorithm utilizes a priority queue PR of pend-
ing requests, and a k-elements array NN used to store the k-NN candidates and
which, at the end of the processing, contains the result. At the beginning, the
dynamic radius rQ is set to ∞, while during query processing rQ is consecutively
reduced down to the ”true” distance between Q and the k-th nearest neighbour.

PR queue. The priority queue PR of pending requests [ptr(T (Oi)), dmin(T (Oi))]
is used to keep (pointers to) such subtrees T (Oi), which (still) cannot be ex-
cluded from the search, due to overlap of their metric regions (Oi, rOi

) with
the dynamic query region (Q, rQ). The priority order of each such request is
given by dmin(T (Oi)), which is the smallest possible distance between an object
stored in T (Oi) and the query object Q. The smallest distance is denoted as the
lower-bound distance between Q and the metric region (Oi, rOi

):

dmin(T (Oi)) = max{0, d(Oi, Q)− rOi}

During k-NN query execution, requests from PR are being processed in the
priority order, i.e. the request with smallest lower-bound distance goes first.

NN array. The NN array contains k entries of form either [oid(Oi), d(Q,Oi)]
or [−, dmax(T (Oi))]. The array is sorted according to ascending distance values.
Entry of form [oid(Oi), d(Q,Oi)] on the j-th position in NN represents a candi-
date object Oi for the j-th nearest neighbour. In the second case (i.e. entry of
form [−, dmax(T (Oi))]), the value dmax(T (Oi)) represents upper-bound distance
between Q and objects in subtree T (Oi) (in which some k-NN candidates could
be stored). The upper-bound distance dmax(T (Oi)) is defined as:

dmax(T (Oi)) = d(Oi, Q) + rOi

Since NN is a sorted array containing the k nearest neighbours candidates (or
at least upper-bound distances of the still relevant subtrees), the dynamic query
radius rQ can be determined as the current distance stored in the last entry
NN[k]. During the query processing, only the closer candidates (or smaller upper-
bound distances) are inserted into NN array, i.e. such candidates, which are
currently located inside the dynamic query region (Q, rQ).



After insertion into NN, the query radius rQ is decreased (because NN[k]
entry was replaced). The priority queue PR must contain only the (still) relevant
subtrees, i.e. such subtrees the regions of which overlap the dynamic query region
(Q, rQ). Hence, after the dynamic radius rQ is decreased, all irrelevant requests
(for which dmin(T (Oi)) > rQ) must be deleted from PR.

At the beginning of k-NN search, the NN candidates are unknown, thus all
entries in the NN array are set to [−,∞]. The query processing starts at the
root level, so that [ptr(root),∞] is the first and only request in PR. For a more
detailed description of the k-NN query algorithm we refer to [7, 10].

Note: The k-NN query algorithm is optimal in I/O costs, since it only accesses
nodes, the metric regions of which overlap the query region (Q, d(Q,NN[k].dmax)).
In other words, the I/O costs of a k-NN query (Q, k) and I/O costs of the equiv-
alent range query (Q, d(Q,NN[k].dmax)) are equal.

Fig. 2. An example of 2-NN search in M-tree.

Example 1

In Figure 2 see an example of 2-NN query processing. Each of the depicted phases
shows the content of PR queue and NN array, right before processing a request
from PR. Due to the decreasing query radius rQ, the dynamic query region
(Q, rQ) (represented by bold-dashed line) is reduced down to (Q, d(Q,O5)). Note
the algorithm accesses 5 nodes (processing of single request in PR involves a
single node access), while the equivalent range query takes also 5 node accesses.



3 PM-tree

Each metric region in M-tree is described by a bounding hyper-sphere. How-
ever, the shape of hyper-sphere is far from optimal, since it does not bound
the data objects tightly together and the region ”volume” is too large. Rela-
tively to the hyper-sphere volume, there are only ”few” objects spread inside
the hyper-sphere – a huge proportion of dead space [1] is covered. Consequently,
for hyper-spherical regions the probability of overlap with query region grows,
thus query processing becomes less efficient. This observation was the major mo-
tivation for introduction of the Pivoting M-tree (PM-tree) [12, 10], an extension
of M-tree.

3.1 Structure of PM-tree

Some metric access methods (e.g. AESA, LAESA [4, 6]) exploit global static piv-
ots, i.e. objects to which all objects of the dataset S (all parts of the index struc-
ture respectively) are related. The global pivots actually represent ”anchors” or
”viewpoints”, due to which better filtering of irrelevant data objects is possible.

In PM-tree, the original M-tree hierarchy of hyper-spherical regions (driven
by local pivots) is combined with so-called hyper-ring regions, centered in global
pivots. Since PM-tree is a generalization of M-tree, we just describe the new facts
instead of a comprehensive definition. First of all, a set of p global pivots Pt ∈ S
must be chosen. This set is fixed for all the lifetime of a particular PM-tree
index. A routing entry in PM-tree inner node is defined as:

routPM (Oi) = [Oi, ptr(T (Oi)), rOi , d(Oi,Par(Oi)),HR]

The new HR attribute is an array of phr intervals (phr ≤ p), where the t-th
interval HR[t] is the smallest interval covering distances between the pivot Pt and
each of the objects stored in leaves of T (Oi), i.e. HR[t] = 〈HR[t].min, HR[t].max〉,
HR[t].min = min{d(Oj , Pt)}, HR[t].max = max{d(Oj , Pt)}, ∀Oj ∈ T (Oi). The
interval HR[t] together with pivot Pt define a hyper-ring region (Pt,HR[t]); a
hyper-spherical region (Pt,HR[t].max) reduced by a ”hole” (Pt,HR[t].min).

Since each hyper-ring region (Pt, HR[t]) defines a metric region bounding all
the objects stored in T (Oi), the intersection of all the hyper-rings and the hyper-
sphere forms a metric region bounding all the objects in T (Oi) as well. Due to the
intersection with hyper-sphere, the PM-tree metric region is always smaller than
the original hyper-spherical region. The probability of overlap between PM-tree
region and query region is smaller, thus the search becomes more efficient (see
Figure 3). A ground entry in PM-tree leaf is defined as:

grndPM (Oi) = [Oi, oid(Oi), d(Oi,Par(Oi)),PD]

The new PD attribute stands for an array of ppd pivot distances (ppd ≤ p)
where the t-th distance PD[t] = d(Oi, Pt). The distances PD[t] between data
objects and the global pivots are used for simple sequential filtering in leaves,
as it is accomplished in LAESA-like methods. For details concerning PM-tree
construction as well as representation and storage of the hyper-ring intervals
(HR and PD arrays) we refer to [12, 10].



Fig. 3. (a) Region of M-tree. (b) Region of PM-tree (sphere reduced by 3 hyper-rings).

3.2 Choosing the Global Pivots

Problems about choosing the global pivots have been intensively studied for a
long time [9, 3, 2]. In general, we can say that pivots should be far from each
other (close pivots give almost the same information) and outside data clusters.
Distant pivots cause increased variance in distance distribution [4] (the dataset is
”viewed” from different ”sides”), which is reflected in better filtering properties.

We use a cheap but effective method of pivots choice, described as follows.
First, m groups of p objects are randomly sampled from the dataset S, each
group representing a candidate set of pivots. Second, such group of pivots is
chosen, for which the sum of distances between objects is maximal.

3.3 Similarity Queries in PM-tree

The distances d(Q,Pt), ∀t ≤ max(phr, ppd) have to be computed before the query
processing itself is started. The query is processed by accessing nodes, the regions
of which are overlapped by the query region (similarly as M-tree is queried, see
Section 2.1). A PM-tree node is accessed if the query region overlaps all the
hyper-rings stored in the parent routing entry. Hence, prior to the standard
hyper-sphere overlap check (used by M-tree), the overlap of hyper-rings HR[t]
against the query region is tested as follows (no additional distance is computed):

phr∧
t=1

d(Q,Pt)− rQ ≤ HR[t].max ∧ d(Q,Pt) + rQ ≥ HR[t].min (1)

If the above condition is false, the subtree T (Oi) is not relevant to the query,
and can be excluded from further processing. At the leaf level, an irrelevant
ground entry is determined such that the following condition is not satisfied:

ppd∧
t=1

|d(Q,Pt)− PD[t]| ≤ rQ (2)

In Figure 3 see that M-tree region cannot be filtered out, but PM-tree region
can be excluded from the search, since the hyper-ring HR[2] is not overlapped.



4 Nearest Neighbours Search in PM-tree

The hyper-ring overlap condition (1) can be integrated into the original M-tree’s
range query as well as into k-NN query algorithms. In case of range query the
adjustment is straightforward – the hyper-ring overlap condition is combined
with the original hyper-sphere overlap condition (we refer to [12]).

The M-tree’s k-NN algorithm can be modified for the PM-tree, we only need
to respect the changed region shape. As in the range query algorithm, the check
for overlap between the query region and a PM-tree region is combined with
the hyper-ring overlap condition (1). Furthermore, to obtain an optimal k-NN
algorithm, there must be adjusted the lower-bound distance dmin (used by PR
queue) and the upper-bound distance dmax (used by NN array), as follows.

The requests [ptr(T (Oi)), dmin(T (Oi))] in PR represent the relevant subtrees
T (Oi) to be examined, i.e. such subtrees, the parent metric regions of which
overlap the dynamic query region (Q, rQ). Taking the hyper-rings HR[t] of a
PM-tree region into account, the lower-bound distance is possibly increased, as:

dmin(T (Oi)) = max{0, d(Oi, Q)− rOi
, dlow

HRmax, dlow
HRmin}

dlow
HRmax= max

phr⋃
t=1

{d(Pt, Q)−HR[t].max} dlow
HRmin= max

phr⋃
t=1

{HR[t].min−d(Pt, Q)}

where max{dlow
HRmax, dlow

HRmin} determines the lower-bound distance between the
query object Q and objects located in the farthest hyper-ring. Comparing to
M-tree’s k-NN algorithm, the lower-bound distance dmin(T (Oi)) for a PM-tree
region can be additionally increased, since the farthest hyper-ring contains all
the objects stored in T (Oi).

The entries [oid(Oi), d(Q, Oi)] or [−, dmax(T (Oi))] in NN represent the cur-
rent k candidates for nearest neighbours (or at least the still relevant sub-
trees). Taking the hyper-rings HR[t] into account, the upper-bound distance
dmax(T (Oi)) is possibly decreased, as:

dmax(T (Oi)) = min{d(Oi, Q)+rOi
, dup

HR} dup
HR = min

phr⋃
t=1

{d(Pt, Q)+HR[t].max}

where dup
HR determines the upper-bound distance between the query object Q

and objects located in the nearest hyper-ring.
In summary, the modification of M-tree’s k-NN algorithm for the PM-tree

differs in the overlap condition, which has to be additionally combined with the
hyper-ring overlap check (1) and (2), respectively. Another difference is in the
construction of dmax(T (Oi)) and dmin(T (Oi)) bounds.

Example 2
In Figure 4 see an example of 2-NN query processing. The PM-tree hierarchy
is the same as the M-tree hierarchy presented in Example 1, but the query
processing runs a bit differently. Although in this particular example both the
M-tree’s and the PM-tree’s k-NN query algorithms access 4 nodes, searching the
PM-tree saves one insertion into the PR queue.



Fig. 4. An example of 2-NN search in PM-tree.

Note: Like the M-tree’s k-NN query algorithm, also the PM-tree’s k-NN query
algorithm is optimal in I/O costs, since it only accesses those PM-tree nodes,
the metric regions of which overlap the query region (Q, d(Q,NN[k].dmax)). This
is guaranteed (besides usage of the hyper-ring overlap check) by correct modifi-
cation of lower/upper distance bounds stored in PR queue and NN array.

5 Experimental Results

In order to evaluate the performance of k-NN search, we present some experi-
ments made on large synthetic as well as real-world vector datasets. The query
objects were selected randomly from each respective dataset, while each partic-
ular test consisted of 1000 queries (the results were averaged). Euclidean (L2)
metric was used in all tests. The I/O costs were measured as the number of
logic disk page retrievals. The experiments were aimed to compare PM-tree with
M-tree – a comparison with other MAMs was out of scope of this paper.

Abbreviations in Figures. Each label of form ”PM-tree(x,y)” stands for a
PM-tree index where phr = x and ppd = y. A label ”<index> + SlimDown” de-
notes an index subsequently post-processed by the slim-down algorithm [11, 10].

5.1 Synthetic Datasets

For the first set of experiments, a collection of 8 synthetic vector datasets of
increasing dimensionality (from D = 4 to D = 60) was generated. Each dataset



(embedded inside unitary hyper-cube) consisted of 100,000 D-dimensional tuples
distributed uniformly among 1000 L2-spherical uniformly distributed clusters.
The diameter of each cluster was d+

10 (where d+ =
√

D). These datasets were
indexed by PM-tree (for various phr and ppd) as well as by M-tree. Some statistics
about the created indices are shown in Table 1 (for details see [11]).

Table 1. PM-tree index statistics (synthetic datasets).

Construction methods: SingleWay + MinMax (+ SlimDown)

Dimensionalities: 4,8,16,20,30,40,50,60 Inner node capacities: 10 – 28
Index file sizes: 4.5 MB – 55 MB Leaf node capacities: 16 – 36
Pivot file sizes: 2 KB – 17 KB Avg. node utilization: 66%

Node (disk page) sizes: 1 KB (D = 4, 8), 2 KB (D = 16, 20), 4 KB (D ≥ 30)

Prior to k-NN experiments, in Figure 5 we present index construction costs
(for 30-dimensional indices), according to the increasing number of pivots. The
increasing I/O costs depend on the hyper-ring storage overhead (the storage ra-
tio of PD or HR arrays to the data vectors becomes higher), while the increasing
computation costs depend on the object-to-pivot distance computations per-
formed before each object insertion.

Fig. 5. Number of pivots: (a) I/O costs. (b) Computation costs.

In Figure 6 the 20-NN search costs (for 30-dimensional indices) according
to the number of pivots are presented. The I/O costs rapidly decrease with the
increasing number of pivots. Moreover, the PM-tree is superior even after post-
processing by the slim-down algorithm. The decreasing trend of computation
costs is even quicker than of I/O costs, see Figure 6b.

The influence of increasing dimensionality D is depicted in Figure 7. Since
the disk pages for different (P)M-tree indices were not of the same size, the I/O
costs as well as the computation costs are related (in percent) to the I/O costs
(CC resp.) of M-tree indices. For 8 ≤ D ≤ 40 the I/O costs stay approximately
fixed, for D > 40 they slightly increase. In case of D = 4, the higher PM-tree
I/O costs are caused by higher hyper-ring storage overhead.



Fig. 6. Number of pivots: (a) I/O costs. (b) Computation costs.

Fig. 7. Dimensionality: (a) I/O costs. (b) Computation costs.

5.2 Image Database

For the second set of experiments, a collection of approx. 10,000 web-crawled
images [13] was used. Each image was converted into 256-level gray scale and
a frequency histogram was extracted. As indexed objects the histograms (256-
dimensional vectors) were used. The index statistics are presented in Table 2.

Table 2. PM-tree index statistics (image database).

Construction methods: SingleWay + MinMax (+ SlimDown)

Dimensionality: 256 Inner node capacities: 10 – 31
Index file sizes: 16 MB – 20 MB Leaf node capacities: 29 – 31
Pivot file sizes: 4 KB – 1 MB Avg. node utilization: 67%

Node (disk page) size: 32 KB



Fig. 8. Number of pivots: (a) I/O costs. (b) Computation costs.

In Figure 8a the I/O search costs for increasing number of pivots are pre-
sented. The computation costs (see Figure 8b) for p ≤ 64 decrease. However,
for p > 64 the overall computation costs grow, since the number of necessarily
computed query-to-pivot distances (i.e. p distance computations for each query)
is proportionally too large. Nevertheless, this observation is dependent on the
database size – obviously, for million of images the proportion of p query-to-pivot
distance computations would be smaller, when compared with the overall com-
putation costs. Finally, the costs according to the increasing number of nearest
neighbours are presented in Figure 9.

Fig. 9. Number of neighbours: (a) I/O costs. (b) Computation costs.



6 Conclusions

We have proposed an optimal k-NN search algorithm for the PM-tree. Experi-
mental results on synthetic and real-world datasets have shown that searching
in PM-tree is significantly more efficient, when compared with the M-tree.

This research has been partially supported by grant 201/05/P036 of the Czech
Science Foundation (GAČR) and the National programme of research (Informa-
tion society project 1ET100300419).
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ABSTRACT
An important research issue in multimedia databases is the
retrieval of similar objects. For most applications in multi-
media databases, an exact search is not meaningful. Thus,
much effort has been devoted to develop efficient and effec-
tive similarity search techniques. A recent approach, that
has been shown to improve the effectiveness of similarity
search in multimedia databases, resorts to the usage of com-
binations of metrics where the desirable contribution (weight)
of each metric is chosen at query time. This paper presents
the Multi-Metric M-tree (M3-tree), a metric access method
that supports similarity queries with dynamic combinations
of metric functions. The M3-tree, an extension of the M-
tree, stores partial distances to better estimate the weighed
distances between routing/ground entries and each query,
where a single distance function is used to build the whole
index. An experimental evaluation shows that the M3-tree
may be as efficient as having multiple M-trees (one for each
combination of metrics).

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content
analysis and indexing—indexing methods

General Terms
Algorithms, performance, design

Keywords
Content-based indexing and retrieval, combination of metric
functions, nearest neighbor queries

1. INTRODUCTION
Similarity search in multimedia database systems is be-

coming increasingly important, due to a rapidly growing
amount of available multimedia data like images, audio files,
video clips, 3D objects, time series, and text documents.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MIR’06, October 26–27, 2006, Santa Barbara, California, USA.
Copyright 2006 ACM 1-59593-495-2/06/0010 ...$5.00.

As we see progress in the fields of acquisition, storage, and
dissemination of various multimedia formats, the applica-
tion of effective and efficient database management systems
becomes indispensable in order to handle these formats.
The application domains for multimedia databases include
molecular biology, medicine, geographical information sys-
tems, Computer Aided Design/Computer Aided Manufac-
turing (CAD/CAM), virtual reality, and many others:

a) In medicine, the detection of similar organ deformations
can be used for diagnostic purposes [11].

b) Biometric devices (e.g., fingerprint scanners) read a
physical characteristic from an individual and then search
in a database to verify if the individual is registered or not.
The search cannot be exact, as the probability that two
fingerprint scans, even from the same person, are exactly
equal (bit-to-bit) is very low.

c) A 3D object database can be used to support CAD
tools. For example, standard parts in a manufacturing com-
pany can be modeled as 3D objects. When a new product
is designed, it can be composed of many small parts that fit
together to form the product. If some of these parts are sim-
ilar to one of the standard parts already designed, then the
possible replacement of the original part with the standard
part can lead to a reduction of production costs.

d) In text databases, a typical query consists of a set of
keywords or a whole document. The search system looks in
the database for documents that are relevant to the given
keywords or that are similar to the query document. A
certain tolerance on the search may be allowed in case, e.g.,
that some of the given keywords were mistyped or an optical
character recognition (OCR) system was used to scan the
documents (thus they may contain some misspelled words).

1.1 Preliminaries
Many of these practical applications have in common that

the objects of the database are modeled in a metric space [6,
15], i.e., it is possible to define a positive real-valued func-
tion δ among the objects, called metric, that satisfies the
properties of strict positiveness (δ(x, y) ≥ 0 and δ(x, y) =
0 ⇔ x = y), symmetry (δ(x, y) = δ(y, x)), and the triangle
inequality (δ(x, z) ≤ δ(x, y) + δ(y, z)). The main motiva-
tion for using metric spaces is the fact that they are easily
indexable by metric access methods (described later).

An important particular case of metric spaces are vector
spaces, where the objects are tuples of d real values, i.e., they
are vectors in Rd. There are many metric functions defined
on vector spaces, e.g., the Minkowski distances, defined as

Lp (x, y) =
“P

1≤i≤d |xi − yi|p
”1/p

, p ≥ 1, x, y ∈ Rd.



Figure 1: Improving effectiveness of 3D similarity
search by combining two 3D feature vectors.

1.2 Simple vs. Combined Metrics
A recent proposal to improve the effectiveness (i.e., the

quality of the retrieved answer) of similarity search resorts
to the use of combinations of metrics [2, 3]. Instead of us-
ing a single metric to compare two objects, the search sys-
tem uses a linear combination of metrics to compute the
(dis)similarity between two objects. Figure 1 shows an ex-
ample of the benefits obtained by using such a combined
metric. The first two rows show the similar objects retrieved
by a 3D similarity search system using two different single-
feature vectors (depth buffer or silhouette) – a single metric
works with the entire particular vector. In both queries, the
result includes some non-relevant objects (false hits). The
third row shows the result of the search when using both
features for each 3D object description (depth buffer and
silhouette). In this case a combination of the two metrics
is used on the double-feature vector, while only relevant ob-
jects are retrieved for this time.

The problem with a static combination of metrics (i.e.,
where the weights of the linear combination are fixed) is that
usually not all metrics are well-suited for performing simi-
larity search with all query objects. Moreover, a bad-suited
metric may “spoil” the final result of the query. Thus, to fur-
ther improve the effectiveness of the search system, methods
for dynamic combinations of metrics have been proposed,
where the query processor weighs the contribution of each
metric depending on the query object (i.e., big weights are
assigned to the “good” metrics for that query object, and
low weights are assigned to the “bad metrics”, according to
some quality criteria). This means that, instead of a single
metric, the system uses a dynamic metric function (multi-
metric), where a different metric is computed to perform
each similarity query.

1.3 Paper Contributions
This paper presents the Multi-Metric M-tree (M3-tree),

a dynamic index structure that extends the M-tree [8] to
support multi-metric similarity queries. We first describe
how to adapt the search algorithms of the original M-tree
to directly support multi-metric queries. Then, we describe
the M3-tree data structure and the new similarity search
algorithms. We show experimentally that the M3-tree out-
performs the adapted M-tree for multi-metrics, and that its
efficiency is very close to having multiple M-trees, one for
each used multi-metric, which is the optimal achievable ef-
ficiency regarding to this index structure.

Note that in this paper we only deal with the efficiency
issues of similarity search in multi-metric spaces. For a dis-
cussion on the effectiveness of this approach, see [2, 3].

Table 1: Notation used in this paper.
Symbol Definition

U set of valid objects (the universe)
S ⊂ U database
n = |S| database size
δ(x, y) A metric function

M = 〈δi〉 vector of metric functions
W = 〈wi〉 vector of weights

|M| = |W| = m number of weights and metrics
∆W(x, y) linear multi-metric
∆1.0(x, y) linear multi-metric where wi = 1

rW ∆W-based covering radius
r1.0 ∆1.0-based covering radius

Q ∈ U query object
εW tolerance of a range query

(query radius, ∆W-based)

2. SIMILARITY SEARCH IN METRIC AND
MULTI-METRIC SPACES

Table 1 shows the notation used through this paper. Let
(U, δ) be a metric space and let S ⊂ U be a set of objects (i.e.,
an instance of a database). There are two typical similarity
queries in metric spaces:

• Range query. A range query (Q, ε), Q ∈ U, ε ∈ R+,
reports all database objects that are within a tolerance
distance ε to Q, that is (Q, ε) = {Oi ∈ S, δ(Oi, Q) ≤ ε}.
The subspace V ⊂ U defined by Q and ε (i.e., ∀v ∈ V
δ(v, Q) ≤ ε and ∀x ∈ U − V δ(x, Q) > ε) is called the
query ball.

• k nearest neighbors query (k-NN). It reports the k ob-
jects from S closest to Q. That is, it returns the set
C ⊆ S such that |C| = k and ∀Oi ∈ C, Oj ∈ S− C,
δ(Oi, Q) ≤ δ(Oj , Q).

Metric access methods (MAMs) [6] are index structures
designed to perform efficiently similarity queries in metric
spaces. They only use the metric properties of δ, especially
the triangle inequality, to filter out objects or entire regions
of the space during the search, thus avoiding the sequential
(or linear) scan over the database.

MAMs can be classified into two main groups: (1) Pivot-
based MAMs select from the database a number of pivot
objects, and classify all the other objects according to their
distance from the pivots (2) MAMs based on compact parti-
tions divide the space into regions as compact as possible.
Each region stores a representative point (local pivot) and
data that can be used to discard the entire region at query
time, without computing the actual distance from the region
objects to the query object. Each region can be partitioned
recursively into more regions, inducing a search hierarchy.

2.1 M-tree
The M-tree [8] is a dynamic (meaning easily updatable) in-

dex structure that provides good performance in secondary
memory. The M-tree is a hierarchical index, where some of
the data points are selected as centers (local pivots) of re-
gions and the rest of the objects are assigned to suitable re-
gions in order to build up a balanced and compact hierarchy
of data regions. Each region (branch of the tree) is indexed
recursively. The data is stored in the leaves of the M-tree,
where each leaf contains ground entries (grnd(Oi), Oi ∈ S).
The internal nodes store routing entries (rout(Oi), Oi ∈ S).



Figure 2: Example of an M-tree.

Starting at the root level, a new object Oi is recursively
inserted into the best subtree T (Oj), which is defined as the
one where the covering radius rOj must increase the least
in order to cover the new object. In case of ties, the subtree
whose center is closest to Oi is selected. The insertion al-
gorithm proceeds recursively until a leaf is reached and Oi

is inserted into that leaf, at each level storing the distance
to the routing object of its parent node (so-called to-parent
distance). Node overflows are managed in a similar way as
in the B-tree. If an insertion produces an overflow, two ob-
jects from the node are selected as new centers, the node is
split, and the two new centers are promoted to the parent
node. If the parent node overflows, the same split procedure
is applied. If the root overflows, it is split and a new root is
created. Thus, the M-tree is a balanced tree (see Figure 2).

Range queries are implemented by traversing the tree,
starting from the root. The nodes which parent region (de-
scribed by the routing entry) is overlapped by the query ball
are accessed (this requires a distance computation). As each
node in the tree (except for the root) contains the distances
from the routing/ground entries to the center of its par-
ent node (the to-parent distances), some of the non-relevant
branches can be further filtered out, without the need of a
distance computation, thus avoiding the “more expensive”
basic overlap check.

2.2 Searching in Multi-Metric Spaces
Usually, a single metric function is used to compute the

similarity between two objects in the metric space. How-
ever, a recent trend to improve the effectiveness of the sim-
ilarity search resorts to use several metric functions. The
(dis)similarity function is computed as a linear combination
of some selected metrics. It follows (from metric spaces the-
ory) that the combined distance function is also a metric.

Definition 1. (linear multi-metric)

Let M = 〈δi〉 be a vector of metric functions, and let W = 〈wi〉
be a vector of weights, with |M| = |W| = m and ∀i wi ∈ [0, 1].
The linear multi-metric (or linear combined metric function)
is defined as

∆W(O1, O2) =

mX
i=1

wi · δi(O1, O2).

A linear multi-metric space is defined as MM = (U, ∆W).
2

Some notes:

• The multi-metric (space) is denoted as “linear” (in the
rest of the paper implicitly assumed), but some other
combinations of metrics can be considered in the fu-
ture, e.g., maximal, multiplicative, etc.

• ∆1.0(·) = ∆W(·) where ∀i wi = 1.

• As a consequence, ∆1.0(·) is an upper-bounding metric
to ∆W(·) (considering shared M and any W).

• The vector of weights W is not included in the defini-
tion of multi-metric (space), in fact, it is a parameter
of ∆. Consequently, we can view a single multi-metric
space as a space covering an infinite number of met-
ric spaces Mi = (U, ∆Wi), where M is fixed for all the
spaces but Wi is unique for each metric defined onMi.

• The structure of the universe U can be either a carte-
sian product of various domains (even a mix of vec-
tor/metric space domains) where each domain is as-
signed to the respective partial metric δi, or a single
“flat” domain allowing the δis to share some portions
of U (even all being defined on entire U). Nevertheless,
in the following we do not need to specify the struc-
ture of U and we assume each partial metric function
δi “knows” its sub-domain within U.

If the weights of the combination are fixed, the multi-
metric space becomes an ordinary metric space and we can
use any standard MAM as an index structure. In our frame-
work, however, the weights are dynamic – computed at
query time – and therefore the metric function is dynamic
and depends on the query objects. This has been shown to
provide the best effectiveness results [2, 3]. Thus, our prob-
lem is to develop a metric index structure that returns the
correct answer to the similarity query, even if the query dis-
tance function is not the same as the distance function used
to build the index (index distance function). The optimal
solution would be to have an index structure for each “fixed
multi-metric”, but this is not practical because it would im-
ply to build an index for each query, which would be more
expensive than performing a sequential scan of the database.

In Section 3, we will describe modifications to the search
algorithms of the standard M-tree, that allow us to use it
with multi-metrics. Then, in Section 4 we will present our
proposed index structure, the M3-tree, which stores par-
tial distances to dynamically estimate an upper bound of
the covering radius with respect to a query-specified metric
function, and to estimate the to-parent distances between
routing objects and child nodes. These estimations will be
used to improve the filtering capability of the index struc-
ture, thus improving the efficiency of the similarity search.

2.3 Related Work
Many indexing methods and algorithms have been pro-

posed for implementing similarity queries in metric and vec-
tor spaces [6, 1]. However, basically all these index struc-
tures have been designed for single metrics, and they do
not support dynamic combinations of metrics at query time.
One exception is the branch-and-bound on decomposed data
(BOND) technique [9], which is a spatial access method



(SAM) that can support queries with combinations of fea-
ture vectors. The BOND index maintains tables with the
coefficients of each dimension for all vectors of the database.
These tables are scanned sequentially at query time, com-
puting lower and upper bounds to the distance from the
query to the stored vectors and discarding those that can-
not belong to the k-NN. The efficiency of the search is im-
proved by scanning on each iteration only the non-discarded
objects, thus at the last stages of the algorithm only a small
part of the database has to be checked. To compute the
lower and upper bound distances, it is necessary to store
an auxiliary table with the partial results. In the worst
case, the auxiliary table has size O(n), thus the scalabil-
ity in database size of this technique is limited. Drawbacks
of this technique are that the similarity measure must be
bounded and it only works in vector spaces.

A MAM specially designed for dynamically weighed com-
binations of metrics is presented in [5]. This index consists
of a set of pivot-based indices, one for each metric, which
can be used to compute the combined pivot table (i.e., the
pivot-based index for the combination of metrics) at query
time, when the weights for the dynamic combination are
known. The main disadvantage of this index is that it is a
main-memory index, and it is not clear how to implement it
efficiently in secondary storage.

The QIC-M-tree [7] is a MAM designed to support user-
defined distance functions. The index is built like a normal
M-tree using an index distance, and queries may be per-
formed using any distance function that is lower bounded
by the index distance. While this index structure may be
used to perform similarity queries in multi-metric spaces, it
is a different approach compared with our proposed index:

• The index distance is an “underscaled” (i.e. not very
tight) lower-bounding distance function of the query
distance in the QIC-M-tree. In our case, the query
distance is a non-scaled lower-bounding distance of the
index distance.

• The QIC-M-tree uses lower bounds of the query dis-
tance to filter out branches of the tree. The M3-tree
computes a tight approximation of the real query dis-
tance (at the cost of a little higher index size), thus
providing a better filtering of the space.

3. ADAPTING M-TREE FOR SEARCH IN
MULTI-METRIC SPACES

The original M-tree needs to be adapted in order to pro-
vide support for multi-metric spaces. The key idea for adapt-
ing the M-tree is the use of ∆1.0 for indexing all objects in
the index (see Figure 3a). Since ∆1.0 is an upper-bound
to any ∆W, the covering radii r1.0 as well as the distances
∆1.0(R, P ) (distance from a routing object to its parent,
the to-parent distance) stored in the M-tree nodes can be
viewed as upper bounds to the appropriate radii rW (dis-
tances ∆W(R, P ), respectively), considering any other “in-
dex distance” ∆W. We start proving some lemmas for the
adapted discarding criteria.

Lemma 1. (basic filtering)

Let (Q, εW) be a range query, where εW is a weighed query
radius. Let (R, r1.0) represents a routing entry in M-tree,
i.e., a data region (note that for ∆W we have defined the

Figure 3: (a) Non-leaf node entries in M-tree. (b)
Basic filtering in M-tree.

“real” covering radius as rW = maxOi∈T (R){∆W(Oi, R)}).
If ∆W(R, Q) > εW + r1.0, the data region is not relevant to
the query and can be filtered out.

Proof: For rW = r1.0 it follows (by triangle inequality)
that no object from (R, rW) can be located in (Q, εW). This
property can be extended to all rW < r1.0, since ∆W is
lower-bounding to ∆1.0, thus objects in (R, rW) are always
more (or equally) distant to Q that in case of ∆1.0 (see Fig-
ure 3b). �

Lemma 1 can be used for basic filtering in M-tree, when
a data region (covering some subtree) is needed to check
against a range query. For this check, the ∆W(R, Q) distance
must be computed.

Lemma 2. (outer parent filtering)

Let P be the parent object of a data region (R, r1.0). If

∆W(P, Q)−∆1.0(R, P ) > r1.0 + εW

the data region is not relevant to the query and can be fil-
tered out.

Proof: The query object is outside the sphere defined by
parent object and radius ∆1.0(R, P ) + r1.0 (see Figure 4a).
This sphere can be directly used for check with the query
(by means of Lemma 1), because the sphere surely covers
the data region (R, r1.0). This property is guaranteed by
the use of the upper bound distance from P to R and by
R’s covering radius upper bound r1.0 , so the sphere is al-
ways more (or equally) distant to the query than any object
in (R, rW). �

Lemma 3. (inner parent filtering)

Let P be the parent object of a data region (R, r1.0). Let
∆lb

W(·) be a lower-bounding distance to ∆W(·). If

∆lb
W(R, P )−∆W(P, Q) > r1.0 + εW

the data region is not relevant to the query and can be fil-
tered.

Proof: The query is entirely inside the sphere defined by
parent object and radius ∆lb

1.0(R, P ) − r1.0 (see Figure 4b).
Because the actual ∆1.0(R, P ) is upper bound of ∆W(R, P ),
the object R is “artificially shifted” from the parent (i.e.,
more than by using ∆W), so we cannot check whether the
query does not overlap (R, rW) by directly using ∆1.0(R, P ).
However, if we use some distance ∆lb

W lower-bounding ∆W
(instead of ∆1.0), we are sure that the “inner border” sep-
arating query and the data region is a lower bound of the
actual border. �



Figure 4: (a) Outer parent filtering in M-tree. (b)
Inner parent filtering.

Lemmas 2 and 3 can be used to avoid the basic check
(provided by Lemma 1). The advantage is that no extra
computation is needed to evaluate the condition in the lem-
mas, so in many cases the data region is filtered out even
without the need of using Lemma 1 (and so without any
distance computation).

Up to now, the approach is generally applicable for any
index distance ∆1.0 and any lower-bounding query distance
∆W (regardless of what the metrics ∆1.0 and ∆W really
mean), in a similar way as in the QIC-M-tree [7].

However, to construct the lower bound to ∆W (needed in
Lemma 3), we can exploit the definition of ∆W (see Section
2.2). To efficiently compute the lower bound, it is preferable
to use some distance already precomputed during the query
evaluation, so that no additional distance computation or an
explicitly specified lower bound distance (passed as a query
parameter) is needed. In the following, we construct such a
lower bound just by using the weights vector W.

Lemma 4. (lower bound to ∆W, optimal scaling constant)

(a) ∆lb(·) = minm
i=1(wi) ·∆1.0(·) is lower bound to ∆W(·).

(b) The scaling constant s = minm
i=1(wi) is the maximal

factor for which ∆lb(·) is still a lower bound of ∆W(·) (i.e.,
such ∆lb is the tightest lower bound of ∆W(·) when used
s ·∆1.0(·)).
Proof: (a) Obviously,

s1δ1(O1, O2) + s2δ2(O1, O2) + · · ·+ smδm(O1, O2)

≤ w1δ1(O1, O2) + w2δ2(O1, O2) + · · ·+ wmδm(O1, O2),

where si ≤ wi,∀wi ∈ W. Since minm
j=1(wj) ≤ wi,∀wi ∈ W,

we get

mX
i=1

m

min
j=1

(wj)δi(·) ≤
mX

i=1

wiδi(·),

hence minm
j=1(wj)

Pm
i=1 δi(·) ≤

Pm
i=1 wiδi(·).

(b) Consider a greater scaling constant s, i.e., ∃wi1 , s > wi1 .
However, there can arise a situation where δi1(O1, O2) �
δij (O1, O2), δij 6= δi1 ,∀j, so multiplying by s could violate
the lower-bounding property even if s � wij ,∀wij 6= wi1 .

�

It is possible that tighter lower bounds may be found, but,
on the other side, this one can be easily computed just by
multiplying a (precomputed) distance ∆1.0(·) by s, so we
avoid an evaluation of an expensive (even though possibly
better) lower bound distance. Moreover, this would lost
its meaning because in such case we can apply directly the

basic filtering, since the parent filtering (which is always less
effective) becomes equally (or more) expensive.

3.1 Similarity Queries
Lemmas 1 to 4 are directly applicable to range queries in

M-tree, because the range query processing is provided by
all the distances needed in conditions of the lemmas. In case
of k-NN queries, the M-tree’s branch-and-bound algorithm
uses a heuristics which treats the k-NN search as a range
search with the extension that the unknown query radius is
determined dynamically during the query processing (it is
continuously decreasing, such that it is in every moment an
upper bound of the distance to the k-th neighbor). Thus,
also in k-NN processing the lemmas are directly applicable.

Due to the lack of space we present just the modified
range query algorithm (see Listing 1), however, the k-NN
algorithm can be modified the same way (for both original
query algorithms on M-tree we refer to [8]).

Listing 1. (modified range query algorithm in M-tree)

QueryResult RangeQuery(Node N , RQuery (Q, εW), W)
{

// if N is root then ∆x(R, P )=∆x(P, Q)=0
let P be the parent routing object of N
let’s denote ∆lb

W(R, P ) = min{W} ·∆1.0(R, P ) // lemma 4

if N is not a leaf then {
for each rout(R) in N do {

if ∆W(P, Q)−∆1.0(R, P ) ≤ r1.0 + εW And // lemma 2

∆lb
W(R, P )−∆W(P, Q) ≤ r1.0 + εW then { // lemma 3

compute ∆W(R, Q)
if ∆W(R, Q) ≤ εW + r1.0 then // lemma 1

RangeQuery(ptr(T (R)), (Q, εW), W)
}

} /* for each ... */
} else {

for each grnd(R) in N do {
if ∆W(P, Q)−∆1.0(R, P ) ≤ εW And // lemma 2

∆lb
W(R, P )−∆W(P, Q) ≤ εW then { // lemma 3

compute ∆W(R, Q)
if ∆W(R, Q) ≤ εW then

add R to the query result
}

} /* for each ... */
}

} /* RangeQuery */

4. M3-TREE
The tightness of upper/lower bounds of data region radii

(and also to-parent distances) stored in the M-tree is heavily
dependent on the actual weights vector W. Obviously, if the
weights are far from 1.0, the upper/lower bounds will be not
very tight, reflecting in larger “volume” of data regions and
leading to worse query performance.

In order to keep the search efficiency weight-independent,
we introduce the Multi-Metric M-tree (M3-tree). The M3-tree
extends the M-tree structure by storing the components of
∆1.0, i.e., the δi-based components of radii as well as of the
to-parent distances are stored separately.

Definition 2. (component-based distance notation)

Let ∆1.0(·, ·).comp(j) stands for the δj partial distance ag-
gregated in ∆1.0(·, ·). Similarly, r1.0.comp(j) stands for the
δj partial distance aggregated in r1.0. When making arith-
metic operations with component-based distances or radii,



the components are treated separately (for example, 9〈2,3,4〉+
21〈6,7,8〉 = 30〈8,10,12〉). 2

Having stored the individual distance components, we can
construct a tighter covering radius upper bound to rW, and
so reduce the volume of regions which delimit the data ob-
jects stored in subtrees of the M3-tree. The following two
lemmas show how the tighter radius upper bound can be
constructed using the distance components.

Lemma 5. (component-based covering radius upper bound)

Let Oi ∈ N be a set of objects, R be a center object. Then
rcub is an upper bound to rW, i.e.,

|N|
max
i=1

{∆W(Oi, R)} ≤
mX

j=1

wj ·
|N|

max
i=1

{∆1.0(Oi, R).comp(j)} .

(= rW over N) (= rcub over N)

Proof: By expanding the statement of covering radius rW,
together with propagating the wj in rcub, we obtain

|N|
max
i=1

(
mX

j=1

wj ·∆1.0(Oi, R).comp(j)

)
≤

≤
mX

j=1

|N|
max
i=1

{wj ·∆1.0(Oi, R).comp(j)}

If we denote wj ·∆1.0(Oi, R).comp(j) as f(i, j), we get

|N|
max
i=1

(
mX

j=1

f(i, j)

)
≤

mX
j=1

|N|
max
i=1

{f(i, j)} ,

which holds for any f , thus the proof is complete. �

Note that a set N of objects Oi ∈ S is considered in Lemma 5
(objects in leaf nodes of M3-tree). However, the lemma can
be generalized also for set of regions (routing entries in non-
leaf nodes) as follows.

Lemma 6. (recursive comp.-based covering radius upper bound)

Let (Ri, r
i
1.0) ∈ N be a set of regions (where ri

1.0 is a cover-
ing radius upper bound of region centered in Ri), and P be
a center object (of a super-region covering N ). Then

|N|
max
i=1

n
∆W(Ri, P ) + ri

W

o
≤

≤
mX

j=1

wj ·
|N|
max
i=1

n
∆1.0(Ri, P ).comp(j) + ri

1.0.comp(j)
o

(= rW over N ) (= rcub over N )

Proof: Follows from Lemma 5 and from the fact that ri
1.0

is an upper bound to ri
W. �

In most cases, rcub is a tighter upper bound to rW than

r1.0 = max
|N|
i=1{∆1.0(Oi, R)} (see Figure 5a). However, in

some cases r1.0 may be tighter than rcub (see Figure 5b),
and so we will use the smaller one, as defined below.

Definition 3. (minimum comp.-based cov. rad. upper bound)

The upper bound of the covering radius is defined as

ru = min{rcub, r1.0},

which is always a tighter upper bound than r1.0. 2

Figure 5: (a) rW < rcub < r1.0 (b) rW < r1.0 < rcub.

With the covering radii upper bound ru, we can reformu-
late the basic filtering into the context of M3-tree.

Lemma 7. (component-wise basic filtering)

Let (Q, εW) be a range query, where εW is a weighed query ra-
dius. Let (R, ru) represents a data region (for ru see Def. 3).
If ∆W(R, Q) > εW + ru, the data region is not relevant to
the query and can be filtered out.

Proof: Follows immediately from Lemma 1 and the defini-
tion of ru. �

Like the covering radii upper bound, we can use the to-
parent distance components to improve the parent filtering.

Definition 4. (comp.-based to-parent dist. lower/upper bound)

Let any dub
P ≥ ∆W(R, P ) =

Pm
i=1 wi · δi(R, P ) be called a

component-based to-parent distance upper bound. Similarly,
let any dlb

P ≤ ∆W(R, P ) = . . . be called a component-based
to-parent distance lower bound. 2

Definition 4 is not required for the following lemma (we
can think about ∆W(R, P ) instead of dub

P or dlb
P ), but we will

find it useful in the subsequent structural description of the
M3-tree.

Lemma 8. (component-wise parent outer/inner filtering)

Let P be the parent object of a region (R, ru). Then if

∆W(P, Q)− dub
P > ru + εW ∨ dlb

P −∆W(P, Q) > ru + εW

the region can be filtered out as non-relevant to the query
(Q, εW).

Proof: The proof is similar as in Lemmas 2, 3 – the only
difference is the usage of ru instead of r1.0, but this is correct
since ru is (tighter but still) an upper bound to rW. �

4.1 M3-tree Structure
The structure of leaf/non-leaf node in M3-tree is presented

in Figure 6. In addition to the standard M-tree content
of routing/ground entries, in entries of M3-tree there are
stored the components of covering radii and of the to-parent
distances.

To keep the storage of radii/to-parent components as small
as possible, these are not stored as floats, but as signatures
(bitstrings of user-defined size). The value of each signature
is interpreted as a scalar proportion of the respective par-
tial radius (to-parent distance) with respect to the aggregate
radius r1.0 (∆1.0(R, P ), resp.). In such a way, we can store
each component by, e.g., 4, 8, 16, or another number of bits.



Figure 6: Structure of M3-tree nodes.

The compact signature representation of radius/to-parent
components is imprecise. Thus, in order to keep the query
evaluation correct when using upper bound of a radius, we
have to overestimate the value by usage of the largest pos-
sible float value represented by the respective partial sig-
nature. Similarly, in case of to-parent distances, the up-
per/lower bound is constructed by over/under-estimating
the value (considering the largest/smallest possible value
represented by signature).

In Lemma 8, we have distinguished between the upper
bound dub

P and lower bound dlb
P to ∆W(R, P ), these were

assumed ahead just with respect to the signature represen-
tation of ∆W(R, P ).

4.2 M3-tree Construction
The M3-tree is constructed the same way as M-tree is, i.e.,

no weights are considered and the ∆1.0 is used for indexing
as an ordinary metric. In addition, along with the aggregate
value ∆1.0(·), the distance components ∆1.0(·).comp(i) are
used to update the radii/to-parent distance representations.

When inserting an object, the covering radii components
in routing entries must be updated after the aggregate cov-
ering radius r1.0 is updated. When splitting a node (or
inserting a ground entry into a leaf), the to-parent com-
ponents are stored along with the aggregate to-parent dis-
tance ∆1.0(R, P ). When splitting, covering radii compo-
nents of the two new routing entries are assembled by taking
the maximum of covering radii components + the to-parent
components of the entries being split.

It should be emphasized that no extra distance compu-
tations are needed for M3-tree construction, the distance
components are obtained as a “by-product” when comput-
ing ∆1.0. There is just a space overhead needed for storage
of the component signatures.

4.3 Similarity Queries in M3-tree
The M3-tree-specific lemmas are used (in addition to the

“old” lemmas) to discard more non-relevant subtrees when
searching. In Listing 2 see the modified algorithm for range
query processing. The k-NN algorithm can be adjusted in a
similar way.

Listing 2. (range query algorithm in M3-tree)

QueryResult RangeQuery(Node N , RQuery (Q, εW), W)
{

// if N is root then ∆x(R, P )=∆x(P, Q)=0
let P be the parent routing object of N
let’s denote ∆lb

W(R, P ) = min{W} ·∆1.0(R, P ) // lemma 4

if N is not a leaf then {
for each rout(R) in N do {

if ∆W(P, Q)−∆1.0(R, P ) ≤ r1.0 + εW And // lemma 2

∆lb
W(R, P )−∆W(P, Q) ≤ r1.0 + εW then { // lemma 3

if ∆W(P, Q)− dub
P ≤ ru + εW And

dlb
P −∆W(P, Q) ≤ ru + εW then { // lemma 8

compute ∆W(R, Q)
if ∆W(R, Q) ≤ εW + ru then // lemma 7

RangeQuery(ptr(T (R)), (Q, εW), W)
}

}
} /* for each ... */

} else {
for each grnd(R) in N do {

if ∆W(P, Q)−∆1.0(R, P ) ≤ εW And // lemma 2

∆lb
W(R, P )−∆W(P, Q) ≤ εW then { // lemma 3

if ∆W(P, Q)− dub
P ≤ εW And

dlb
P −∆W(P, Q) ≤ εW then { // lemma 8

compute ∆W(R, Q)
if ∆W(R, Q) ≤ εW then

add R to the query result
}

}
} /* for each ... */

}
} /* RangeQuery */

5. EXPERIMENTAL EVALUATION
We performed an experimental evaluation of the efficiency

of the M3-tree using two real datasets.

5.1 The Testbed
The first dataset is the Corel image features, available at

the UCI KDD Archive [10]. This database consists of 89-D
feature vectors representing 65,615 Corel images and 1,000
query images (not included in the dataset). Each feature
vector consisted of 4 subvectors (of dimensions 32, 9, 16,
32), representing color histogram, color moments, texture,
and layout histogram. As partial distances aggregated in
∆W, the L1 distance was used, i.e., δi = L1, i ∈ {1, 2, 3, 4}.

A set of query weight vectors (weights interval) was in-
dependently constructed as vectors of random values from
0.2-wide intervals, starting at w = 0.1, increasing by 0.1.
Only one such set of query weight vectors was constructed:

{W0.1 = 〈0.21, 0.21, 0.27, 0.11〉, W0.2 = 〈0.40, 0.33, 0.40, 0.39〉,
W0.3 = 〈0.46, 0.40, 0.40, 0.42〉, W0.4 = 〈0.53, 0.42, 0.58, 0.45〉,
W0.5 = 〈0.55, 0.53, 0.67, 0.60〉, W0.6 = 〈0.75, 0.76, 0.66, 0.61〉,
W0.7 = 〈0.88, 0.86, 0.70, 0.83〉, W0.8 = 〈0.85, 0.82, 0.95, 0.88〉}.

Another set of query weight vectors (weights group) was
created, consisting of 20 generated weight vectors such that:
(a) one of the weights is always 1.0 (b) the lowest weight is
a random number in [w, w +0.1] (c) the rest of weights (i.e.,
the last two) are random numbers in [w, 1.0].

The second dataset is a 3D models database, which con-
tains 1,838 3D objects that we collected from the Internet1.
1Konstanz 3D model search engine.
http://merkur01.inf.uni-konstanz.de/CCCC/



Figure 7: Corel image features: Range queries vary-
ing weights interval.

From this set, 472 objects were used as a query objects and
the rest of 1,366 objects were indexed.

For this dataset, we computed 8 different feature vectors
for 3D models, which include volumetric descriptors (16-
D voxel, 8-D 3DDFT) and image-based descriptors (16-D
depth buffer, 12-D complex, 12-D rays with spherical har-
monics, 8-D silhouette, 6-D shading, and 6-D ray-based).
For a detailed explanation of the implemented 3D feature
vectors, see [4]. We performed a PCA-based dimensional-
ity reduction of the original 3D feature vectors [4] and we
kept between 6 and 16 principal axes for each feature vec-
tor, resulting in an aggregate dimensionality of 84-D. For
this dataset, we also used the L1 distance as metric func-
tion for all 3D feature vectors.

5.1.1 Weights for 3D Models
We implemented a query processor based on the entropy

impurity method [3] to compute the dynamic weights for
each 3D feature vector. This method uses a reference dataset
that is classified in object classes (in our case, we used the
classified subset of the 3D models database). For each fea-
ture vector, a similarity query is performed on the reference
dataset. Then, the entropy impurity is computed looking at
the model classes of the first t retrieved objects: It is equal
to zero if all the first t retrieved objects belong to the same
model class, and it has a maximum value if each of the t
object belongs to a different model class. Let Pωj denote
the fraction of the first t retrieved objects that belong to
model class ωj . The entropy impurity of feature vector i

impurity(i) = −
|#classes|X

j=1


Pωj · log2(Pωj ) if Pωj > 0
0 otherwise

The weight value for feature vector i (i.e., the weight for
the ith metric in the combination) is computed as the in-
verse of the entropy impurity plus one (to avoid dividing by
zero), i.e., wi = 1

1+entropyImpurity(i)
. (We used t = 3 for our

experiments [3].)

Figure 8: Corel image features: 10-NN queries vary-
ing signature size.

5.1.2 Indexing
Besides the adapted M-tree index and the M3-tree used in

all experiments (which were the subjects of evaluation), we
have used the sequential search as the upper baseline. We
have also created multiple M-tree indexes using the query
distance as the index distance, i.e., for each particular W a
standard M-tree was created using the query distance ∆W.
These W-dependent M-trees served us as a lower baseline,
i.e., they show the most efficient query processing (related
to M-trees).

In the figures, we use “M3(x,y)-tree” to denote a single
M3-tree index, where the routing entries consist of m x-bit
signatures for covering radii components and m x-bit sig-
natures for the to-parent distance components (i.e., 2m · x
bits in each routing entry), and the ground entry consists of
m y-bit signatures for the to-parent distance components
(i.e., m · y bits on each ground entry). It follows that
“M3(0,0)-tree” is an ordinary (but adapted) M-tree index.

5.2 Experimental Results
Figure 7 presents range query processing on the Corel im-

age features, where the M3-tree and M-tree indices were
slimmed [13] (the rest of Corel experiments was performed
on non-slimmed indices). The figure shows the number
of distance computations needed to perform range queries
(query radius calculated to have an average selectivity of 10
objects) for the different weight intervals. It clearly shows
that the M3-tree outperforms the adapted M-tree in the
whole range of weight intervals, especially if the weights are
low. This indicates that the lower bound to ∆W proposed in
Lemma 4 is too loose if there is a weight with a value close
to 0.

Figure 8 shows the influence of the signature size (mean-
ing size of distance/radius components) of the M3-tree on
the efficiency of 10-NN queries. The curve denoted as “size
of M3-index” belongs to the right-hand y-axis, and shows
the increase of M3-index filesize with growing signature size
(for a comparison, the sequential file size was 22.3 MB). We
found that, even by using a small amount of bits per partial



Figure 9: Corel image features: 10-NN queries vary-
ing weights group.

distance, the proposed index structure can achieve a very
good efficiency performance. Indeed, the efficiency of the
M3-tree quickly approaches the efficiency of having multi-
ples M-trees, one for each possible combination of metrics.

Figure 9 presents distance computations needed to per-
form 10-NN queries, but now using the weights groups. Fig-
ure 10 shows the I/O cost (the unit of I/O was a single 8kB
page read) while performing k-NN queries (1 ≤ k ≤ 50) with
a single fixed weights group. The results are similar to those
previously presented (M3-tree outperforms the adapted M-
tree in distance computations and disk page accesses).

Figure 11 presents the efficiency of k-NN querying (vary-
ing k) for the 3D models database (we have used slimmed
indices for all “3D experiments”). In Figure 12 see the effect
of increasing signature size with 10-NN queries on retrieval
efficiency as well as on the index size (the sequential file
size was 450kB). With this database, the experimental re-
sults also show that the M3-tree is more close in efficiency
to the lower baseline than the adapted M-tree. Moreover,
the adapted M-tree turned out to be slower than a sequen-
tial scan. On the other side, we must realize the available
3D database was very small – we expect that by using a
larger database the M3-tree as well as the adapted M-tree
will achieve a considerably better efficiency.

6. CONCLUSIONS
In this paper, we presented two index structures specially

designed for dynamic multi-metric spaces. In these spaces,
the metric function used to perform the similarity query (the
so-called query distance) corresponds to a dynamic combi-
nation of metrics, thus the metric function may change on
each performed query. The index is built using a fixed com-
bined metric (the index distance) that is an upper-bounding
distance function of the query distance.

Firstly, we described an adapted M-tree for multi-metric
spaces. We formally proved that the usual filtering crite-
ria holds on the adapted M-tree, independently of the used
query distance. Secondly, we depicted the M3-tree, a further
adaption of the original M-tree with considerably better per-

Figure 10: Corel image features: k-NN queries with
fixed weights group.

formance than the adapted M-tree. The M3-tree store par-
tial distances (one for each metric function belonging to the
combination) to dynamically estimate, for each performed
query, the new covering radius of the space regions and the
new distances from parent to children nodes.

Our work differs to previous related work in the sense
that: (a) We provide a dynamic index structure for multi-
metric spaces (b) The adapted M-tree use a lower bound of
the query distance to apply some of the discarding criteria.
The M3-tree computes a tight approximation of this distance
(using the stored partial distances), thus providing a better
filtering.

The experimental results clearly show that a single M3-tree
index is almost as good as if we have infinitely many M-trees
indexes at our disposal (M-trees built for every possible vec-
tor of query weights).

6.1 Future Work
We plan to adapt the PM-tree [14], a MAM that combines

the M-tree with the pivot-based approach, for the multi-
metric space case. For this purpose, we will merge the tech-
niques presented in this paper and the ones described in [5]
(pivot-based index for multi-metrics). We expect that, by
combining all these technique in one index structure, we will
be able to further improve the efficiency of the M3-tree.

Although we do not expect that the QIC-M-tree outper-
forms the M3-tree, considering that the experimental per-
formance of our proposed index was very close to the lower
baseline (multiple standard M-trees), we also plan to per-
form an experimental comparison of the efficiency of both
index structures.

An important subject for future research is the “number
of metrics curse” (in comparison with the “dimensionality
curse” in multi-dimensional spaces [1]). We do not know
at the moment whether it is a curse or not, but we expect
that with increasing number of metrics the efficiency of the
M3-tree will decrease.

We would also like to compare the effectiveness of multi-
metric approach with various non-metric approaches [12].



Figure 11: 3D models: k-NN queries.

Because the multi-metrics allow dynamic weights at query
time, there is a possibility of much rich similarity measur-
ing and retrieval, which is currently provided by non-metric
measures (especially in multimedia retrieval).
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Abstract. The retrieval of objects from a multimedia database employs
a measure which defines a similarity score for every pair of objects. The
measure should effectively follow the nature of similarity, hence, it should
not be limited by the triangular inequality, regarded as a restriction in
similarity modeling. On the other hand, the retrieval should be as ef-
ficient (or fast) as possible. The measure is thus often restricted to a
metric, because then the search can be handled by metric access meth-
ods (MAMs). In this paper we propose a general method of non-metric
search by MAMs. We show the triangular inequality can be enforced for
any semimetric (reflexive, non-negative and symmetric measure), result-
ing in a metric that preserves the original similarity orderings (retrieval
effectiveness). We propose the TriGen algorithm for turning any black-
box semimetric into (approximated) metric, just by use of distance dis-
tribution in a fraction of the database. The algorithm finds such a metric
for which the retrieval efficiency is maximized, considering any MAM.

1 Introduction

In multimedia databases the semantics of data objects is defined loosely, while for
querying such objects we usually need a similarity measure standing for a judging
mechanism of how much are two objects similar. We can observe two particular
research directions in the area of content-based multimedia retrieval, however,
both are essential. The first one follows the subject of retrieval effectiveness,
where the goal is to achieve query results complying with the user’s expectations
(measured by the precision and recall scores). As the effectiveness is obviously
dependent on the semantics of similarity measure, we require the possibilities of
similarity measuring as rich as possible, thus, the measure should not be limited
by properties regarded as restrictive for similarity modeling.

Following the second direction, the retrieval should be as efficient (or fast) as
possible, because the number of objects in a database can be large and the simi-
larity scores are often expensive to compute. Therefore, the similarity measure is
often restricted by metric properties, so that retrieval can be realized by metric
access methods. Here we have reached the point. The ”effectiveness researchers”
claim the metric properties, especially the triangular inequality, are too restric-
tive. However, the ”efficiency researchers” reply the triangular inequality is the
most powerful tool to keep the search in a database efficient.



In this paper we show the triangular inequality is not restrictive for similarity
search, since every semimetric can be modified into a suitable metric and used
for the search instead. Such a metric can be constructed even automatically, just
with a partial information about distance distribution in the database.

1.1 Preliminaries

Let a multimedia object O be modeled by a model object O ∈ U, where U is a
model universe. A multimedia database is then represented by a dataset S ⊂ U.

Definition 1 (similarity & dissimilarity measure)
Let s : U × U 7→ R be a similarity measure, where s(Oi, Oj) is considered as a
similarity score of objects Oi and Oj . In many cases it is more suitable to use
a dissimilarity measure d : U × U 7→ R equivalent to a similarity measure s as
s(Q,Oi) > s(Q,Oj) ⇔ d(Q, Oi) < d(Q,Oj). A dissimilarity measure assigns a
higher score (or distance) to less similar objects, and vice versa.

The measures often satisfy some of the metric properties. The reflexivity
(d(Oi, Oj) = 0 ⇔ Oi = Oj) permits the zero distance just for identical objects.
Both reflexivity and non-negativity (d(Oi, Oj) ≥ 0) guarantee every two distinct
objects are somehow positively dissimilar. If d satisfies reflexivity, non-negativity
and symmetry (d(Oi, Oj) = d(Oj , Oi)), we call d a semimetric. Finally, if a
semimetric d satisfies also the triangular inequality (d(Oi, Oj) + d(Oj , Ok) ≥
d(Oi, Ok)), we call d a metric (or metric distance). This inequality is a kind of
transitivity property; it says if Oi, Oj and Oj , Ok are similar, then also Oi, Ok

are similar. If there is an upper bound d+ such that d : U×U 7→ 〈0, d+〉, we call
d a bounded metric. The pair M = (U, d) is called a (bounded) metric space. 2

Definition 2 (triangular triplet)
A triplet (a, b, c), a, b, c ≥ 0, a + b ≥ c, b + c ≥ a, a + c ≥ b, is called a triangular
triplet. Let (a, b, c) be ordered as a ≤ b ≤ c, then (a, b, c) is an ordered triplet. If
a ≤ b ≤ c and a + b ≥ c, then (a, b, c) is called an ordered triangular triplet. 2

A metric d generates just the (ordered) triangular triplets, i.e. ∀Oi, Oj , Ok ∈ U,
(d(Oi, Oj), d(Oj , Ok), d(Oi, Ok)) is triangular triplet. Conversely, if a measure
generates just the triangular triplets, then it satisfies the triangular inequality.

1.2 Similarity Queries

In the following we consider the query-by-example concept; we look for objects
similar to a query object Q ∈ U (Q is derived from an example object). Necessary
to the query-by-example retrieval is a notion of similarity ordering, where the
objects Oi ∈ S are ordered according to the distances to Q. For a particular
query there is specified a portion of the ordering returned as the query result.
The range query and the k nearest neighbors (k-NN) query are the most popular
ones. A range query (Q, rQ) selects objects from the similarity ordering for which
d(Q, Oi) ≤ rQ, where rQ ≥ 0 is a distance threshold (or query radius). A k-NN
query (Q, k) selects the k most similar objects (first k objects in the ordering).



1.3 Metric Access Methods

Once we have to search according to a metric d, we can use the metric access
methods (MAMs) [5], which organize (or index) a given dataset S in a way that
similarity queries can be processed efficiently by use of a metric index, hence,
without the need of searching the entire dataset S. The main principle behind
all MAMs is a utilization of the triangular inequality (satisfied by any metric),
due to which MAMs can organize the objects of S in distinct classes. When a
query is processed, only the candidate classes are searched (such classes which
overlap the query), so the searching becomes more efficient (see Figure 1a).

In addition to the number of distance computations d(·, ·) needed (the com-
putation costs), the retrieval efficiency is affected also by the I/O costs. To mini-
mize the search costs, i.e. to increase the retrieval efficiency, there were developed
many MAMs for different scenarios (e.g. designed to secondary storage or main
memory management). Besides others we name M-tree, vp-tree, LAESA (we refer
to a survey [5]), or more recent ones, D-index [9] and PM-tree [27].

Fig. 1. Search by MAMs (a), DDHs indicating low (b) and high (c) intrinsic dim.

1.4 Intrinsic Dimensionality

The metric access methods are not successful for all datasets and all metrics;
the retrieval efficiency is heavily affected by distance distribution in the dataset.
Given a dataset S and a metric d, the efficiency limits of any MAM are indicated
by the intrinsic dimensionality, defined as ρ(S, d) = µ2

2σ2 , where µ and σ2 are the
mean and the variance of the distance distribution in S (proposed in [4]). In Fig-
ures 1b,c see an example of distance distribution histograms (DDHs) indicating
low (ρ = 3.61) and high (ρ = 42.35) intrinsic dimensionalities.

The intrinsic dimensionality is low if there exist tight clusters of objects.
Conversely, if all the indexed objects are almost equally distant, then intrinsic
dimensionality is high, which means the dataset is poorly intrinsically structured.
A high ρ value says that many (even all) of MAM’s classes created on S are
overlapped by every possible query, so that processing deteriorates to sequential
search in all the classes. The problem of high intrinsic dimensionality is, in fact,
a generalization of the curse of dimensionality [31, 4] into metric spaces.

1.5 Theories of Similarity Modeling

The metric properties have been argued against as restrictive in similarity mod-
eling [25, 28]. In particular, the reflexivity and non-negativity have been refuted



[21, 28] by claiming that different objects could be differently self-similar. Never-
theless, these are the less problematic properties. The symmetry was questioned
by showing that a prototypical object can be less similar to an indistinct one
than vice versa [23, 24]. The triangular inequality is the most attacked property
[2, 29]. Some theories point out the similarity has not to be transitive. Demon-
strated by the well-known example, a man is similar to a centaur, the centaur is
similar to a horse, but the man is completely dissimilar to the horse.

1.6 Examples of Non-Metric Measures

In the following we name several dissimilarity measures of two kinds, proved to
be effective in similarity search, but which violate the triangular inequality.

Robust Measures. A robust measure is resistant to outliers – anomalous
or ”noisy” objects. For example, various k-median distances measure the kth
most similar portion of the compared objects. Generally, a k-median distance
d is of form d(O1, O2) = k–med(δ1(O1, O2), δ2(O1, O2), . . . , δn(O1, O2)), where
δi(O1, O2) is a distance between O1 and O2, considering the ith portion of the
objects. Among the partial distances δi the k–med operator returns the kth small-
est value. As a special k-median distance derived from the Hausdorff metric, the
partial Hausdorff distance (pHD) has been proposed for shape-based image re-
trieval [17]. Given two sets S1,S2 of points (e.g. two polygons), the partial Haus-
dorff distance uses δi(S1,S2) = dNP(Si

1,S2), where dNP is the Euclidean (L2)
distance of the ith point in S1 to the nearest point in S2. To keep the distance
symmetric, pHD is the maximum, i.e. pHD(S1,S2) = max(d(S1,S2), d(S2,S1)).
Similar to pHD is another modification of Hausdorff metric, used for face detec-
tion [20], where the average of dNP distances is considered, instead of k-median.

The time warping distance for sequence aligning has been used in time series
retrieval [33], and even in shape retrieval [3]. The fractional Lp distances [1] have
been suggested for robust image matching [10] and retrieval [16]. Unlike classic
Lp metrics (Lp(u, v) = (

∑n
i=1 |ui−vi|p)

1
p , p ≥ 1), the fractional Lp distances use

0 < p < 1, which allows us to inhibit extreme differences in coordinate values.

Complex Measures. In the real world, the algorithms for similarity measuring
are often complex, even adaptive or learning. Moreover, they are often imple-
mented by heuristic algorithms which combine several measuring strategies. Ob-
viously, an analytic enforcement of triangular inequality for such measures can
be simply too difficult. The COSIMIR method [22] uses a back-propagation neu-
ral network for supervised similarity modeling and retrieval. Given two vectors
u, v ∈ S, the distance between u and v is computed by activation of three-
layer network. This approach allows to train the similarity measure by means
of user-assessed pairs of objects. Another example of complex measure can be
the matching by deformable templates [19], utilized in handwritten digits recog-
nition. Two digits are compared by deforming the contour of one to fit the edges
of the other. The distance is derived from the amount of deformation needed,
the goodness of edges fit, and the interior overlap between the deformed shapes.



1.7 Paper Contributions

In this paper we present a general approach to efficient and effective non-metric
search by metric access methods. First, we show that every semimetric can be
non-trivially turned into metric and used for similarity search by MAMs. To
achieve this goal, we modify the semimetric by a suitable triangle-generating
modifier. In consequence, we also claim the triangular inequality is completely
unrestrictive with respect to the effectiveness of similarity search. Second, we
propose the TriGen algorithm for automatic conversion of any ”black-box” semi-
metric (i.e. semimetric given in a non-analytic form) into (approximated) metric,
such that intrinsic dimensionality of the indexed dataset is kept as low as possi-
ble. The optimal triangle-generating modifier is found by use of predefined base
modifiers and by use of distance distribution in a (small) portion of the dataset.

2 Related Work

The simplest approach to non-metric similarity search is the sequential search
of the entire dataset. The query object is compared against every object in the
dataset, resulting in a similarity ordering which is used for the query evaluation.
The sequential search often provides a baseline for other retrieval methods.

2.1 Mapping Methods

The non-metric search can be indirectly carried out by various mapping methods
[11, 15] (e.g. MDS, FastMap, MetricMap, SparseMap). The dataset S is em-
bedded into a vector space (Rk, δ) by a mapping F : S 7→ Rk, where the dis-
tances d(·, ·) are (approximately) preserved by a cheap vector metric δ (often
the L2 distance). Sometimes the mapping F is required to be contractive, i.e.
δ(F (Oi), F (Oj)) ≤ d(Oi, Oj), which allows to filter out some irrelevant objects
using δ, but some other irrelevant objects, called false hits, must be re-filtered
by d (see e.g. [12]). The mapped vectors can be indexed/retrieved by any MAM.

To say the drawbacks, the mapping methods are expensive, while the dis-
tances are preserved only approximately, which leads to false dismissals (i.e.
to relevant objects being not retrieved). The contractive methods eliminate the
false dismissals but suffer from a great number of false hits (especially when k
is low), which leads to lower retrieval efficiency. In most cases the methods need
to process the dataset in a batch, so they are suitable for static MAMs only.

2.2 Lower-Bounding Metrics

To support similarity search by a non-metric distance dQ, the QIC-M-tree [6] has
been proposed as an extension of the M-tree (the key idea is applicable also to
other MAMs). The M-tree index is built by use of an index distance dI , which is
a metric lower-bounding the query distance dQ (up to a scaling constant SI→Q),
i.e. dI(Oi, Oj) ≤ SI→Q dQ(Oi, Oj),∀Oi, Oj ∈ U. As dI lower-bounds dQ, a query



can be partially processed by dI (which, moreover, could be much cheaper than
dQ), such that many irrelevant classes of objects (subtrees in M-tree) are filtered
out. All objects in the non-filtered classes are compared against Q using dQ.
Actually, this approach is similar to the usage of contractive mapping methods
(dI is an analogy to δ), but here the objects generally need not to be mapped
into a vector space. However, this approach has two major limitations. First, for
a given non-metric distance dQ there was not proposed a general way how to find
the metric dI . Although dI could be found ”manually” for a particular dQ (as
in [3]), this is not easy for dQ given as a black box (an algorithmically described
one). Second, the lower-bounding metric should be as tight approximation of dQ

as possible, because this ”tightness” heavily affects the intrinsic dimensionality,
the number of MAMs’ filtered classes, and so the retrieval efficiency.

2.3 Classification

Quite many attempts to non-metric nearest neighbor (NN) search have been
tried out in the classification area. Let us recall the basic three steps of clas-
sification. First, the dataset is organized in classes of similar objects (by user
annotation or clustering). Then, for each class a description consisting of the
most representative object(s) is created; this is achieved by condensing [14] or
editing [32] algorithms. Third, the NN search is accomplished as a classification of
the query object. Such a class is searched, to which the query object is ”nearest”,
since there is an assumption the nearest neighbor is located in the ”nearest class”.
For non-metric classification there have been proposed methods enhancing the
description of classes (step 2). In particular, condensing algorithms producing
atypical points [13] or correlated points [18] have been successfully applied.

The drawbacks of classification-based methods reside in static indexing and
limited scalability, while the querying is restricted just to approximate (k-)NN.

3 Turning Semimetric into Metric

In our approach, a given dissimilarity measure is turned into a metric, so that
MAMs can be directly used for the search. This idea could seem to disclaim the
results of similarity theories (mentioned in Section 1.5), however, we must realize
the task of similarity search employs only a limited modality of similarity
modeling. In fact, in similarity search we just need to order the dataset objects
according to a single query object and pick the most similar ones. Clearly, if we
find a metric for which such similarity orderings are the same as for the original
dissimilarity measure, we can safely use the metric instead of the measure.

3.1 Assumptions

We assume d satisfies reflexivity and non-negativity but, as we have mentioned in
Section 1.5, these are the less restrictive properties and can be handled easily; e.g.
the non-negativity is satisfied by a shift of the distances, while for the reflexivity



property we require every two non-identical objects are at least d−-distant (d− is
some positive distance lower bound). Furthermore, searching by an asymmetric
measure δ could be partially provided by a symmetric measure d, e.g. d(Oi, Oj) =
min{δ(Oi, Oj), δ(Oj , Oi)}. Using the symmetric measure some irrelevant objects
can be filtered out, while the original asymmetric measure δ is then used to rank
the remaining non-filtered objects. In the following we assume the measure d is a
bounded semimetric, nevertheless, this assumption is introduced just for clarity
of the following presentation. Finally, as d is bounded by d+, we can further
simplify the semimetric such that it assigns distances from 〈0, 1〉. This can be
achieved simply by scaling the original value d(Oi, Oj) to d(Oi, Oj)/d+. The
same way a range query radius rQ must be scaled to rQ/d+, when searching.

3.2 Similarity-Preserving Modifications

Based on the assumptions, the only property we have to solve is the triangular
inequality. To do so, we apply some special modifying function on the semimetric,
such that the original similarity orderings are preserved.

Definition 3 (similarity-preserving modification)
Given a measure d, we call df (Oi, Oj) = f(d(Oi, Oj)) a similarity-preserving
modification of d (or SP-modification), where f , called the similarity-preserving
modifier (or SP-modifier), is a strictly increasing function for which f(0) = 0.
Again, for clarity reasons we assume f is bounded, i.e. f : 〈0, 1〉 7→ 〈0, 1〉. 2

Definition 4 (similarity ordering)
We define SimOrderd : U 7→ 2U×U, ∀Oi, Oj , Q ∈ U as 〈Oi, Oj〉 ∈ SimOrderd(Q) ⇔
d(Q,Oi) < d(Q,Oj), i.e. SimOrderd orders objects by their distances to Q. 2

Lemma 1

Given a metric d and any df , then SimOrderd(Q) = SimOrderdf (Q),∀Q ∈ U.
Proof: As f is increasing, then ∀Q, Oi, Oj ∈ U it follows that
d(Q,Oi) > d(Q,Oj) ⇔ f(d(Q, Oi)) > f(d(Q,Oj)). �

In other words, every SP-modification df preserves the similarity orderings gen-
erated by d. Consequently, if a query is processed sequentially (by comparing all
objects in S to the query object Q), then it does not matter if we use either d or
any df , because both ways induce the same similarity orderings. Naturally, the
radius rQ of a range query must be modified to f(rQ), when searching by df .

3.3 Triangle-Generating Modifiers

To obtain a modification forcing a semimetric to satisfy the triangular inequality,
we have to use some special SP-modifiers based on metric-preserving functions.



Definition 5 (metric-preserving SP-modifier)
A SP-modifier f is metric-preserving if for every metric d the SP-modification
df preserves the triangular inequality, i.e. df is also metric. Such a SP-modifier
must be additionally subadditive (f(x) + f(y) ≥ f(x + y),∀x, y). 2

Lemma 2
(a) Every concave SP-modifier f is metric-preserving.
(b) Let (a, b, c) be a triangular triplet and f be metric-preserving,
then (f(a), f(b), f(c)) is a triangular triplet as well.
Proof: For the proof and for more about metric-preserving functions see [8]. �

To modify a semimetric into metric, we have utilized a class of metric-preserving
SP-modifiers, denoted as the triangle-generating modifiers.

Fig. 2. (a) Several TG-modifiers. Regions Ω, Ωf ; (b) f(x) = x
3
4 (c) f(x) = sin(π

2
x)

Definition 6 (triangle-generating modifier)
Let a strictly concave SP-modifier f be called a triangle-generating modifier (or
TG-modifier). Having a TG-modifier f , let a df be called a TG-modification. 2

The TG-modifiers (see examples in Figure 2a) not only preserve the trian-
gular inequality, they can even enforce it, as follows.

Theorem 1
Given a semimetric d, then there always exists a TG-modifier f , such that the
SP-modification df is a metric.
Proof: We show that every ordered triplet (a, b, c) generated by d can be turned
by a single TG-modifier f into an ordered triangular triplet.
1. As every semimetric is reflexive and non-negative, it generates ordered triplets
just of forms (0, 0, 0), (0, c, c), and (a, b, c), where a, b, c > 0. Among these, just
the triplets (a, b, c), 0 < a ≤ b < c, can be non-triangular. Hence, it is sufficient
to show how to turn such triplets by a TG-modifier into triangular ones.
2. Suppose an arbitrary TG-modifier f1. From TG-modifiers’ properties it follows
that f1(a)

f1(c)
> a

c , f1(b)
f1(c)

> b
c , hence f1(a)+f1(b)

f1(c)
> a+b

c (theory of concave functions).
If (f1(a) + f1(b))/f1(c) ≥ 1, the triplet (f1(a), f1(b), f1(c)) becomes triangular



(i.e. f1(a) + f1(b) ≥ f1(c) is true). In case there still exist triplets which have
not become triangular after application of f1, we take another TG-modifier f2

and compose f1 and f2 into f∗(x) = f2(f1(x)). The compositions (or nestings)
f∗(x) = fi(. . . f2(f1(x)) . . .) are repeated until f∗ turns all triplets generated by
d into triangular ones – then f∗ is the single TG-modifier f we are looking for. �

The proof shows the more concave TG-modifier we apply, the more triplets
become triangular. This effect can be visualized by 3D regions in the space
〈0, 1〉3 of all possible distance triplets, where the three dimensions represent the
distance values a,b,c, respectively. In Figures 2b,c see examples of region1 Ω of
all triangular triplets as the dotted-line area. The super-region Ωf (the solid-line
area) represents all the triplets which become (or remain) triangular after the
application of TG-modifier f(x) = x

3
4 and f(x) = sin(π

2 x), respectively.

3.4 TG-Modifiers Suitable for Metric Search

Although there exist infinitely many TG-modifiers which turn a semimetric d
into a metric df , their properties can be quite different with respect to the
efficiency of search by MAMs. For example, f(x) =

(
0 (for x = 0)
x+d+

2 (otherwise)
turns every

d+-bounded semimetric d into a metric df . However, such a metric is useless for
searching, since all classes of objects maintained by a MAM are overlapped by
every query, so the retrieval deteriorates to sequential search. This behavior is
also reflected in high intrinsic dimensionality of S with respect to df .

In fact, we look for an optimal TG-modifier, i.e. a TG-modifier which turns
only such non-triangular triplets into triangular ones, which are generated by d.
The non-triangular triplets which are not generated by d should remain non-
triangular (the white areas in Figures 2b,c), since such triplets represent the
”decisions” used by MAMs for filtering of irrelevant objects or classes. The more
often such decisions occur, the more efficient the search is (and the lower the
intrinsic dimensionality of S is). As an example, given two vectors u, v of dimen-
sionality n, the optimal TG-modifier for semimetric d(u, v) =

∑n
i=1 |ui − vi|2 is

f(x) =
√

x, turning d into the Euclidean (L2) distance.
From another point of view, the concavity of f determines how much the

object clusters (MAMs’ classes respectively) become indistinct (overlapped by
other clusters/classes). This can be observed indirectly in Figure 2a, where the
concave modifiers make the small distances greater, while the great distances
remain great; i.e. the mean of distances increases, whereas the variance decreases.
To illustrate this fact, we can reuse the example back in Figures 1b,c, where the
first DDH was sampled for d1 = L2, while the second one was sampled for a
modification d2 = Lf

2 , f(x) = x
1
4 .

In summary, given a dataset S, a semimetric d, and a TG-modifier f , the
intrinsic dimensionality is always higher for the modification df than for d, i.e.
ρ(S, df ) > ρ(S, d). Therefore, an optimal TG-modifier should minimize the in-
crease of intrinsic dimensionality, yet generate the necessary triangular triplets.
1 The 2D representations of Ω and Ωf regions are c-cuts of the real 3D regions.



4 The TriGen Algorithm

The question is how to find the optimal TG-modifier f . Had we known an an-
alytical form of d, we could find the TG-modifier ”manually”. However, if d is
implemented by an algorithm, or if the analytical form of d is too complex (e.g.
the neural network representation used by COSIMIR), it could be very hard to
determine f analytically. Instead, our intention is to find f automatically, re-
gardless of analytical form of d. In other words, we consider a given semimetric
d generally as a black box that returns a distance value from a two-object input.

The idea of automatic determination of f makes use of the distance distri-
bution in a sample S∗ of the dataset S. We take m ordered triplets, where each
triplet (a, b, c) stores distances between some objects Oi, Oj , Ok ∈ S∗ ⊆ S, i.e.
(a=d(Oi, Oj), b=d(Oj , Ok), c=d(Oi, Ok)). Some predefined base TG-modifiers fi

(or TG-bases) are then applied on the triplets; for each triplet (a, b, c) a modified
triplet (fi(a), fi(b), fi(c)) is obtained. The triangle-generating error ε∆ (or TG-
error) is computed as the fraction of triplets remaining non-triangular, ε∆ =
mnt

m , where mnt is the number of modified triplets remaining non-triangular. Fi-
nally, such fi are selected as candidates for the optimal TG-modifier, for which
ε∆ = 0 or, possibly, ε∆ ≤ θ (where θ is a TG-error tolerance). To control the
degree of concavity, the TG-bases fi are parameterizable by a concavity weight
w ≥ 0, where w = 0 makes every fi the identity, i.e. fi(x, 0) = x, while with
increasing w the concavity of fi increases as well (a more concave fi decreases
mnt; it turns more triplets into triangular ones). In such a way any TG-base can
be forced by an increase of w to minimize the TG-error ε∆ (possibly to zero).

Among the TG-base candidates the optimal TG-modifier (fi, w) is chosen
such that ρ(S∗, df∗(x,w∗)) is as low as possible. The TriGen algorithm (see List-
ing 1) takes advantage of halving the concavity interval 〈wLB, wUB〉 or doubling
the upper bound wUB, in order to quickly find the optimal concavity weight w
for a TG-base f∗. To keep the computation scalable, the number of iterations
(in each iteration w is improved) is limited to e.g. 24 (the iterLimit constant).

Listing 1 (the TriGen algorithm)

Input: semimetric d, set F of TG-bases, sample S∗, TG-error tolerance θ, iteration limit iterLimit
Output: optimal f , w

f = w = null; minIDim = ∞ 1
sample m distance triplets into a set T (from S∗ using d) 2
for each f∗ in F 3

wLB = 0; wUB = ∞; w∗ = 1; wbest = -1; i = 0 4
while i < iterLimit 5

if TGError(f∗,w∗,T ) ≤ θ then wUB = wbest = w∗ else wLB = w∗ 6
if wUB 6= ∞ then w∗ = (wLB + wUB)/2 else w∗ = 2 * w∗ 7
i = i + 1; 8

end while 9
if wbest ≥ 0 then 10

idim = IDim(f∗,wbest,T ) 11
if idim < minIDim then f = f∗; w = wbest; minIDim = idim 12

end if 13
end for 14

In Listing 2 the TGError function is described. The TG-error ε∆ is computed by
taking m distance triplets from the dataset sample S∗ onto which the examined



TG-base f∗ together with the current weight w∗ is applied. The distance triplets
are sampled only once – at the beginning of the TriGen’s run – whereas the
modified triplets are recomputed for each particular f∗, w∗.

The not-listed function IDim (computing ρ(S∗, df∗(x,w∗)) makes use of the
previously obtained modified triplets as well, however, the values in the triplets
are used independently; just for evaluation of the intrinsic dimensionality.

Listing 2 (the TGError function)

Input: TG-base f∗, concavity weight w∗, set T of m sampled distance triplets
Output: TG-error ε∆

mnt = 0 1
for each ot in T // ”ot” stands for ”ordered triplet” 2

if f∗(ot.a, w∗) + f∗(ot.b, w∗) < f∗(ot.c, w∗) then mnt = mnt + 1 3
end for 4
ε∆ = mnt / m 5

4.1 Sampling the Distance Triplets

Initially, we have n objects in the dataset sample S∗. Then we create an n × n
distance matrix for storage of pairwise distances dij = d(Oi, Oj) between the
sampled objects. In such a way we are able to obtain up to m =

(
n
3

)
distance

triplets for at most n(n−1)
2 distance computations. Thus, to obtain a sufficiently

large number of distance triplets, the dataset sample S∗ needs to be quite small.
Each of the m distance triplets is sampled by a random choice of three among the
n objects, while the respective distances are retrieved from the matrix. Naturally,
the values in the matrix could be computed ”on-demand”, just in the moment
a distance retrieval is requested. Since d is symmetric, the sub-diagonal half of
the matrix can be used for storage of the modified distances df

ji = f∗(dij , w
∗),

however, these are recomputed for each particular f∗, w∗. As in case of distances,
also the modified distances can be computed ”on-demand”.

4.2 Time Complexity Analysis (simplified)

Let |S∗| be the number of objects in the sample S∗, m be the number of sampled
triplets, and O(d) be the complexity of single distance computation. The com-
plexity of f(·) computation is supposed O(1). The overall complexity of TriGen
is then O(|S∗|2 ∗ O(d)+iterLimit∗|F| ∗m), i.e. the distance matrix computation
plus the main algorithm. The number of TG-bases |F| as well as the number
of iterations (variable iterLimit) are assumed as (small) constants, hence we get
O(|S∗|2 ∗ O(d) + m). The size of S∗ and the number m affect the precision of
TGError and IDim values, so we can trade off the TriGen’s complexity and the
precision by choosing |S∗| = O(1), O(|S|) and m = O(1), O(|S∗|), or e.g. O(|S∗|2).

4.3 Default TG-Bases

We propose two general-purpose TG-bases for the TriGen algorithm. The simpler
one, the Fractional-Power TG-base (or FP-base), is defined as FP(x, w) = x

1
1+w ,



see Figure 3a. The advantage of FP-base is there always exists a concavity weight
w for which the modified semimetric becomes metric, i.e. the TriGen will al-
ways find a solution (after a number of iterations). Furthermore, when using the
FP-base, the semimetric d needs not to be bounded. A particular disadvantage
of the FP-base is that its concavity is controlled globally, just by the weight w.

Fig. 3. (a) FP-base (b) RBQ(a,b)-base

As a more flexible TG-base, we have utilized the Rational Bézier Quadratic
curve. To derive a proper TG-base from the curve, the three Bézier points are
specified as (0, 0), (a, b), (1, 1), where 0 ≤ a < b ≤ 1, see Figure 3b. The Rational
Bézier Quadratic TG-base (simply RBQ-base) is defined as RBQ(a,b)(x,w) =
−(Ψ − x + wx− aw) · (−2bwx + 2bw2x− 2abw2 + 2bw − x + wx− aw + Ψ(1−
2bw))/(−1 + 2aw− 4awx− 4a2w2 + 2aw2 + 4aw2x + 2wx− 2w2x + 2Ψ(1−w)),
where Ψ =

√
−x2 + x2w2 − 2aw2x + a2w2 + x. The additional RBQ parameters

a, b (the second Bézier point) are treated as constants, i.e. for various a, b values
(see the dots in Figure 3b) we get multiple RBQ-bases, which are all individually
inserted into the set F of TriGen’s input. To keep the RBQ evaluation correct,
a possible division by zero or Ψ2 < 0 is prevented by a slight shift of a or w.
The advantage of RBQ-bases is the place of maximal concavity can be controlled
locally by a choice of (a, b), hence, for a given concavity weight w∗ we can achieve
lower value of either ρ(S∗, df∗(x,w∗)) or ε∆ just by choosing different a, b.

As a particular limitation, for usage of RBQ-bases the semimetric d must be
bounded (due to the third Bézier point (1,1)). Furthermore, for an RBQ-base
with (a, b) 6= (0, 1) the TG-error ε∆ could be generally greater than the TG-error
tolerance θ, even in case w → ∞. Nevertheless, having the FP-base or the
RBQ(0,1)-base in F , the TriGen will always find a TG-modifier such that ε∆ ≤ θ.

4.4 Notes on the Triangular Inequality

As we have shown, the TriGen algorithm produces a TG-modifier which gener-
ates the triangular inequality property for a particular semimetric d. However, we
have to realize the triangular inequality is generated just according to the dataset
sample S∗ (to the sampled distance triplets, actually). A TG-modification df be-
ing metric according to S∗ has not to be a ”full metric” according to the entire
dataset S (or even to U), so that searching in S by a MAM could become only



approximate, even in case θ = 0. Nevertheless, in most applications a (random)
dataset sample S∗ is supposed to have the distance distribution similar to that of
S∪{Q}, and also the sampled distance triplets are expected to be representative.

Moreover, the construction of such a TG-modifier f , for which (S, df ) is
metric space but (U, df ) is not, can be beneficial for the efficiency of search,
since the intrinsic dimensionality of (S, df ) can be significantly lower than that
of (U, df ). The above claims are verified experimentally in the following section,
where the retrieval error (besides pure ε∆) and the retrieval efficiency (besides
pure ρ(S, df )) are evaluated. Nonetheless, to keep the terminology correct let us
read a metric df created by the TriGen as a TriGen-approximated metric.

5 Experimental Results

To examine the proposed method, we have performed extensive testing of the
TriGen algorithm as well as evaluation of the generated distances with respect to
the effectiveness and efficiency of retrieval by two MAMs (M-tree and PM-tree).

5.1 The Testbed

We have examined 10 non-metric distance measures (all described in Section
1.6) on two datasets (images and polygons). The dataset of images consisted of
10,000 web-crawled images [30] transformed into 64-level gray-scale histograms.
We have tested 6 semimetrics on the images: the COSIMIR measure (denoted
COSIMIR), the 5-median L2 distance (5-medL2), the squared L2 distance (L2square),
and three fractional Lp distances (p = 0.25, 0.5, 0.75, denoted FracLpp). The
COSIMIR network was trained by 28 user-assessed pairs of images.

The synthetic dataset of polygons consisted of 1,000,000 2D polygons, each
consisting of 5 to 10 vertices. We have tested 4 semimetrics on the polygons:
the 3-median and 5-median Hausdorff distances (denoted 3-medHausdorff, 5-

medHausdorff), and the time warping distance with δ chosen as L2 and L∞, re-
spectively (denoted TimeWarpL2, TimeWarpLmax). The COSIMIR, 5-medL2 and
k-medHausdorff measures were adjusted to be semimetrics, as described in Sec-
tion 3.1. All the semimetrics were normed to return distances from 〈0, 1〉.

5.2 The TriGen Setup

The TriGen algorithm was used to generate the optimal TG-modifier for each
semimetric (considering the respective dataset). To examine the relation be-
tween retrieval error of MAMs and the TG-error, we have constructed several
TG-modifiers for each semimetric, considering different values of TG-error toler-
ance θ ≥ 0. The TriGen’s set of bases F was populated by the FP-base and 116
RBQ-bases parametrized by all such pairs (a, b) that a ∈ {0, 0.005, 0.015, 0.035,
0.075, 0.155}, where for a value of a the values of b were multiples of 0.05 lim-
ited by a < b ≤ 1. The dataset sample S∗ used by TriGen consisted of n = 1000
randomly selected objects in case of images (10% of the dataset), and n = 5000
in case of polygons (0.5% of the dataset). The distance matrix built from the
respective dataset sample S∗ was used to form m = 106 distance triplets.



In Table 1 see the optimal TG-modifiers found for the semimetrics by TriGen,
considering θ = 0 and θ = 0.05, respectively. In the first column, best RBQ
modifier parameters (best in sense of lowest ρ depending on a, b) are presented.
In the second column, the achieved ρ for a concavity weight w of the FP-base is
presented, in order to make a comparison with the best RBQ modifier. Among
RBQ- and FP-bases, the winning modifier (with respect to lowest ρ) is printed
in bold. When considering θ = 0.05, FracLp0.5, 3-medHausdorff, 5-medHausdorff

even need not to be modified (see the zero weights by the FP-base), since the
TG-error is already below θ. Also note that for L2square and θ = 0 the weight
of FP-base modifier is w = 0.99, instead of w = 1.0 (which would turn L2square

into L2 distance). That is because the intrinsic dimensionality of the dataset
sample S∗ is lower than that of the universe U (64-dimensional vector space).

Table 1. TG-modifiers found by TriGen.
θ = 0.00 θ = 0.05

best RBQ-base FP-base best RBQ-base FP-base
semimetric (a, b) ρ ρ w (a, b) ρ ρ w

L2square (0, 0.15) 3.74 4.22 0.99 (0, 0.05) 2.82 3.02 0.59
COSIMIR (0, 0.45) 12.2 27.2 4.33 (0.005, 0.15) 3.19 3.80 0.63
5-medL2 (0, 0.1) 37.7 19.8 16.5 (0, 0.05) 4.28 3.17 3.88

FracLp0.25 (0, 0.45) 12.7 15.2 2.29 (0.035, 0.05) 3.50 3.30 0.30
FracLp0.5 (0, 0.05) 7.57 8.37 0.87 (0, 0.2) 3.28 3.34 0.06

FracLp0.75 (0, 0.75) 5.13 5.69 0.30 any 3.77 3.77 0
3-medHausdorff (0, 0.05) 3.77 5.11 0.60 any 2.28 2.28 0
5-medHausdorff (0, 0.05) 3.42 4.12 0.35 any 2.45 2.45 0

TimeWarpL2 (0, 0.55) 10.0 9.48 1.48 (0.035, 0.1) 2.72 2.76 0.23
TimeWarpLmax (0.005, 0.3) 8.75 9.69 1.52 (0, 0.1) 2.83 2.86 0.26

In Figure 4 see the intrinsic dimensionalities ρ(S∗, df ) with respect to the
growing TG-error tolerance θ (f is the optimal TG-modifier found by TriGen).

Fig. 4. Intrinsic dimensionality of images and polygons

The rightmost point [θ, ρ] of a particular curve in each figure means θ is the
maximum ε∆ value that can be reached; for such a value (and all greater) the
concavity weight w becomes zero. Similar ”endpoints” on curves appear also in
other following curves that depend on the TG-error tolerance.

The Figure 5a shows the impact of m sampled triplets (used by TGError) on
the intrinsic dimensionality, considering θ = 0 and only the FP-base in F . The
more triplets, the more accurate value of ε∆ and the more concave TG-modifier is
needed to keep ε∆ = 0, so the concavity weight and the intrinsic dimensionality



grow. However, except for 5-medHausdorff, the growth of intrinsic dimensionality
is quite slow for m > 106 (and even slower if we set θ > 0).

For the future we plan to improve the simple random selection of triplets
from the distance matrix, in order to obtain more representative triplets, and
thus more accurate values of ε∆ together with keeping m low.

5.3 Indexing & Querying

In order to evaluate the efficiency and effectiveness of search when using TriGen-
approximated metrics, we have utilized the M-tree [7] and the PM-tree [27].

For either of the datasets several M-tree and PM-tree indices were built,
differed in the metric df employed – for each semimetric and each θ value a df

was found by TriGen, and an index created. The setup of (P)M-tree indices is
summarized in Table 2 (for technical details see [7, 26, 27]).

Table 2. M-tree and PM-tree setup
disk page size: 4 kB avg. page utilization: 41%–68%

PM-tree pivots: 64 inner node pivots, 0 leaf pivots
image indices size: 1–2 MB (M-tree) 1.2–2.2 MB (PM-tree)

polygon indices size: 140–150 MB (both M-tree and PM-tree)
construction method: MinMax + SingleWay (+ slim-down)

To achieve more compact MAM classes, the indices (both M-tree and PM-tree)
built on the image dataset were post-processed by the generalized slim-down al-
gorithm [26]. The 64 global pivot objects used by PM-tree indices were sampled
among the n objects already used for the TriGen’s distance matrix construction.

Fig. 5. Impact of triplet count; 20-NN queries on images (costs)

All the (P)M-tree indices were used to process k-NN queries. Since the
TriGen-generated modifications are generally metric approximations (especially
when θ > 0), the filtration of (P)M-tree branches was affected by a retrieval error
(the relative error in precision and recall). The retrieval error was computed as
the Jaccard distance ENO (or normed overlap distance) between the query result
QRMAM returned by a (P)M-tree index and the correct query result QRSEQ

(obtained by sequential search of the dataset), i.e. ENO = 1− |QRMAM∩QRSEQ|
|QRMAM∪QRSEQ| .

To examine retrieval efficiency, the computation costs needed for query eval-
uation were compared to the costs spent by sequential search. Every query was
repeated for 200 randomly selected query objects, and the results were averaged.



In Figures 5b,c see the costs of 20-NN queries processed on image indices,
depending on growing θ. The intrinsic dimensionalities decrease, and so the
searching becomes more efficient (e.g. down to 2% of costs spent by sequential
search for θ = 0.4 and the TG-modification of L2square). On the other hand,
for θ = 0 the TG-modifications of COSIMIR and FracLp0.25 imply high intrinsic
dimensionality, so the retrieval deteriorates to almost sequential search.

In Figures 6a,b the retrieval error ENO is presented for growing θ. In Figures
6c and 7a see the retrieval efficiency and error for 20-NN querying on the poly-
gon indices. As supposed, the error grows with growing TG-error tolerance θ.
Interestingly, the values of θ tend to be the upper bounds to the values of ENO,
so we could utilize θ in an error model for prediction of ENO.

In case of 5-medL2, 3-medHausdorff (and partly COSIMIR, 5-medHausdorff)
indices, the retrieval error was non-zero even for θ = 0. This was caused by
neglecting some ”pathological” distance triplets when computing the TGError
function (see Section 4), so the triangular inequality was not preserved for all
triplets, and the filtering performed by (P)M-tree was sometimes (but rarely)
incorrect. In other cases (where θ = 0) the retrieval error was zero.

Fig. 6. 20-NN queries on images and polygons (retrieval error, costs)

The costs and the error for k-NN querying are presented in Figures 7b,c –
with respect to the increasing number of nearest neighbors k.

Fig. 7. 20-NN queries on polygons (retrieval error); k-NN queries (costs, retrieval error)

Summary. Based on the above presented experimental results, we can observe
that non-metric searching by MAMs, together with usage of the TriGen algo-
rithm as the first step of the indexing, can successfully merge both aspects, the



retrieval efficiency as well as the effectiveness. The efficiency achieved is by far
higher than simple sequential search (even for θ = 0), whereas the retrieval error
is kept very low for reasonable values of θ. Moreover, by choosing different values
of θ we get a trade-off between the effectiveness and efficiency thus, the TriGen
algorithm provides a scalability mechanism for non-metric search by MAMs.

On the other hand, some non-metric measures are very hard to use for effi-
cient exact search by MAMs (i.e. keeping ENO = 0), in particular the COSIMIR

and the FracLp0.25 measures. Nevertheless, for approximate search (ENO > 0)
also these measures can be utilized efficiently.

6 Conclusions

In this paper we have proposed a general approach to non-metric similarity
search in multimedia databases by use of metric access methods (MAMs). We
have shown the triangular inequality property is not restrictive for similarity
search and can be enforced for every semimetric (modifying it to a metric).
Furthermore, we have introduced the TriGen algorithm for automatic turning
of any black-box semimetric into metric (or at least approximation of a met-
ric) just by use of distance distribution in a fraction of the database. Such a
”TriGen-approximated metric” can be safely used to search the database by any
MAM, while the similarity orderings with respect to a query object (the retrieval
effectiveness) are correctly preserved. The main result of the paper is a fact that
we can quickly search a multimedia database when using unknown non-metric
similarity measures, while the retrieval error achieved can be very low.
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Abstract. In the area of Text Retrieval, processing a query in the vector
model has been verified to be qualitatively more effective than searching
in the boolean model. However, in case of the classic vector model the
current methods of processing many-term queries are inefficient, in case
of LSI model there does not exist an efficient method for processing even
the few-term queries. In this paper we propose a method of vector query
processing based on metric indexing, which is efficient especially for the
LSI model. In addition, we propose a concept of approximate semi-metric
search, which can further improve the efficiency of retrieval process. Re-
sults of experiments made on moderate text collection are included.

1 Introduction

The Text Retrieval (TR) models [4, 3] provide a formal framework for retrieval
methods aimed to search huge collections of text documents. The classic vector
model as well as its algebraic extension LSI have been proved to be more effec-
tive (according to precision/recall measures) than the other existing models1.
However, current methods of vector query processing are not much efficient for
many-term queries, while in the LSI model they are inefficient at all. In this pa-
per we propose a method of vector query processing based on metric indexing,
which is highly efficient especially for searching in the LSI model.

1.1 Classic Vector Model

In the classic vector model, each document Dj in a collection C (0 ≤ j ≤ m,
m = |C|) is characterized by a single vector dj , where each coordinate of dj is
associated with a term ti from the set of all unique terms in C (0 ≤ i ≤ n, where
n is the number of terms). The value of a vector coordinate is a real number
wij ≥ 0 representing the weight of the i-th term in the j-th document. Hence,
a collection of documents can be represented by an n × m term-by-document
matrix A. There are many ways how to compute the term weights wij stored
in A. A popular weight construction is computed as tf ∗ idf (see e.g. [4]).
1 For a comparison over various TR models we refer to [20, 11].



Queries. The most important problem about the vector model is the querying
mechanism that searches matrix A with respect to a query, and returns only the
relevant document vectors (appropriate documents respectively). The query is
represented by a vector q the same way as a document is represented. The goal is
to return the most similar (relevant) documents to the query. For this purpose,
a similarity function must be defined, assessing a similarity value to each pair
of query and document vectors (q, dj). In the context of TR, the cosine measure
SIMcos(q, dj) =

∑n
k=1 qk·wkj√∑n

k=1 qk
2·

∑n
k=1 wkj

2
is widely used. During a query processing,

the columns of A (the document vectors) are compared against the query vector
using the cosine measure, while the sufficiently similar documents are returned
as a result. According to the query extent, we distinguish range queries and
k-nearest neighbors (k-NN) queries. A range query returns documents similar to
the query more than a given similarity threshold. A k-NN query returns the k
most similar documents.

Generally, there are two ways how to specify a query. First, a few-term query
is specified by the user using a few terms, while an appropriate vector for such
a query is very sparse. Second, a many-term query is specified using a text
document, thus the appropriate query vector is usually more dense. In this paper
we focus just on the many-term queries, since they better satisfy the similarity
search paradigm which the vector model should follow.

1.2 LSI Vector Model (simplified)

Simply said, the LSI (latent semantic indexing) model [11, 4] is an algebraical
extension of the classic vector model. First, the term-by-document matrix A is
decomposed by singular value decomposition (SVD) as A = UΣV T . The matrix
U contains concept vectors, where each concept vector is a linear combination
of the original terms. The concepts are meta-terms (groups of terms) appearing
in the original documents. While the term-by-document matrix A stores doc-
ument vectors, the concept-by-document matrix ΣV T stores pseudo-document
vectors. Each coordinate of a pseudo-document vector represents a weight of an
appropriate concept in a document.

Latent Semantics. The concept vectors are ordered with respect to their sig-
nificance (appropriate singular values in Σ). Consequently, only a small number
of concepts is really significant – these concepts represent (statistically) the main
themes present in the collection – let us denote this number as k. The remaining
concepts are unimportant (noisy concepts) and can be omitted, thus the dimen-
sionality is reduced from n to k. Finally, we obtain an approximation (rank-k
SVD) A ≈ UkΣkV T

k , where for sufficiently high k the approximation error will
be negligible. Moreover, for a low k the effectiveness can be subjectively even
higher (according to the precision/recall values) than for a higher k [3]. When
searching in a real-world collection, the optimal k is usually ranged from several
tens to several hundreds. Unlike the term-by-document matrix A, the concept-
by-document matrix ΣkV T

k as well as the concept base matrix U are dense.



Queries. Searching for documents in the LSI model is performed the same way
as in the classic vector model, the difference is that matrix ΣkV T

k is searched
instead of A. Moreover, the query vector q must be projected into the concept
base, i.e. UT

k q is the pseudo-query vector used by LSI. Since the concept vectors
of U are dense, a pseudo-query vector is dense as well.

1.3 Vector Query Processing

In this paper we focus on efficiency of vector query processing. More specifically,
we can say that a query is processed efficiently in case that only a small propor-
tion of the matrix storage volume is needed to load and process. In this section
we outline several existing approaches to the vector query processing.

Document Vector Scanning. The simplest method how to process a query
is the sequential scanning of all the document vectors (i.e. the columns of A,
ΣkV T

k respectively). Each document vector is compared against the query vector
using the similarity function, while sufficiently similar documents are returned
to the user. It is obvious that for any query the whole matrix must be processed.
However, sequential processing of the whole matrix is sometimes more efficient
(from the disk management point of view) than a random access to a smaller
part of the matrix used by some other methods.

Term Vector Filtering. For sparse query vectors (few-term queries respec-
tively), there exists a more efficient scanning method. Instead of the document
vectors, the term vectors (i.e. the rows of the matrix) are processed. The cosine
measure is computed simultaneously for all the document vectors, ”orthogo-
nally” involved in the term vectors. Due to the simultaneous cosine measure
evaluation a set of m accumulators (storing the evolving similarities between
each document and the query) must be maintained in memory. The advantage
of term filtering is that only those term vectors must be scanned, for which the
appropriate term weights in the query vector are nonzero. The term vector fil-
tering can be easily provided using an inverted file – as a part of the boolean
model implementation [15].

The simple method of term filtering has been improved by an approximate
approach [19] reducing the time as well as space costs. Generally, the improve-
ment is based on early termination of query processing, exploiting a restructured
inverted file where the term entries are sorted according to the decreasing occur-
rences of a term in document. Thus, the most relevant documents in each term
entry are processed first. As soon as the first document is found in which the
number of term occurrences is less than a given addition threshold, the process-
ing of term entry can stop, because all the remaining documents have the same
or less importance as the first rejected document. Since some of the documents
are never reached during a query processing, the number of used accumulators
can be smaller than m, which saves also the space costs. Another improvement



of the inverted file exploiting quantized weights was proposed recently [2], even
more reducing the search costs.

Despite the above mentioned improvements, the term vector filtering is gen-
erally not so much efficient for many-term queries, because the number of filtered
term vectors is decreased. Moreover, the term vector filtering is completely use-
less for the LSI model, since each pseudo-query vector is dense, and none of the
term vectors can be skipped.

Signature Methods. Signature files are a popular filtering method in the
boolean model [13], however, there were only few attempts made to use them in
the vector model. In that case, the usage of signature files is not so straightfor-
ward due to the term weights. Weight-partitioned signature files (WPSF) [14]
try to solve the problem by recording the term weights in so-called TF-groups.
A sequential file organization was chosen for the WPSF which caused excessive
search of the signature file. An improvement was proposed recently [16] using the
S-trees [12] to speedup the signature file search. Another signature-like approach
is the VA-file [6]. In general, usage of the signature methods is still complicated
for the vector model, and the results achieved so far are rather poor.

2 Metric Indexing

Since in the vector model the documents are represented as points within an
n-dimensional vector space, in our approach we create an index for the term-
by-document matrix (for the concept-by-document matrix in case of LSI) based
on metric access methods (MAMs) [8]. A property common to all MAMs is that
they exploit only a metric function for the indexing. The metric function stands
for a similarity function, thus metric access methods provide a natural way for
similarity search. Among many of MAMs, we have chosen the M-tree.

2.1 M-tree

The M-tree [9, 18, 21] is a dynamic data structure designed to index objects of
metric datasets. Let us have a metric space M = (U, d) where U is an object
universe (usually a vector space), and d is a function measuring distance between
two objects in U. The function d must be a metric, i.e. it must satisfy the axioms
of reflexivity, positivity, symmetry and triangular inequality. Let S ⊆ U be a
dataset to be indexed. In case of the vector model in TR, an object Oi ∈ S is
represented by a (pseudo-)document vector of a document Di. The particular
metric d, replacing the cosine measure, will be introduced in Section 2.2.

Like the other indexing trees based on B+-tree, the M-tree structure is a
balanced hierarchy of nodes. In M-tree the objects are distributed in a hierarchy
of metric regions (each node represents a single metric region) which can be,
in turn, interpreted as a hierarchy of object clusters. The nodes have a fixed
capacity and a minimum utilization threshold. The leaf nodes contain ground
entries grnd(Oi) of the indexed objects themselves, while in the inner nodes the



routing entries rout(Oj) are stored, representing the metric regions and routing
to their covering subtrees. Each routing entry determines a metric region in space
M where the object Oj is a center of that region and rOj is a radius bounding the
region. For the hierarchy of metric regions (routing entries rout(Oj) respectively)
in the M-tree, the following requirement must be satisfied:

All the objects of ground entries stored in the leaves of the covering subtree
of rout(Oj) must be spatially located inside the region defined by rout(Oj).

The most important consequence of the above requirement is that many
regions on the same M-tree level may overlap. An example in Figure 1 shows
several objects partitioned among metric regions and the appropriate M-tree.
We can see that the regions defined by rout1(O1), rout1(O2), rout1(O4) overlap.
Moreover, object O5 is located inside the regions of rout1(O1) and rout1(O4) but
it is stored just in the subtree of rout1(O4). Similarly, the object O3 is located
even in three regions but it is stored just in the subtree of rout1(O2).

Fig. 1. Hierarchy of metric regions (a) and the appropriate M-tree (b)

Similarity Queries in the M-tree. The structure of M-tree natively supports
similarity queries. The similarity function is represented by the metric function
d where the close objects are interpreted as similar.

A range query RangeQuery(Q,rQ) is specified as a query region given by a
query object Q and a query radius rQ. The purpose of a range query is to retrieve
all such objects Oi satisfying d(Q,Oi) ≤ rQ. A k-nearest neighbours query (k-
NN query) kNNQuery(Q,k) is specified by a query object Q and a number k. A
k-NN query retrieves the first k nearest objects to Q.

During the range query processing (k-NN query processing respectively), the
M-tree hierarchy is being traversed down. Only if a routing entry rout(Oj) (its
metric region respectively) overlaps the query region, the covering subtree of
rout(Oj) is relevant to the query and thus further processed.



2.2 Application of M-tree in the Vector Model

In the vector model the objects Oi are represented by (pseudo-)document vec-
tors di, i.e. by columns of term-by-document or concept-by-document matrix,
respectively. We cannot use the cosine measure SIMcos(di, dj) as a metric func-
tion directly, since it does not satisfy the metric axioms. As an appropriate
metric, we define the deviation metric ddev(di, dj) as a vector deviation

ddev(di, dj) = arccos(SIMcos(di, dj))

The similarity queries supported by M-tree (utilizing ddev) are exactly those
required for the vector model (utilizing SIMcos). Specifically, the range query
will return all the documents that are similar to a query more than some given
threshold (transformed to the query radius) while the k-NN query will return
the first k most similar (closest respectively) documents to the query.

In the M-tree hierarchy similar documents are clustered among metric re-
gions. Since the triangular inequality for ddev is satisfied, many irrelevant doc-
ument clusters can be safely pruned during a query processing, thus the search
efficiency is improved.

3 Semi-Metric Search

In this section we propose the concept of semi-metric search – an approximate
extension of metric search applied to M-tree. The semi-metric search provides
even more efficient retrieval, considerably resistant to the curse of dimensionality.

3.1 Curse of Dimensionality

The metric indexing itself (as is experimentally verified in Section 4) is benefi-
cial for searching in the LSI model. However, searching in a collection of high-
dimensional document vectors of the classic vector model is negatively affected
by a phenomenon called curse of dimensionality [7, 8]. In the M-tree hierar-
chy (even the most optimal hierarchy) the curse of dimensionality causes that
clusters of high-dimensional vectors are not distinct, which is reflected by huge
overlaps among metric regions.

Intrinsic Dimensionality. In the context of metric indexing, the curse of
dimensionality can be generalized for general metric spaces. The major condition
determining the success of metric access methods is the intrinsic dimensionality
of the indexed dataset. The intrinsic dimensionality of a metric dataset (one of
the interpretations [8]) is defined as

ρ =
µ2

2σ2

where µ and σ2 are the mean and the variance of the dataset’s distance distri-
bution histogram. In other words, if all pairs of the indexed objects are almost



equally distant, then the intrinsic dimensionality is maximal (i.e. the mean is
high and/or the variance is low), which means the dataset is poorly intrinsically
structured. So far, for datasets of high intrinsic dimensionality there still does
not exist an efficient MAM for exact metric search. In case of M-tree, a high
intrinsic dimensionality causes that almost all the metric regions overlap each
other, and searching in such an M-tree deteriorates to sequential search.

In case of vector datasets, the intrinsic dimensionality negatively depends on
the correlations among coordinates of the dataset vectors. The intrinsic dimen-
sionality can reach up to the value of the classic (embedding) dimensionality. For
example, for uniformly distributed (i.e. not correlated) n-dimensional vectors the
intrinsic dimensionality tends to be maximal, i.e. ρ ≈ n.

In the following section we propose a concept of semi-metric modifications
that decrease the intrinsic dimensionality and, as a consequence, provide a way
to efficient approximate similarity search.

3.2 Modification of the Metric

An increase of the variance of distance distribution histogram is a straightforward
way how to decrease the intrinsic dimensionality. This can be achieved by a
suitable modification of the original metric, preserving the similarity ordering
among objects in the query result.
Definition 1. Let us call the increasing modification df

dev of a metric ddev a
function

df
dev(Oi, Oj) = f(ddev(Oi, Oj))

where f : 〈0, π〉 → R+
0 is an increasing function and f(0) = 0. For simplicity, let

f(π) = 1.
Definition 2. Let s : U × U → R+

0 be a similarity function (or a distance
function) and SimOrders : U → P(S× S) be a function defined as

〈Oi, Oj〉 ∈ SimOrders(Q) ⇔ s(Oi, Q) < s(Oj , Q)

∀Oi, Oj ∈ S,∀Q ∈ U. In other words, the function SimOrders orders the objects
of dataset S according to the distances to the query object Q.
Proposition. For the metric ddev and every increasing modification df

dev the
following equality holds:

SimOrderddev
(Q) = SimOrderdf

dev
(Q),∀Q ∈ U

Proof:
”⊂”: The function f is increasing. If for each Oi, Oj , Ok, Ol ∈ U, ddev(Oi, Oj) >
ddev(Ok, Ol) holds, then f(ddev(Oi, Oj)) > f(ddev(Ok, Ol)) must also hold.
”⊃”: The second part of proof is similar. �

As a consequence of the proposition, if we process a query sequentially over
the entire dataset S, then it does not matter if we use either ddev or df

dev, since
both of the ways will return the same query result.



If the function f is additionally subadditive, i.e. f(a) + f(b) ≥ f(a + b), then
f is metric-preserving [10], i.e. f(d(Oi, Oj)) is still metric. More specifically,
concave functions are metric-preserving (see Figure 2a), while convex (even par-
tially convex) functions are not – let us call them metric-violating functions (see
Figure 2b). A metric modified by a metric-violating function f is a semi-metric,
i.e. a function satisfying all the metric axioms except the triangular inequality.

Fig. 2. (a) Metric-preserving functions (b) Metric-violating functions

Clustering Properties. Let us analyze the clustering properties of modifica-
tions df

dev (see also Figure 2). For concave f , two objects close to each other
according to ddev are more distant according to df

dev. Conversely, for convex
f , the close objects according to ddev are even closer according to df

dev. As a
consequence, the concave modifications df

dev have a negative influence on clus-
tering, since the object clusters become indistinct. On the other side, the convex
modifications df

dev even more tighten the object clusters, making the cluster
structure of the dataset more evident. Simply, the convex modifications increase
the distance histogram variance, thereby decreasing the intrinsic dimensionality.

3.3 Semi-Metric Indexing and Search

The increasing modifications df
dev can be utilized in the M-tree instead of the

deviation metric ddev. In case of a semi-metric modification df
dev, the query

processing is more efficient because of smaller overlaps among metric regions in
the M-tree. Usage of metric modifications is not beneficial, since their clustering
properties are worsen, and the overlaps among metric regions are larger.

Semi-Metric Search. A semi-metric modification df
dev can be used for all op-

erations on the M-tree, i.e. for M-tree building as well as for M-tree searching.
With respect to M-tree construction principles (we refer to [21]) and the propo-
sition in Section 3.2, the M-tree hierarchies built either by d or df

dev are the



same. For that reason, an M-tree built using a metric d can be queried using any
modification df

dev. Such semi-metric queries must be extended by the function f ,
which stands for an additional parameter. For a range query the query radius rQ

must be modified to f(rQ). During a semi-metric query processing, the function
f is applied to each value computed using d as well as it is applied to the metric
region radii stored in the routing entries.

Error of the Semi-Metric Search. Since the semi-metric df
dev does not satisfy

the triangular inequality property, a semi-metric query will return more or less
approximate results. Obviously, the error is dependent on the convexity of a
modifying function f . As an output error, we define a normed overlap error

ENO = 1−
|resultMtree ∩ resultscan|

max(|resultMtree|, |resultscan|)

where resultMtree is a query result returned by the M-tree (using a semi-metric
query), and resultscan is a result of the same query returned by sequential search
over the entire dataset. The error ENO can be interpreted as a relative precision
of the M-tree query result with respect to the result of full sequential scan.

Semi-Metric Search in Text Retrieval. In the context of TR, the searching
is naturally approximate, since precision/recall values do never reach up to 100%.
From this point of view, the approximate character of semi-metric search is not
a serious limitation – acceptable results can be achieved by choosing such a
modifying function f , for which the error ENO will not exceed some small value,
e.g. 0.1. On the other side, semi-metric search significantly improves the search
efficiency, as it is experimentally verified in the following section.

4 Experimental Results

For the experiments we have chosen the Los Angeles Times collection (a part
of TREC 5) consisting of 131,780 newspaper articles. The entire collection con-
tained 240,703 unique terms. As ”rich” many-term queries, we have used articles
consisting of at least 1000 unique terms. The experiments were focused on disk
access costs (DAC) spent during k-NN queries processing. Each k-NN query was
repeated for 100 different query documents and the results were averaged. The
access to disk was aligned to 512B blocks, considering both access to the M-tree
index as well as to the respective matrix. The overall query DAC are presented
in megabytes. The entries of M-tree nodes have contained just the document
vector identifiers (i.e. pointers to the matrix columns), thus the M-tree storage
volume was minimized. In Table 1 the M-tree configuration used for experiments
is presented (for a more detailed description see [21]).

The labels of form Devxxx in the figures below stand for modifying functions
f used by semi-metric search. Several functions of form DevSQp(α) =

(
α
π

)p were
chosen. The queries labeled as Dev represent the original metric queries presented
in Section 2.2.



Table 1. The M-tree configuration

Page size: 512 B; Capacity (leaves: 42, nodes: 21)
Construction: MinMax + SingleWay + SlimDown

Tree height: 4; Avg. util. (leaves: 56%, nodes: 52%)

4.1 Classic Vector Model

First, we performed tests for the classic vector model. The storage of the term-
by-document matrix (in CCS format [4]) took 220 MB. The storage of M-tree
index was about 4MB (i.e. 1.8% of the matrix storage volume (MSV)).

In Figure 3a the comparison of document vector scanning, term vector filter-
ing as well as metric and semi-metric search is presented. It is obvious that using
document vector scanning the whole matrix (i.e. 220 MB DAC) was loaded and
processed. Since the query vectors contained many zero weights, the term vector
filtering worked more efficiently (76 MB DAC, i.e. 34% of MSV).

Fig. 3. Classic vector model: (a) Disk access costs (b) ENO error

The metric search Dev did not performed well – the curse of dimensionality
(n = 240,703) forced almost 100% of the matrix to be processed. The extra
30 MB DAC overhead (beyond the 220 MB of MSV) was caused by the non-
sequential access to the matrix columns. On the other side, the semi-metric
search performed better. The DevSQ10 queries for k = 5 consumed only 30 MB
DAC (i.e. 13.6% of MSV). Figure 3b shows the normed overlap error ENO of
the semi-metric search. For DevSQ4 queries the error was negligible. The error
for DevSQ6 remained below 0.1 for k > 35. The DevSQ10 queries were affected
by a relatively high error from 0.25 to 0.2 (with increasing k).

4.2 LSI Model

The second set of tests was made for the LSI model. The target (reduced) dimen-
sionality was chosen to be 200. The storage of the concept-by-document matrix
took 105 MB, while the size of M-tree index was about 3 MB (i.e. 2.9 % of MSV).



Because the size of term-by-document matrix was very large, the direct cal-
culation of SVD was impossible. Therefore, we have used a two-step method
[17], which in first step calculates a random projection [1, 5] of document vectors
into a smaller dimensionality of pseudo-concepts. This is done by multiplication
of a zero-mean unit-variance random matrix and the term-by-document matrix.
Second, a rank-2k SVD is calculated on the resulting pseudoconcept-by-document
matrix, giving us a very good approximation of the classic rank-k SVD.

Fig. 4. LSI model: (a) Disk access costs (b) ENO error

The Figure 4a shows that metric search Dev itself was more than twice as
efficient as the document vector scanning. Even better results were achieved by
the semi-metric search. The DevSQ3 queries for k = 5 consumed only 5.8 MB
DAC (i.e. 5.5% of MSV). Figure 4b shows the error ENO. For DevSQ1.5 queries
the error was negligible, for DevSQ2 it remained below 0.06. The DevSQ3 queries
were affected by a relatively high error.

5 Conclusion

In this paper we have proposed a metric indexing method for an efficient search
of documents in the vector model. The experiments have shown that metric in-
dexing itself is suitable for an efficient search in the LSI model. Furthermore,
the approximate semi-metric search allows us to provide quite efficient similarity
search in the classic vector model, and a remarkably efficient search in the LSI
model. The output error of semi-metric search can be effectively tuned by choos-
ing such modifying functions, that preserve an expected accuracy sufficiently.

In the future we would like to compare the semi-metric search with some
other methods, in particular with the VA-file (in case of LSI model). We also
plan to develop an analytical error model for the semi-metric search in M-tree,
allowing to predict and control the output error ENO.

This research has been partially supported by GAČR grant No. 201/00/1031.
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Abstract. Text collections represented in LSI model are hard to search
efficiently (i.e. quickly), since there exists no indexing method for the LSI
matrices. The inverted file, often used in both boolean and classic vector
model, cannot be effectively utilized, because query vectors in LSI model
are dense. A possible way for efficient search in LSI matrices could be
the usage of metric access methods (MAMs). Instead of cosine measure,
the MAMs can utilize the deviation metric for query processing as an
equivalent dissimilarity measure. However, the intrinsic dimensionality
of collections represented by LSI matrices is often large, which decreases
MAMs’ performance in searching. In this paper we introduce σ-LSI, a
modification of LSI in which we artificially decrease the intrinsic dimen-
sionality of LSI matrices. This is achieved by an adjustment of singular
values produced by SVD. We show that suitable adjustments could dra-
matically improve the efficiency when searching by MAMs, while the
precision/recall values remain preserved or get only slightly worse.

1 Introduction

Text collections represented in the classic vector model (CVM) can be efficiently
(i.e. quickly) searched using the inverted file. More precisely, the inverted file
provides a way for very efficient processing of queries, the vectors of which are
sparse (such a query contains only several terms). However, in case of LSI model
the query vectors are dense, and the usage of inverted file becomes useless, since
processing of any query deteriorates to sequential search over the entire concept-
by-document matrix.

In this paper we utilize a method of searching in LSI collections by metric
access methods (MAMs). The metric access methods are, however, sensitive to
the curse of dimensionality, i.e. they become inefficient for high dimensionalities.
Therefore, in this paper we propose σ-LSI, a modified LSI model in which we
artificially reduce the intrinsic dimensionality of the indexed collection. This is
achieved by an adjustment of singular values produced by SVD. We show that
suitable adjustments could dramatically improve the efficiency when searching



by MAMs, while the precision/recall values remain preserved or get only slightly
worse.

The paper is organized as follows: In the rest of this section we briefly
overview CVM, the LSI model, and formulate the problem of searching in LSI
model. In Section 3 we show how the classic similarity search in CVM (LSI model
respectively) can be turned into metric search. We also mention the principles
of metric access methods and the problem of high intrinsic dimensionality. In
Section 4 we propose σ-LSI model allowing a more efficient search by MAMs.
The effectiveness (the quality) and efficiency (the response time) of retrieval in
the σ-LSI model are evaluated in Section 5.

1.1 Classic Vector Model

In CVM, a given text collection (containing n documents consisting of m unique
terms) is represented by an m × n term-by-document matrix A, where each
column vector dj in A represents a single document Dj . Thus, the documents
are represented as points in m-dimensional vector space (the document-space).
Each dimension of the document-space is associated with a single term, while
each coordinate in a document vector dj represents a weight of the respective
term in the document. There are many ways how to compute the term weights
Aij – a popular weight construction is computed as tf · idf (see e.g. [3]).

term \ doc. D1 D2 D3 D4 D5

database 0 0.48 0.05 0 0.70
vector 0.23 0 0.23 0 0
index 0.43 0 0 0 0
image 0 0 0.10 0 0.54

compression 0 0 0 0 0.21
multimedia 0.12 0.52 0.62 0 0

Fig. 1. Term-by-document matrix A.

The most important part of CVM is the query semantics for searching the
matrix A with respect to a query Q, and returning only the relevant document
vectors (appropriate documents respectively). The query Q is represented by a
vector q in the document space the same way as a document Dj is represented
by dj . The goal is to return the most similar documents to the query. For this
purpose a similarity measure must be defined, assessing a similarity score for each
pair of query and document vectors (q, dj). In many cases, the cosine measure

SIMcos(q, dj) =
∑m

i=1 qidji√∑m
i=1 qi

2 ·
∑m

i=1 dji
2

is widely used. Besides the simple ranking to q (used for ranked lists), we also
distinguish bounded queries, in particular range queries and k-nearest neighbors



(k-NN) queries. A range query returns documents with similarity to the query
higher than a given similarity threshold t. A k-NN query returns the k most
similar documents1.

2 Latent Semantic Indexing

Latent semantic indexing (LSI ) [3, 4] is an algebraic extension of CVM. Its
benefits rely on discovering latent semantics hidden in the term-by-document
matrix A. Informally, LSI discovers significant groups of terms (called concepts)
and represents the documents as linear combinations of the concepts. Moreover,
the concepts are ordered according to their significance in the collection, which
allows us to consider only the first k concepts important (the remaining ones are
interpreted as “noise” and discarded). To name the advantages, LSI helps solve
problems with synonymy and homonymy. Furthermore, LSI is often referred to
as more successful in recall when compared to CVM [4], which was proved for
pure (only one topic per document) and style-free collections [17].

Formally, we decompose the term-by-document matrix A by singular value
decomposition (SVD), calculating singular values and singular vectors of A. SVD
is especially suitable in its variant for sparse matrices (Lanczos [13]). Several
approximate methods for faster SVD calculation were offered recently, such as
using random projection of document vectors into suitable subspace before LSI
calculation [17] or application of Monte-Carlo method [11].

There are several other methods for latent semantic indexing, such as ULV-
decomposition [5], random indexing [16] (and some other approaches achieving
similar goals, e.g. language modeling [19]), which we do not discuss in this paper.

Theorem 1 (Singular value decomposition [4]). Let A is an m× n rank-
r matrix. Be values σ1, . . . , σr calculated from eigenvalues of matrix AAT as
σi =

√
λi. Then there exist column-orthonormal matrices U = (u1, . . . , ur)

and V = (v1, . . . , vr), where UT U = Im a V T V = In, and a diagonal matrix
Σ = diag(σ1, . . . , σr), where σi > 0, σi ≥ σi+1. The decomposition

A = UΣV T

is called singular decomposition of matrix A and the numbers σ1, . . . , σr are
singular values of the matrix A. Columns of U (or V ) are called left (or right)
singular vectors of matrix A.

Now we have a decomposition of the original term-by-document matrix A.
The left and right singular vectors (i.e. U and V matrices) are not sparse. We
get r nonzero singular numbers, where r is the rank of the original matrix A.
Because the singular values usually fall quickly, we can take only k greatest
singular values with the corresponding singular vector coordinates and create a
k-reduced singular decomposition of A.
1 In the next section we independently use k for another parameter (rank-k SVD),

but in either case the respective meaning of k is obvious from the actual context.



Definition 1. Let us have k (0 < k < r) and singular value decomposition of A

A = UΣV T ≈ Ak = (UkU0)
(

Σk 0
0 Σ0

) (
V T

k

V T
0

)
We call Ak = UkΣkV T

k a k-reduced singular value decomposition (rank-k SVD).

Instead of the Ak matrix, a concept-by-document matrix Dk = ΣkV T
k is

used in LSI as the representation of document collection. The document vec-
tors (columns in Dk) are now represented as points in k-dimensional space (the
pseudodocument-space). For an illustration of rank-k SVD see Figure 2.

The value of k was experimentally determined as several tens or hundreds
(e.g. 50–250), however, the optimal2 value of k is hard to choose; it is dependent
on the number of topics in collection. Rank-k SVD is the best rank-k approx-
imation of the original matrix A, regarding to Frobenius norm (see e.g. [12]).
This means, that any other decomposition will increase the sum of squares of
matrix A − Ak. However, this does not tell us that we could not obtain better
precision and recall values with a different approximation.

Fig. 2. k-reduced singular value decomposition

To execute a query Q in the pseudodocument-space, we create a reduced
query vector qk = UT

k q (another approach is to simply use a matrix D′
k = V T

k

instead of Dk, and q′k = Σ−1
k UT

k q). Instead of A against q, the matrix Dk against
qk (or q′k) is evaluated using the cosine measure. The crucial property is that,
due to the projection by dense matrix UT

k , qk is dense as well (even if q is sparse).

2.1 LSI model and inverted files

In CVM, searching the term-by-document matrix A according to a query Q can
be provided using inverted file [15, 18, 1], which can be viewed as the matrix A
stored by rows. For a given matrix A the inverted file consists of m lists, each
list is associated with a single term. Each list stores entries, which are pairs
consisting of a document id and weight of the term in corresponding document
2 optimal in sense of best achieved precision/recall values



(obviously, entries with zero weights are not stored). When a query is processed,
only the lists representing terms from the query are sequentially searched.

The inverted file is very efficient for processing of sparse query vectors (few-
term queries respectively), because only several lists have to be processed. Un-
fortunately, in case of LSI the pseudo-query vector is dense and usage of inverted
file for indexing Dk would deteriorate to sequential search over the entire file and
thus, over the entire matrix Dk.

3 Metric Indexing

Recently, there has been introduced an approach to searching in LSI model,
based on metric indexing [20]. Instead of inverted file, the M-tree [9] was used
for indexing the matrix Dk. Before we discuss benefits of the metric approach,
we must turn the cosine measure (similarity) into metric (distance).

3.1 Turning Vector Model into Metric Model

The cosine measure SIMcos(di, dj) itself is not a metric, since it does not satisfy
three metric properties (reflexivity, positivity and triangular inequality). Even
1−SIMcos(di, dj) is not a metric, since it does not satisfy the triangular inequal-
ity. As an appropriate metric, we use the deviation metric (or angular distance)
ddev(di, dj), defined as

ddev(di, dj) = arccos(SIMcos(di, dj))

Instead of cosine, the deviation metric measures directly the angle between
two vectors3. Since arccos is strictly decreasing on 〈−1, 1〉, the deviation met-
ric preserves the semantic meaning of cosine measure. There is only a differ-
ence in terminology – cosine measure is similarity function (similar documents
have a high score), while the deviation metric is dissimilarity function (simi-
lar documents have a lower score, i.e. they are close). Hence, the k-dimensional
pseudodocument-space Rk together with the deviation metric ddev can be re-
garded as a metric space M = (Rk, ddev).

The queries in metric model are evaluated in similar way as in CVM; the
difference is that range queries select objects within a query radius rQ (which
equals to arccos of the desired similarity threshold t), while k-NN queries select
the k closest objects.

3.2 Metric Access Methods

The metric access methods [8] organize (or index) a given metric dataset S ⊂M
in a way that metric queries (e.g. range or k-NN queries) can be processed
efficiently – without a need of processing the entire dataset S. The main principle
3 Actually, we can view the deviation metric ddev as a kind of Euclidean (L2) distance,

defined just on the surface of unitary hyper-sphere.



behind all MAMs is the triangular inequality property satisfied by every metric.
Due to the triangular inequality, MAMs can organize the objects in equivalence
classes (the classes are some regions in the metric space). When a query is
processed, many irrelevant equivalence classes are filtered (those with metric
regions not overlapping the query region), and so the searching becomes more
efficient. Another advantage is that MAMs use solely the metric function for
indexing, no information about the indexed objects representation is necessary.
This feature allows to index/search non-vectorial datasets, too.

There has been developed a plenty of MAMs, varying in applicability to
different problems. Besides others, we name M-tree [9], vp-tree [22], LAESA
[14], D-index [10], etc.

3.3 Intrinsic Dimensionality

The metric indexing itself (as was presented in [20]) could be quite beneficial
for searching in the LSI model. However, searching in a collection of high-
dimensional document vectors is negatively affected by a phenomenon called the
curse of dimensionality [6, 7]. For MAMs the curse of dimensionality causes al-
most all equivalence classes to be overlapped by nearly every “reasonable” query
region, so that searching deteriorates to sequential scan over all the classes.

In the context of metric indexing, the curse of dimensionality can be gener-
alized for general metric spaces. The major condition determining the efficiency
limits of any metric access method is the intrinsic dimensionality of the indexed
dataset, defined as (proposed in [7]):

ρ(S, d) =
µ2

2σ2

where µ and σ2 are the mean and the variance of the dataset’s distance distri-
bution (according to a metric d). In other words, the intrinsic dimensionality
is low if there exist tight clusters of objects. Conversely, if all pairs of the in-
dexed objects are almost equally distant, the intrinsic dimensionality is high
(i.e. the mean is high and/or the variance is low), which means the dataset is
poorly intrinsically structured. In Figure 3 see an example of distance distribu-
tion histograms (DDHs) indicating lower (ρ ≈ 2) and higher (ρ ≈ 30) intrinsic
dimensionalities.

In case of vector datasets, the intrinsic dimensionality can reach up to (or
even beyond) the value of the classic (embedding) dimensionality. For example,
for uniformly distributed n-dimensional vectors (i.e. not clustered) ρ ≈ n.

So far, for datasets of high intrinsic dimensionality there still does not exist
an efficient MAM for exact4 metric search.

4 Nevertheless, efficient searching in high-dimensional datasets can be realized by ap-
proximate or probabilistic MAMs, but such methods often suffer from lower preci-
sion/recall values [23, 7].



Fig. 3. DDHs indicating (a) low (b) high intrinsic dimensionality

4 The σ-LSI Model

In case of LSI, we are concerned by intrinsic dimensionality of the pseudodoc-
ument vectors (columns in Dk), with respect to the deviation metric ddev. The
smaller ρ, the greater search efficiency can be achieved for the MAMs.

In this section we propose the σ-LSI model, a modification of LSI in which
we are able to artificially decrease the intrinsic dimensionality of Dk.

4.1 Motivation

In order to understand the intrinsic dimensionality of Dk, we first consider the
simpler approach of LSI, where the pseudodocument matrix is just D′

k = V T
k

(instead of Dk = ΣkV T
k ). This is equivalent to D′

k = Σ0
kV T

k , where Σ0
k is unitary

matrix (the singular values σi are powered by 0). To illustrate the situation on an
example, we use a term-by-document matrix A (closely described in Section 5)
decomposed using rank-k SVD, k = 100.

In Figure 4a see the DDH for columns in D′
k with respect to ddev. The

intrinsic dimensionality is ρ = 98.1, so we can claim that in this case k ≈ ρ. This
interesting observation arises from the fact that rows in V T

k are orthonormal and
columns in V T

k (the pseudodocument vectors) are (almost) uniformly distributed.
Second, we consider the pseudodocument matrix Dk = ΣkV T

k (the clas-
sic LSI). In Figure 4b see the DDH for columns in Dk with respect to ddev,
the intrinsic dimensionality is now ρ = 52.6. Obviously, the difference between
ρ(D′

k, ddev) and ρ(Dk, ddev) is in the multiplication of V T
k by Σk. Since the sin-

gular values σi fall with increasing i, the uniformly distributed columns of V T
k

(i.e. D′
k) turn into non-uniformly distributed columns of ΣkV T

k (i.e. Dk). Fur-
thermore, multiplication with greater σi makes the i-th dimension (i-th concept
resp.) more significant and vice versa. In consequence, only the most significant



Fig. 4. (a) DDH for D′
k (b) DDH for Dk

dimensions can affect the spatial distribution of pseudodocument vectors; the
small values in insignificant dimensions can “shift” the vectors only fractionally.
Hence, the quicker falling of σi, the smaller number of significant dimensions
and, in turn, the smaller intrinsic dimensionality of Dk.

4.2 Singular Values Modification

To decrease the intrinsic dimensionality of Dk, we can adjust the singular values
σi such that they fall more quickly (with increasing i). This can be achieved by
a suitable modifying function f .

Σk = diag(σ1, . . . , σk) =⇒ Σf
k = diag(f(σ1), . . . , f(σk))

The function f must be increasing in order to preserve the ordering of singular
values (they are ordered by values). Moreover, f must be convex, because we
need to make the falling of σi faster (concave functions do the opposite).

Finally, we apply the modified values in Σf
k instead of the original Σk, i.e.

we use Df
k = Σf

k V T
k instead of Dk and qf

k = Σf
k Σ−1

k UT
k q instead of qk.

In the following we have chosen functions f(x) = xε (ε ≥ 1), so we will denote
Σf

k as Σε
k, Df

k as Dε
k, and qf

k as qε
k = Σε−1

k UT
k q. Note the notation is consistent

with the simple LSI (i.e. usage of Σ0
k). In Figure 5 see a normed visualization of

the singular values modified by several functions f(x) = xε. The greater ε, the
more quick falling of σε

i .
From the semantic point of view, a convex modification of singular values

means that we even more emphasize the significant concepts and even more
inhibit the less significant ones. It seems that we perform a kind of an additional
dimensionality reduction.



Fig. 5. Visualization of modified singular numbers σε
i (for different ε)

On the other side, any modification of singular values surely must increase
the approximation error mentioned in Section 2. However, this kind of error is
algebraical; the human-dependent effectiveness measures (e.g. the precision and
the recall) are something else. We present an experimental evaluation of the
σ-LSI model effectiveness in Section 5.1.

4.3 Intrinsic Dimensionality Reduction

In Figure 6 see distance distribution histograms for Dε
k, ε = 1.5 and ε = 3. The

intrinsic dimensionality for D1.5
k (or D3

k) is ρ = 21.22 (ρ = 1.72 respectively).

Fig. 6. DDHs for D1.5
k and D3

k

In Figure 7 the intrinsic dimensionality ρ of Dε
k is presented in dependence

on ε. As we have assumed, ρ is decreasing with growing ε, which should be



reflected by a more efficient searching by MAMs. The search efficiency achieved
by the M-tree is presented in Section 5.2.

Fig. 7. Dependence of ρ(Dε
k, ddev) on ε

5 Experimental Query Evaluation

For testing of our approach, we used a subset of TREC collection [21], consisting
of 30,000 Los Angeles Times articles (years 1989 and 1990), from which 16,889
articles were assessed in TREC-8 ad-hoc queries (see below). The remaining arti-
cles were added chronologically (from January to April 1989) and should provide
finer LSI concepts. We indexed this collection, removing well-known stop-words
and terms appearing in more than 25% of documents, thus obtaining 49,689
terms. Rank-100 SVD of the term-by-document matrix A was then calculated.

5.1 Effectiveness

For the evaluation of σ-LSI model, we need some qualitative measures for evalu-
ating query results. We used precision (P ) and recall (R), which are calculated
from set Rel of objects relevant to the query (usually determined by manual an-
notation of the collection, giving us subjective human assessment of documents’
relevance) and a set Ret of retrieved objects. Based on these sets, we define
precision and recall as:

P =
|Rel ∩Ret|
|Ret|

, R =
|Rel ∩Ret|

|Rel|

For the overall comparison of precision and recall across different methods, we
can use rank lists and evaluate precision on 11 standard recall levels (0.0, 0.1, 0.2,
. . . , 0.9, 1.0). Since the queries may have different number of relevant documents,
we can use interpolated values for each query. For complete description of this
method, see e.g. [2].



Unfortunately, it was observed that with the increase of recall, the precision
usually decreases. This means that when it is necessary to retrieve more relevant
objects, a higher percentage of irrelevant will be probably retrieved, too. To
obtain a single ratio for evaluation of the retrieval performance, we can employ
a measure called F -score – harmonic mean of recall and precision. Determination
of the maximum value for F can be interpreted as an attempt to find the best
possible compromise between recall and precision.

The universal version of F -score employs a coefficient β, by which can be the
precision-recall ratio tuned. We will use the basic form of F score with β = 1:

Fβ =
(1 + β2) · P ·R

β2P + R
, F = F1 =

2 · P ·R
P + R

To measure the effectiveness of σ-LSI, we must know the values of precision
and recall for both the original method (LSI) and the modification (σ-LSI).
Since we use a subset of TREC collection, we have a baseline for the effectiveness
measurement via a set of predefined topics and assessed documents, called TREC
Queries. TREC topics (written in SGML) contain at least the following tags:

<top>
<num> Number: 401
<title> foreign minorities, Germany
<desc> Description:

What language and cultural differences impede the
integration of foreign minorities in Germany?

<narr> Narrative:
A relevant document will focus on ...

</top>

For every topic, there is a set of relevance assessments for selected docu-
ments, which indicates, whether the particular assessed document was relevant
or irrelevant. The remaining unassessed documents were assumed irrelevant.
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We used TREC-8 Ad-hoc topics 401-450 with their relevance assessments
for Los Angeles Times subcollection for our task. Term weights in query vectors
were calculated from term frequency (tf ) component, the query vectors were
then projected to pseudodocument space for given ε. The values of ε have been
chosen from {0} ∪ < 1, 9 >5. The cosine measure SIMcos (deviation metric ddev

respectively) values were calculated for both k-NN queries and rank lists for each
TREC Query in the pseudodocument spaces.

Firstly, we used rank lists and measured interpolated average precision of the
above mentioned TREC Queries for 11 standard recall levels. The comparison
for different values of ε and original LSI (ε = 1) is addressed in Figure 8. The
precision-recall curves for reasonably small values of ε are very similar to classic
LSI, thus the method yields similar results even with much smaller intrinsic
dimensionality, which is suitable for MAMs.

Additionally, we calculated the mean average precision for all relevant docu-
ments in rank lists. The results for σ-LSI are shown in Figure 9a together with
the mean average precision of corresponding CVM representation.
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Fig. 9. (a) Mean average precision of σ-LSI for all relevant documents for different
values of ε with CVM baseline (b) F -score of k-NN queries for different values of ε

Secondly, we executed TREC Queries as k-NN queries for several values of
k, ranging from 10 to 1000 and compared the F -score for different values of ε.
Some of the results are shown in Figure 9b. We can observe, for the values of
ε < 3 the precision and F-score seem to be well-preserved.

5 For ε = 1, we obtain classic LSI model with Dk = ΣkV T
k , which we used as a

baseline; for ε = 0 we get simple LSI with D′
k = V T

k .



5.2 Efficiency

The motivation and main reason for introduction of the σ-LSI model is an im-
provement of query evaluation efficiency, when using MAMs. Among the many
metric access methods, we have chosen the M-tree [9] as a “database-friendly”
MAM (M-tree is a balanced, paged and dynamic structure), which we employed
to index several Dε

k matrices. The matrices were stored externally (the M-tree
index contained just pointers to the respective vectors in Dε

k) and size of each
matrix was about 12 MB. The size of each M-tree index was quite small, about
600 kB.

As search costs of k-NN queries, we measured the I/O costs (disk accesses)
and also the realtimes. Each k-NN query was executed 1000 times, every time for
a (new) randomly selected vector from Dε

k (i.e. as query vectors we have reused
the pseudodocument vectors). The results were averaged. To have an efficiency
baseline, we also present results for searching by simple sequential scanning of
the entire matrix Dε

k.

Fig. 10. (a) k-NN queries costs (b) 50-NN query costs, depending on ε

In Figure 10a see the costs of k-NN queries evaluation for several values of ε.
With growing ε the query evaluation is more efficient, up to 8 times for ε = 6
and k = 100, when related to ε = 1 (the classic LSI). Even in case when ε = 3
(for which the F -score is still well-preserved) the efficiency is improved more
than twice, when compared to ε = 1.

The dependence of efficiency on ε is presented in Figure 10b. For 50-NN
queries, both I/O costs and realtimes decrease with growing ε. However, had we
compared Figures 10b and 7, the intrinsic dimensionality drops much faster than



the costs needed for processing a 50-NN query by the M-tree. This observation
indicates that an “ideal” MAM should perform even better than the M-tree.

6 Conclusions

In this paper we have proposed σ-LSI – a novel modification of LSI model for
efficient searching in document collections by metric access methods. To battle
high intrinsic dimensionality, a convex modification of singular values σi by cal-
culating σε

i , ε ≥ 1 was proposed. We have shown that for reasonable values of ε
the intrinsic dimensionality drops quickly, while the similarity of documents is
still well-preserved. In fact, we have observed that our collection seemed to yield
almost the same results for ε ≤ 2.5, while the search efficiency was doubled.

In future, we would like to apply other convex functions on singular values,
testing whether they yield better global results for precision, recall and intrinsic
dimensionality than the currently proposed approach. We would like test the
approach on a greater collection, too, using some probabilistic methods of LSI
calculation, if needed.

Because rank-k SVD is also often used on other types of data, especially im-
ages, it would be interesting to evaluate the impact of our method on other met-
rics (e.g. L2), query results and intrinsic dimensionality in these collections, too.

Additionally, with the techniques of local dimension reduction, approximate
LSI, and σ-LSI modification for better metric indexing, we may be able to build
a really viable LSI index.
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spaces. ACM Compututing Surveys, 33(3):273–321, 2001.

9. P. Ciaccia, M. Patella, and P. Zezula. M-tree: An Efficient Access Method for
Similarity Search in Metric Spaces. In Proceedings of the 23rd Athens Intern.
Conf. on VLDB, pages 426–435. Morgan Kaufmann, 1997.

10. V. Dohnal, C. Gennaro, P. Savino, and P. Zezula. D-index: Distance searching
index for metric data sets. Multimedia Tools Applications, 21(1):9–33, 2003.

11. A. Frieze, R. Kannan, and S. Vempala. Fast Monte-Carlo Algorithms for Finding
Low Rank Approximations. In Proceedings of 1998 FOCS, pages 370–378, 1998.

12. G. H. Golub and C. F. V. Loan. Matrix computations (3rd ed.). Johns Hopkins
University Press, 1996.

13. R. M. Larsen. Lanczos bidiagonalization with partial reorthogonalization. Techni-
cal report, University of Aarhus, 1998.
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Jaroslav Pokorný
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Abstract. Using the terminology usual in databases, it is possible to
view XML as a language for data modeling. To retrieve XML data from
XML databases, several query languages have been proposed. The com-
mon feature of such languages is the use of regular path expressions.
They enable the user to navigate through arbitrary long paths in XML
data. If we considered a path content as a vector of path elements, we
would be able to model XML paths as points within a multidimensional
vector space. This paper introduces a geometric framework for index-
ing and querying XML data conceived in this way. In consequence, we
can use certain data structures for indexing multidimensional points (ob-
jects). We use the UB-tree for indexing the vector spaces and the M-tree
for indexing the metric spaces. The data structures for indexing the vec-
tor spaces lead rather to exact matching queries while the structures for
indexing the metric spaces allow us to provide the similarity queries.

1 Introduction

Using the terminology usual in databases, it is possible to view XML as a lan-
guage for data modelling. The notions like XML database and XML query lan-
guage logically extend this idea [5, 14]. So called native XML databases are
implemented in increasing extent. To reach a quality of conventional relational
databases, appropriate tools for manipulating have been designed. Among many
attempts to query languages over XML data, the language XQuery [15] seems
to be the leading approach now. The common feature of such languages is the
use of regular path expressions. They enable the user to navigate through arbi-
trary long paths in XML data. Obviously, in the next step to XML databases
some appropriate index structures have to be constructed for their data. Par-
ticularly, paths can be objects of indexing. In [9], we consider a path content
as a vector of path elements. Then we can model XML paths as points within
a multidimensional vector space. To speed-up access to such vectors, either vari-
ous multidimensional trees (such as the R*-tree [3], X-tree [4] or UB-tree [1]), or
metric trees can be used for their indexing (e.g., the M-tree [8] and the mvp-tree



[6]). Only few these data structures have been used for indexing XML data. In
[9], we used UB-trees for indexing path contents for more efficient exact querying
XML data. In this work we pursue a different, in some sense complementary, di-
rection that is based on M-trees. Metric trees only require the distance between
points to be a metric, thus they can be used even when no vector representa-
tion exists. We show how M-trees can be used for indexing XML paths and how
similarity querying XML data can be supported. Section 2 introduces to us the
geometric framework used in this paper. We shortly describe necessary basics of
vector and metric spaces. Section 3 contains the vector model for indexing and
querying XML data. The approach is based on the notion of path content. The
main contribution of the paper – a similarity indexing XML data with M-tree –
is contained in Section 4. We introduce briefly M-trees and propose a cumulated
metric based in the Hamming metric for indexing XML paths. The section is
completed with experimental evaluation of M-tree index applied on a real XML
data set. In conclusions we summarize the approach.

2 Geometric Framework

In our approach to indexing and querying XML data we exploit the proper-
ties of two geometric models. Both of these models treat the XML data as
objects/points within a space. In the first case within a vector space and in the
second case within a metric space. As we will see, each of the models is suitable
for a different purpose. We can say that they are complementary to each other.

There are two initial problems. First, we need to find a technique of transfor-
mation (so-called feature transformation) of the XML data into objects within
a vector or metric space. Second, we need to find the data structures for storage
and effective querying XML data according to the given model.

2.1 Vector Spaces

Vector model treats the XML data as points within multidimensional vector
space. This approach allows us to index values and even the structure of XML
documents and provides an ability of exact matching range queries. High vector
space dimension (greater than approx. 20) is unfortunately associated with curse
of dimensionality which has a negative influence on the range queries efficiency
(see [2]). A representative data structure for the vector model is the UB-tree
(see [1]). We discuss the vector model for indexing and querying XML data in
Section 3.

2.2 Metric Spaces

In a metric space there are generally neither the dimension nor the vectors.
However, in this paper we share the same representation of objects for the metric
spaces and for the vector spaces – i.e. multidimensional points. An important
difference is that each metric space has defined a metric – i.e. function measuring



a distance (or similarity) between every two objects. This function d must satisfy
following conditions:

d(oi, oi) = 0 (1)
d(oi, oj) > 0 (oi 6= oj) (2)
d(oi, oj) = d(oj , oi) (3)

d(oi, ok) + d(ok, oj) ≥ d(oi, oj) (4)

The presence of the metric prompts that the metric model provides an ability
of similarity queries. A representative data structure for the metric model is the
M-tree, see section 4.

3 The vector model for indexing and querying XML data

In our approach to indexing XML documents we model the XML data as points
within multidimensional vector space and thus we can use certain index struc-
tures for multidimensional indexing (for example UB-tree). This approach was
introduced in [9]. The data structures for indexing the vector spaces lead rather
to exact queries.

We distinguish between indexing XML data with and without ”mixed con-
tent” in [9]. Here we show only the latter case. The example of DTD for doc-
uments without ”mixed content” and an XML document valid w.r.t. the DTD
are in Figure 1a) and 1b), respectively. We will not consider the attributes of
elements in our approach.

Example 1 (Querying XML document).
The example of the DTD and the valid XML document is in Figure 1. The path
accounts/account/name denotes a query for obtaining all account customer
names from the document.

<!DOCTYPE accounts [

<!ELEMENT accounts (account*)>

<!ELEMENT account (id, name)>

<!ELEMENT id (#PCDATA)>

<!ELEMENT name (#PCDATA)>

]>

<?xml version="1.0" ?>

<accounts>

<account><id>1234-8952</id>

<name>Thomas Newell</name></account>

<account><id>1234-4123</id>

<name>David Moore</name></account>

<account><id>5842-5321</id>

<name>David Moore</name></account>

</accounts>
a) b)

Fig. 1. a) An example of DTD for XML documents without ”mixed contents”. b) An
example of valid XML document without ”mixed contents”.



3.1 Indexing path contents and XML structure

In our approach to indexing XML documents, we consider the n-dimensional
points representing path contents for XML structure indexing of all paths from
the root to all its leafs. The dimension n of the space is equal to the length of
the maximal path in XML-tree, i.e. the number of edges from the root to its
leaf element. To estimate the number n from DTD, we will consider only the
”nonrecursive” DTDs in our approach.

Definition 1 (path content).
Given a path e = e1/e2/ . . . /ek, e ∈ XP , XP is set of paths, the path content
is defined as a sequence of string values s = s1/s2/ . . . /sk, s ∈ XPC , XPC is set
of path contents. Each si, except sk, can be empty (ε).

Because string values can have a different length, it is necessary to use a
procedure, which maps different strings into binary numbers of the same length.
We use the signatures in our approach (e.g. [10]). The main idea of signatures is
to reflect the data items into bit patterns and store them in a separate file which
acts as a filter to eliminate the non-qualifying data items for an information
request. We will denote the function generating signatures by sig(x), where x is
a variable of string type.

The XML document is represented by m points within n-dimensional space,
where m is the considered number of path contents. All these points are inserted
into any index structures for multidimensional indexing. All complete paths con-
tents are stored in other data structures. It is important to create binding be-
tween the elements of XML document having the same parent. We can create
this binding using the elements unique numbers in the point representing path
content for XML structure indexing. Of course, it is possible to index even paths
(see Section 3.2).

Example 2 (Transformation of XML data to n-dimensional points).
We will show the transformation of the XML document from 1b) to the points
of multidimensional space. We see the space has n = 3. We determine the length
of the domains as 64b. This signature value is large enough for the signature si.
But generally, there is not cause for domain cardinalities to be the same. The
cardinality of domain for signatures of #PCDATA and for unique numbers of
root elements can be different for example. The important role plays here the
analysis of DTD.

If we are browsing through document in Figure 1b), then the following path
contents are obtained: ε/ε/1234-8952, ε/ε/Thomas Newell, ε/ε/1234-4123, ε/
ε/David Moore, ε/ε/5842-5321 and ε/ε/David Moore. It is necessary to group
these path contents according to the relationship to particular accounts and
account elements. Therefore we nest the unique numbers of accounts and
account elements into 1st (2nd respectively) coordinate of points representing
path contents. The points representing path contents will be (0,0,sig("1234-
8952")), (0,0,sig("Thomas Newell")), (0, 1, sig("1234-4123")), (0, 1,
sig("David Moore")), (0, 2, sig("5842-5321")), and (0, 2, sig("David



Moore")). The points in 3-dimensional space are depicted in Figure 2. These
points are inserted into the indexing structure. If we index paths (see Section 3.2),
then we will work with 4-dimensional space.
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Fig. 2. The 3-dimensional space with indexed XML document without ”mixed con-
tents”.

Example 3 (Querying XML document).
We show now how it is possible to query the XML document from Figure 1b)
transformed to the points within multidimensional space by above mentioned
technique. Let us take the query accounts/account[name=’David Moore’],
i.e. we want to get all account elements for David Moore’s account. First we
need to transform this query to the range query. It means to find all the points
from Figure 2, that are contained by query block 1. It is necessary to determine
the coordinates of two points defining the query block. By means of range query
we get the points from the 3-dimensional space which represent the unique num-
bers of parent elements of name element with content David Moore. We get the
result set and if user will want to obtain the contents of child elements of any
account element, for example, then the query block like query block 2 from Fig-
ure 2 is effected for their retrieval. To distinguish the points representing the
path contents for different paths it is necessary to index even the paths (see
Section 3.2).

3.2 Indexing paths

The indexing XML data as it is proposed in Section 3.1 considers only a path
content. If the XML document is transformed to points of a space in this way,
the element tags are lost. If we consider the XML document from Figure 1 then
we will be not able to distinguish the points representing the path contents for
paths accounts/account/id or accounts/account/name.

We consider a binary relation PPC [9] between paths and their path contents.
All points representing paths will be inserted to other index structure. Besides



the point coordinates and pointers to data structures containing the whole paths
we insert even the path unique numbers in another dimension of the space which
contains the path contents. In fact, the relation PPC is built by adding other
dimension to the space which contains path contents, i.e. the dimension of space
will be n+1. It is hereby possible to index even the documents valid to different
DTD in one index structure in this way.

Example 4 (Indexing paths).
We get two different paths accounts/account/id and accounts/account/name
from the XML document in Figure 1b). So we get two points (we get two paths)
representing paths in 3-dimensional space (paths contain three elements). These
points are inserted into other indexing structure. The point (sig("accounts"),
sig("account"),sig("id")) representing path accounts/account/id is in-
serted with unique number 0 and point representing path (sig("accounts"),
sig("account"),sig("name")) with unique number 1. The points represent-
ing paths are in Figure 3. The points representing the path contents have last
coordinate equal to the unique number of the associated path.

We see the space to have n = 4 (one dimension will be for unique numbers of
paths). The gained path contents are in Example 2. Let us take the path content
ε/ε/1234-8952 and point representing the path contents (0,0,sig("1234-8952"))
for example. The path unique number of path accounts/account/id from index
structures which contain points representing paths is append as fourth coordi-
nate to the point. We get point (0,0,sig("1234-8952"),0) in this manner.
The all six points gained by the same way are inserted into index structure
containing path contents.
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Fig. 3. The 3-dimensional space with points representing paths.

Example 5 (Querying XML document).
It is important to get by a point query the unique number of the desired path
from index structure containing paths. After that we get desired points by a range
query from the indexing structure containing path contents. It is necessary to



work with four dimensions in the case of defined coordinates of points determin-
ing the query block.

4 Similarity Queries

Another aspect of indexing XML data, in addition to the structural indexing, is
the similarity indexing. In such an XML index we can query for XML objects
that are similar to a query object.

Properties of metric spaces, where the metric represents the notion of similar-
ity, are suitable formal basis for indexing similarities inside XML data. Following
subsection describes a data structure M-tree which allows to index general ob-
jects of metric spaces.

4.1 M-tree

Data structure M-tree (introduced in [8] and closely discussed in [13]) was devel-
oped for indexing and querying objects within metric spaces. Its main charac-
teristic is that M-tree allows to process similarity queries. It is, in fact, dynamic,
persistent, paged and balanced tree like e.g. the B-tree. The difference is in the
semantics of the nodes. Indexed objects themselves, i.e. ground objects, lie in the
leaf nodes. The inner nodes contain routing objects that represent a hierarchy of
specific metric regions.

– The record of a routing object Or in inner node contains:
1. a ground object Or (its significant properties respectively). This ground

object determines the center of the metric region.
2. pointer ptr(T (Or)) to its own subtree T (Or) – i.e. covering tree
3. value r(Or) – covering radius of the metric region
4. value d(Or, P (Or)) – distance to the parent routing object P (Or)

Notes:
The ground object in the routing object (inner node) is one of the ground
objects remaining in the child leaf nodes of T (Or). The distance function d
is a metric of a metric space.

– The record of a ground object looks similarly, but it also contains oid(Oj) –
identifier of the whole object (stored outside of M-tree) – instead of covering
tree and covering radius.

Hierarchy of M-tree is based on partition of the metric space onto metric
subregions which do not have to be strictly disjunct. This regions are formed by
the routing objects Or where the child routing objects (their regions respectively)
and the child ground objects of its covering tree T (Or) are within the distance
r(Or) to the center of Or. Formally,

∀Oi ∈ T (Or), d(Or, Oi) ≤ r(Or)

The precalculated distance value d(Or, P (Or)) to the parent object along
with the covering radius r(Or) allow to eliminate the untouched regions from the
process of an operation on M-tree (i.e. searching, insertion, deletion). Structure
of the M-tree and the routing object relations are depicted in figure 4.



Fig. 4. (a) Nodes of M-tree contain object records. (b) Routing objects – metric regions.

Searching the M-tree We must take into account two factors of complexity
when we make some operation on the M-tree. The first one is the number of
accesses to disk pages (number of regions being searched respectively) and the
second one (specifically to M-tree) is the number of distance calculations. The
goal is to minimize both these factors.

We can meet two kinds of queries by metric trees. The range queries search
for all the objects within certain distance to the query object. The k-nearest
neighbours queries search for the first k nearest objects to the query object. In
both cases we can see a tendency to order the metric space – relative to the
query object.

Managing the regions The crucial factor of the M-tree’s cost-effectiveness is
a ”good layout” of the metric regions stored within the M-tree. As we have said
earlier, the regions can overlap another ones. This property arises from the M-
tree’s universality which is caused due to specifying only a metric of the metric
space. High ”overlap rate” leads, in the worst case, to sequential search – i.e. to
linear complexity.

With the design of the M-tree there were also developed some techniques
for minimizing this ”overlap rate”. The first technique is ”embedded” into the
phase of a tree node(page) splitting and consists of a choice of split policy and
a mechanism of creating the best routing object – promoting phase. This is
the dynamic technique. The second technique, more efficient, is the bulk loading
algorithm. This algorithm takes at the beginning the whole collection of objects
and loads all of them into the empty M-tree at once. The loading is based on
preliminary clustering where prospective regions of objects are created at once.
This is the static method.

Summary M-tree is balanced, highly parametrizable data structure making
possible to index objects of a metric space. The M-tree operations are performed
with approximately logarithmic time complexity (if well build) but the M-tree
doesn’t represent a complete linear order like other trees (B-tree, UB-tree, ...)
do. On the other side, M-tree is more general than the Spatial Access Methods
based on vector spaces.



4.2 Indexing XML data with M-tree

If we consider XML paths as simple objects, we can index such objects into a met-
ric space or actually into the M-tree. For example, path BOOK/AUTHOR/SURNAME is
object to store within M-tree. All paths in given XML document(s) can be trans-
formed in this way into a collection of this simple XML objects. XML objects can
also have assigned to every element tag its element content, which will increase
the number of unique objects. For example, BOOK{technical}/AUTHOR{writer}/
SURNAME{Walsh}, but furthermore, for simplicity, we will ignore the possibility
of any content.

XML object oi (path) can be represented as a variable vector of strings
(element tags), oi = (o1

i , o
2
i , · · · , o

li
i ).

Choosing metric for paths Metric chosen for XML indexing must take as
arguments two XML objects (paths) and calculate distance between them. We
propose as an example cumulated metric which is defined as:

D(oi, oj) =
max(li,lj)∑

k=1

d(ok
i , ok

j )

where d(x, y) is an ordinary metric (e.g. Hamming metric) between two strings.
Hamming metric [7] adds up the mismatching pairs of characters where the

first character of a pair is located on a position in the first string while the second
character is on the same position in the second string. Formally,

dH(x, y) =
min(|x|,|y|)∑

i=1

sgn(|x[i]− y[i]|) + ||x| − |y||

For example, dH(AUTHORS, AUTOMATON) = 0 + 0 + 0 + 1 + 1 + 1 + 1 + 2 = 6

Example 6.
Let d be the Hamming metric. Then
D(BOOK/AUTHOR/SURNAME, BOOK/AUTHOR/FIRSTNAME) = 0 + 0 + 8 = 8

Let d be the discrete (yes/no) metric. Then
D(BOOK/PREFACE/TITLE, BOOK/BOOKINFO/TITLE) = 0 + 1 + 0 = 1

Note: In this section, the paths used in examples are generated according to
the DocBook DTD, see [12].

Processing queries We have defined objects of metric space (XML paths) as
well as metric (cumulated metric) thus we have accomplished the requirements
for indexing with the M-tree.

We can distinguish two types of queries:

1. similarity queries. An object oi in query result is within some distance r
(query radius) to the query object oq, i.e. the M-tree is traversed with con-
dition D(oq, oi) ≤ r. This kind of query allows to obtain the similar XML
paths.



Example 7 (cumulated Hamming metric).
Query object = BOOK/PART/CHAPTER/PARA/ACRONYM, r = 6
Query result = {BOOK/PART/CHAPTER/PARA/ACRONYM (distance 0)

BOOK/PART/CHAPTER/PARA/SCREEN (distance 4)
BOOK/PART/CHAPTER/TITLE/ACRONYM (distance 5)
BOOK/PART/CHAPTER/PARA/FILENAME (distance 6) }

2. exact matching queries. An object oi in query result must exactly match the
query object oq, i.e. the M-tree is traversed with the condition D(oq, oi) = 0.
This is the special case of similarity query with r = 0 – no differences are
allowed.
Notes:

– The query object is not expressed by any query language, its structure is the
same as the structure of any ground object.

– The syntax of query object can be extended with keyword ”*”, where using
this keyword on the k-th coordinate of object vector brings evaluation of
d(ok

q , ok
i ) always as 0 (match).

Example: D(BOOK/AUTHOR/*, BOOK/AUTHOR/FIRSTNAME) = 0 + 0 + 0 = 0.
This extension allows to treat the exact matching queries as range queries.

– The objects in query result give only the information about existence of
such paths in XML tree but the objects cannot tell the exact location. This
lack of ”context” can be removed with additional property of XML object
– unique identifier of the last path element pointing into an external data
structure (e.g. the source XML tree or UB-tree index). This improvement
makes possible the consequential navigation in the external XML tree.

4.3 Testing with M-tree

We have performed particular tests with M-tree – XML path indexing and XML
similarity queries. XML data we have indexed was a XML file containing the
documentation to DocBook. The size of this file was about 3MB.

In the first phase, we have transformed the whole file into collection of XML
objects (unique paths) – 972 unique paths were extracted. Second, we have
inserted all of these objects one-by-one into the M-tree. Page size of the M-tree
was 1kB and cumulated Hamming metric was chosen. Each object (path vector)
of the M-tree was aligned on size of 256 bytes.

After the indexing phase, the
M-tree has acquired following statis-
tics: pages(nodes) count: 1568, leafs
count: 590. Table 1 shows for each
level of the M-tree its pages count
and average radius of all routing ob-
jects(regions) within the level.

Level Pages count Avg. radius

0 (root) 3 207.33
1 5 183.00
2 10 135.40
3 16 121.75
4 23 102.74
5 34 85.18
6 53 65.79
7 83 54.02
8 141 37.14
9 233 22.95
10 376 13.12

11 (leafs) 590 6.01

Table 1: M-tree statistics



Furthermore, disk access costs test was performed. A series of queries was
produced by specifying the query object as:
("BOOK/PART/CHAPTER/SECT1/SECT2/PARA/ACRONYM") and by increasing the query
radius from r = 0 (exact matching query) to r = 32. The results are shown in
figure 5.

Fig. 5. Results of disk access costs test. The numbers below particular results are the
total numbers of objects returned in particular query result (objects similar to the
query object within the current radius).

5 Conclusions and Outlook

In this paper we have shown that XML data can be modelled in multidimensional
vector spaces and in metric spaces. We use the UB-tree for indexing the vector
spaces and the M-tree for indexing metric the metric spaces in our approach of in-
dexing XML data. The data structures for indexing the vector spaces lead rather
to the exact queries while structures for indexing of the metric spaces allow us
to provide similarity queries. In the course of writing this paper some interesting
questions appeared, e.g. new metric designs or different feature transformations.
Their solution will be the topic of our future work. Furthermore, presented data
structures are independent and our intention is to integrate them into a sin-
gle hybrid data structure providing a possibility of XML data storage and also
efficient exact and similarity querying.
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Chapter 10

Conclusions

We have presented selected results of author’s research, carried out through years
2002–2006. The efficiency issues of similarity search were addressed by several
extensions of the M-tree (an access method for searching in metric spaces). In
particular, construction techniques for obtaining more compact M-tree hierarchies
were presented in Chapter 2, resulting in better filtering at the expense of higher
construction costs. The PM-tree, presented in Chapters 3 and 4, was proved to
perform significantly better than the M-tree, considering both the original M-tree
construction techniques as well as the modified ones producing more compact
hierarchies.

An access method supporting multi-metric queries – the M3-tree – was pre-
sented in Chapter 5. The M3-tree was experimentally proved to achieve almost
the same efficiency as having multiple M-tree indices (each for a particular query
metric), while the space overhead needed to store the additional information in
M3-tree index is negligible. Unlike the M-tree adapted for multi-metric queries,
the M3-tree is not sensitive to the distribution of query weights.

In Chapter 6 a nonmetric-to-metric transformation was presented, allowing to
employ the metric access methods for indexing of non-metric datasets. Although
the idea of triangle-generating modifiers is simple (from the mathematical point
of view), the experimental results have shown that finding a suitable modifier
produces a metric that is powerful enough to effectively filter the dataset with
respect to a query.

In Chapters 7 and 8 the approximate search in metric spaces was discussed.
Both of the presented methods utilize triangle-violating modifiers (an opposite
construction to the non-metric transformation). In the former case, the modifiers
are applied directly on a given semimetric, while in the latter case the modifiers
have been used for specific transformation of vectors in the LSI model of text
retrieval.

In the last chapter we have presented a model of measuring similarity of XML
documents (XML paths, actually) by cumulated string metrics.
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10.1 Current Research

In our current research we continue improving the general access methods for
searching in metric spaces. In particular, a paper on extending the M-tree nodes
by nearest-neighbor graphs was submitted recently. We also plan to integrate the
ideas used in M3-tree into the PM-tree.

The ideas of triangle-generating/violating modifiers have been unified in a pa-
per invited by the EDBT PC to ACM TODS (submitted recently). To mention
the main contribution, we have developed a generalized version of the TriGen
algorithm, in order to handle any dissimilarity measure (either a metric or semi-
metric). In this unified similarity framework, we are able the search exactly or
approximately by metric or non-metric dissimilarity measure.

10.2 Future Work

In the future we would like to move a bit more to applications, in order to acquire
more evidence for improving various kinds of similarity search. In particular, the
improvement of feature extraction from images is the key problem to achieve more
effective image retrieval. Nowadays, the extraction techniques are mostly focused
on producing a single feature vector which is then passed into a simple Lp distance.
The multi-metric approach (together with M3-tree) and the non-metric approach
(together with TriGen) challenge us to design more complex data representations
(even non-vectorial) and distance measures, aiming to perform a search that is
more ”semantic” (ideally to partially bridge the semantic gap in image retrieval).
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[18] Edgar Chávez and Gonzalo Navarro. A Probabilistic Spell for the Curse
of Dimensionality. In ALENEX’01, LNCS 2153, pages 147–160. Springer,
2001.

[19] Paolo Ciaccia and Marco Patella. Bulk loading the M-tree. In Proceedings
of the 9th Australian Conference (ADC’98), pages 15–26, 1998.

[20] Paolo Ciaccia and Marco Patella. The M2-tree: Processing Complex Multi-
Feature Queries with Just One Index. In DELOS Workshop: Information
Seeking, Searching and Querying in Digital Libraries, Zurich, Switzerland,
June 2000.

[21] Paolo Ciaccia and Marco Patella. Searching in metric spaces with user-
defined and approximate distances. ACM Database Systems, 27(4):398–437,
2002.

[22] Paolo Ciaccia, Marco Patella, and Pavel Zezula. M-tree: An Efficient Access
Method for Similarity Search in Metric Spaces. In VLDB’97, pages 426–435,
1997.



BIBLIOGRAPHY 151

[23] Brian F. Cooper, Neal Sample, Michael J. Franklin, Gı́sli R. Hjaltason, and
Moshe Shadmon. A fast index for semistructured data. In VLDB, pages
341–350, 2001.

[24] Scott C. Deerwester, Susan T. Dumais, Thomas K. Landauer, George W.
Furnas, and Richard A. Harshman. Indexing by latent semantic analy-
sis. Journal of the American Society of Information Science, 41(6):391–407,
1990.

[25] Vlastislav Dohnal, Claudio Gennaro, Pasquale Savino, and Pavel Zezula. D-
index: Distance searching index for metric data sets. Multimedia Tools and
Applications, 21(1):9–33, 2003.

[26] C. Faloutsos and K. Lin. Fastmap: A Fast Algorithm for Indexing, Data-
Mining and Visualization of Traditional and Multimedia Datasets. In SIG-
MOD, 1995.

[27] Roberto F. Santos Filho, Agma J. M. Traina, Caetano Traina, and Christos
Faloutsos. Similarity search without tears: The OMNI family of all-purpose
access methods. In ICDE, 2001.

[28] Michael Freeman. Evaluating dataflow and pipelined vector processing ar-
chitectures for fpga co-processors. In DSD ’06: Proceedings of the 9th EU-
ROMICRO Conference on Digital System Design, pages 127–130, Washing-
ton, DC, USA, 2006. IEEE Computer Society.

[29] G. D. Guo, A. K. Jain, W. Y. Ma, and H. J. Zhang. Learning similarity
measure for natural image retrieval with relevance feedback. IEEE Neural
Networks, 13(4):811–820, 2002.

[30] G. R. Hjaltason and Hanan Samet. Properties of embedding methods for
similarity searching in metric spaces. IEEE Patt.Anal. and Mach.Intell.,
25(5):530–549, 2003.
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iting M-tree Building Principles. In ADBIS, Dresden, pages 148–162. LNCS
2798, Springer, 2003.



BIBLIOGRAPHY 153
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