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”If a man takes no thought about what is distant,
he will find sorrow near at hand.”

Confucius
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Preface

In the broad area of Information Retrieval (IR), one of the present-day most
important tasks is a solution of effective and efficient similarity search in large
collections of unstructured or semi-structured documents. In particular, the vol-
ume of multimedia databases as well as of textual collections grows very quickly
and the needs for an efficient similarity search in such databases become stronger.

Since similarity measures are usually modelled by metrics (or distance func-
tions), the problem of similarity search in a document collection can be trans-
formed into the problem of searching in a metric dataset (representing the collec-
tion). Furthermore, in order to search in a metric dataset efficiently (i.e. quickly),
the dataset has to be preprocessed (or indexed) so that a data structure, a metric
index, is built and used for query processing.

In principle, there exist two ways how to search in metric datasets, the exact
search methods and the approximate search methods. The exact methods search
the dataset such that no false drops are allowed, i.e. all of the objects understood
as relevant to a query are required to appear in the query result. On the other
side, the approximate methods relax such a strong requirement, so that a small
proportion of missing objects is accepted as insignificant.

The Goal

The methods of similarity search have been a subject of interest to IR and
database communities for a long time. Nevertheless, the area is still rich, of-
fering new problems, while many researchers have spent a lot of efforts to handle
them.

The general goal of this Ph.D. thesis is to inventively continue the success in
the field of metric indexing achieved so far. In particular, we primarily emphasize
the aspect of search efficiency, thus all the methods proposed in this thesis are
focused on speeding up the similarity search in metric datasets.

We present several contributions to metric indexing, concerning both the exact
metric search and the approximate metric search. Furthermore, we apply the
metric approach to handle the problem of an efficient similarity search in vector
model of Information Retrieval (Text Retrieval respectively). In order to verify
their properties, all of the contributions are evaluated by many experiments.

v



vi Preface

Wherever needed, examples for demonstration of the important principles are
included, while the necessary algorithms are described in a form of pseudo-code
listings.

Summary of Contributions

In this thesis we extend the ideas of M-tree, which is a hierarchical indexing struc-
ture for searching in large metric datasets. We present four main contributions,
summarized as follows:

• We propose two novel methods (published in [98]) of building the M-tree
hierarchy. Both methods, the multi-way object insertion and the generalized
slim-down algorithm, optimize the M-tree hierarchy so that a higher search
efficiency is achieved. We also utilize the fat-factor coefficient as a measure
of the quantity of overlaps among metric regions in the M-tree.

• A substantive part of the thesis presents the PM-tree (published in [93,
100, 99]), a metric indexing structure combining the M-tree with principles
used by pivot-based methods (LAESA method respectively). In order to
even more improve the efficiency of metric search, the PM-tree exploits a
concept of compact hyper-ring intersections reducing the probability of a
”region false hit”. In particular, we present

– the motivation, the basic concepts of PM-tree, and the PM-tree con-
struction algorithms

– the optimal range query as well as k-NN query algorithm

– formulation of two cost models for range query as well as k-NN query
processing (including experimental evaluation)

– experiments made on large synthetic datasets as well as on a collection
of images

• As a contribution to approximate metric search, we propose the concept
of semi-metric search (published in [95, 97]), a method of searching in
datasets of high intrinsic dimensionalities. The method is based on uti-
lizing specific semi-metric modifications of the original metric, so that the
intrinsic dimensionality is reduced. We have applied the semi-metric search
for approximate searching in the framework of M-tree.

• In the last contribution, we apply the methods of metric and semi-metric
search to the problem of searching in vector model of Text Retrieval (pub-
lished in [96, 94, 95, 97]). We turn the problem of similarity search using
cosine measure into the problem of search using the deviation metric. In-
stead of traditional sequential methods (e.g. the inverted file), the M-tree
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can be used to index the document vectors so that documents are hierar-
chically clustered inside regions of metric space.

Thesis Organization

Besides the introducing and concluding chapters, the thesis is divided in two
parts. The first part (Chapters 2,3,4,5) concerns the problem of exact metric
search, while the second part (Chapters 6,7,8) deals with methods of approximate
search.

In Chapter 1 an introduction to the search problem is covered under the scope
of Information Retrieval. We point out that in context of IR the expressiveness
of exact-matching queries is insufficient and, therefore, a kind of similarity search
concept is needed. We discuss the problem of similarity search in IR and its
transformation into the problem of searching in metric spaces.

Several state-of-the-art methods providing metric search are surveyed in Chap-
ter 2. We focus only on exact methods in this chapter, i.e. such methods for which
the total accuracy of metric search is guaranteed.

As a basis and a starting point of our research, in Chapter 3 we describe
the ideas of M-tree. In particular, we present the M-tree structure, construction
algorithms and query processing.

Two novel methods of M-tree construction are described in Chapter 4, the
multi-way object insertion and the generalized slim-down algorithm, both of them
providing construction of more compact M-tree hierarchies. The M-trees built
by either of these methods are experimentally verified to be significantly more
efficient in searching.

In Chapter 5 we introduce the PM-tree, a novel extension of the M-tree ex-
ploiting principles used by pivot-based methods. We present the basic properties
of PM-tree and briefly explain the construction specifics. A comprehensive de-
scription is given to the query algorithms and to formulation and evaluation of
query cost models. The properties of PM-tree are experimentally verified on large
synthetic as well as real-world datasets.

The Chapter 6 introduces into the problem of approximate search. It is
demonstrated that exact search in datasets of high intrinsic dimensionality is im-
practicably difficult. We overview several approaches to approximate but more
efficient search in such datasets.

In Chapter 7 we propose a method of approximate semi-metric search. We
analyse a theoretical framework concerning metric modifications and inspect
semi-metric modifications having suitable clustering properties. The semi-metric
modifications are utilized in M-tree, providing an efficient approximate search.
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As a real-world application, we have taken advantage of metric search in the
domain of Text Retrieval. In Chapter 8 the (semi-)metric approach is utilized for
searching in the classic vector model as well as in the LSI model of IR.

In Chapter 9 we conclude the thesis and give an outlook into the future.
Author’s selected publications related to indexing in IR are listed in Appendix A.
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Chapter 1

Introduction

Because of rapid developments in information technologies and together with the
expansion of information society, the needs for a massive information exploitation
grow and the importance of information retrieval becomes stronger. The broad
area of Information Retrieval (IR) [86, 9] involves miscellaneous problems and
approaches to information storage and retrieval. In particular, the methods of
Information Retrieval deal with large data collections of various kinds. Besides
the well-known and extensively used relational database technologies, there have
appeared many problems recently, where the conventional techniques cannot be
applied and completely new approaches have to be designed.

In the past few decades, the scope of Information Retrieval was rather re-
stricted to areas of Text Retrieval and related disciplines – like Pattern Match-
ing, String Processing, etc. However, during the last years the development in IT
has brought many other forms of information representation and storage, thus
nowadays we can understand the Information Retrieval as a set of disciplines
for management and searching in databases of various kinds – that it, in large
collections of unstructured documents. Such document collections usually consist
of:

• text documents (Text Retrieval [15, 49] )

• web pages, web sites (Text Retrieval, Semantic Web [14])

• multimedia documents, i.e. images, audio, video (Multimedia Databases [4])

• XML documents or XML subtrees (XML Databases [27, 82])

• etc.

The difference between structured1 databases (e.g. relational DBs) and un-
structured databases (e.g. text documents) is in the description of data structure

1Besides the structured and unstructured documents we also distinguish semi-structured
documents, where the structure is defined only partially (e.g. XML documents complying a
DTD or XML schema).

1



2 Chapter 1. Introduction

and data semantics. The content of structured databases is always tightly re-
lated to an unambiguous database schema defining the structure (e.g. the size
and number of attributes) as well as the semantics (e.g. attribute type). On
the other side, for an unstructured database there usually exists only a loosely
defined schema (e.g. a schema definition like ”text consisting of terms”). Due
to that fact, the loosely described unstructured data can be modelled in many
ways, depending on the application domain.

1.1 Fields of Interest

The scope of Information Retrieval is very broad, it covers searching, browsing,
data modelling, document classification and categorization, system architectures,
data visualization, data storage and compression, user interfaces, filtering, mod-
elling and query languages, etc.

Among many problems solved within the scope of Information Retrieval, we
focus on the issue of searching in large document collections. In IR the retrieval
of stored documents can be usually provided by two different modalities:

1. Browsing. The user can browse and navigate through the stored docu-
ments in an interactive way, until the retrieved document(s) meet his/her
requirements.

2. Querying/Searching. Another possibility is a formulation of query which
can be issued to the IR system. The query is expressed by means of a query
language or by submitting a query document (specified in a given model).
Then, the system has to evaluate the query on a given document collection
in order to present the result to the user.

In the thesis we deal with the latter modality, i.e. we are concerned with the
problem of querying a large document collection. Since in database area
the meaning of term ”large” is constantly changing over the time, we generally
assume that large document collection is required to be stored in secondary (or
even tertiary) memory.

1.2 Search in Information Retrieval

Unlike the well-structured databases, where the data semantics is given by a
database (or collection) schema, the semantics of unstructured documents is hid-
den in the document content itself. Given a query to database, we usually want
to retrieve all the documents which are ranked as relevant to the query. How-
ever, the relevance of an unstructured document to a query cannot be determined
without an implicit knowledge about the collection semantics. For this reason
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a feature extraction is necessary, converting the unstructured collection of docu-
ments C into a structured dataset S of objects (usually represented by vectors)
where each object Oi ∈ S describes just one document. Naturally, the feature
extraction is dependent on the application domain as well as on particular query
semantics (different query types exploit different features).

Example 1.1

Consider a collection of gray-scaled images. A common feature extraction for
images is a creation of gray frequency histogram for each image in the collection
(e.g. each image is represented by a 256-dimensional feature vector). Such a
feature extraction implies that semantics of each query needs just the histogram
to qualify an image as relevant/irrelevant to the query.

Example 1.2

The feature extraction can be also viewed as a preprocessing step when a rela-
tional database has to be populated. Consider a web catalogue of car models
where each web page contains a full-text description of one car model. For re-
trieval of all the objects relevant to a reasonable query, we need to know the basic
technical parameters of each car model. Hence, the feature extraction processing
must recognize those parameters in each catalogue page and form a feature vector
(a row in a table) for each page in the catalogue. The vector coordinates (columns
in a table) represent the extracted features or attributes (e.g. MODEL(string),

CONSUMPTION(float), MAXSPEED(int), WEIGHT(int), PRICE(int),...). Such
a feature extraction implies the query semantics to be related just to the extracted
attributes of car models.

1.2.1 Exact-Match Queries

Given a dataset S and a query predicate Q, the database system has to determine
which objects in S are relevant (in some sense) to the predicate Q. In classic
relational database systems, the fundamental operation is exact matching , thus
only such objects from S are retrieved, which exactly match the predicate Q.
Each object from S is classified as strictly relevant or strictly irrelevant to the
query predicate.

Example 1.3

Consider the catalogue of cars described in Example 1.2. An exact-match query
can be formulated by the standard SQL SELECT statement as:

SELECT * FROM CARS WHERE MAXSPEED > 120 AND CONSUMPTION < 6

OR PRICE < 10000 OR MODEL LIKE ’BMW*’

All of the retrieved objects (car pages in the catalogue) exactly match the query
predicate (the WHERE statement) and there is no further relevance ranking
within the query result.
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1.2.2 Limitations of Exact-Match Queries

In the area of Information Retrieval, the usage of exact-match queries is limited
by several paradigmatic factors:

1. In order to retrieve just the objects of his or her interest, the user must
be able to specify a correct query predicate. On the other side, in the
diversified area of Information Retrieval the queries (the query predicates
consequently) are required to capture a variety of relevance interpretations.
Unfortunately, in many cases a strict separation of all the documents be-
tween two classes of relevant and irrelevant documents is impracticable
thus, consequently, a formulation of an appropriate query predicate is often
impossible.

2. To specify a query predicate, the user must be able to interpret the features
(attributes) of an object description. In case of the car dataset (see Example
1.2) the attribute interpretation is easy, but in case of the image dataset (see
Example 1.1) the attributes, representing frequencies of the gray shades in
an image, are not so clear to cope with.

3. The objects in a query result are all of the same relevance to the query
predicate. There is no further relevance ordering in the query result. Con-
sequently, when a huge query result is obtained and the user cannot choose
a few most significant objects among the others, then a more specific query
predicate has to be constructed and the query evaluation repeated.

In the context of Information Retrieval, the exact-match queries are not ex-
pressive enough. The reason is that in the environment of loosely defined infor-
mation semantics we rather want to retrieve those objects from the dataset S,
which are somehow partially relevant to a query object2 (or pattern object). That
is, there is a strong need for a generalization of the exact-match queries beyond
the resolution of binary relevance.

More specifically, what is usually needed is a notion of similarity – the user
could query the system to assess a similarity value between each object in the
dataset and a given query object. In such a scenario, the result of a query is a list
where all the retrieved objects are sorted by decreasing values of their similarity
with respect to the query object.

1.3 Similarity Search

The questions concerning similarity have been intensively investigated throughout
the 20th century in the field of psychology as well as computer science, attempting

2The query object is represented the same way as a data object is.
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to define a theory consistent with the huge amount of experimental real-world
data. A major discrepancy between the similarity concepts in psychology and
computer science has been discovered [87], differentiating the human concept of
similarity (used by psychologist) and the computer concept of similarity (used
by computer scientists). For the discussion about various similarity theories, we
refer to the classical work [104] and to a more recent work [87].

Suppose that a collection (or database) C consisting of n documents is repre-
sented by a dataset S, which is a subset of universe U of objects (i.e. S ⊆ U). We
left the universe U further unspecified but, however, in most cases it is a multi-
dimensional vector space. For the sake of common tasks solved in the scope
of Information Retrieval, the similarity between two objects Oi, Oj ∈ U can be
modelled by a similarity function as follows.

Definition 1.1 (similarity function)

Given a universe U of objects, a similarity function s is defined as s : U×U 7→ R
where value of s represents a similarity score between two objects in U. �

1.3.1 Similarity Queries

Given a dataset S ⊆ U representing a document collection C, the (simplified)
similarity search scenario is set as follows:

1. The similarity search provides retrieval of objects similar to a single object,
thus the similarity query predicate is represented by a query object Q ∈ U.

2. The relevance score of an object Oi ∈ S to a similarity query predicate is
determined as a similarity to the query object Q, i.e. the score is s(Oi, Q).

3. Unlike for exact-match queries, where the binary relevance score qualifies
whether an object has to appear in the query result or not, a similarity
query predicate itself cannot qualify any object of S to be relevant or ir-
relevant to a query. Additionally, there must be a similarity query extent
specified, determining which similarity scores (the objects having such a
score respectively) have to appear in the query result.

4. The result of a similarity query is structured – all objects included in the
query result are ordered by their similarity scores to the query predicate.

Among several forms of similarity queries, we consider two of them – range queries
and k-NN queries:

Definition 1.2 (range query)

Given a query object Q (representing the similarity query predicate) and a mini-
mum similarity threshold α (representing the similarity query extent), the range
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query range(Q,α,S,s) determines all such objects Oi ∈ S that s(Q,Oi) ≥ α,
i.e. all the objects, the similarity scores of which (with respect to Q) are not less
than α. �

Example 1.4

Let us have a collection of fingerprints. A common range query could provide
tasks like: ”Determine every person having his/her fingerprint similar to a pat-
tern fingerprint more than 90%”. A range query with a high α threshold could
provide tasks like: ”Identify a person having his/her fingerprint almost identical
to a pattern fingerprint”.

Definition 1.3 (nearest neighbours query)

Given a query object Q (the query predicate) and an integer k ≥ 1 (the query
extent), the k-nearest neighbours query (k-NN query) NN(Q,k,S,s) determines
k such objects Oi ∈ S that similarity scores s(Q,Oi) are the k highest. Possible
ties are resolved arbitrarily. The special case of 1-NN query is called simply the
nearest neighbour query. �

Example 1.5

Let us consider a collection of newspaper articles. A common k-NN query could
provide tasks like: ”Return 20 articles thematically most similar to a pattern
newspaper article”.

In many applications the similarity search is often combined with a rele-
vance/feedback functionality. For example, by a k-NN query the user retrieves
k most similar objects, but the set of retrieved objects is not considered by the
user as a convincing result. Therefore, an object from the query result is chosen
by the user and the query is repeated with the new query object. The process of
query refinement terminates as soon as the user decides the result is sufficient.

1.4 Similarity Search in Metric Spaces

Without a loss of generality, we can turn the similarity function into an analogous
dissimilarity function as follows.

Definition 1.4 (dissimilarity function)

Given a universe U of objects and a similarity function s, a dissimilarity function
d complementary to s is defined as d : U×U 7→ R such that s(Oi, Q) ≤ s(Oj, Q) ⇔
d(Oi, Q) ≥ d(Oj, Q),∀Oi, Oj ∈ U and a fixed Q ∈ U. In other words, for arbitrary
two objects Oi, Q ∈ U a higher value of d(Oi, Q) implies a lower value of s(Oi, Q)
and vice versa. �
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Moreover, we restrict to a non-negative dissimilarity function d : U× U 7→ R+
0 ,

where the zero dissimilarity score is interpreted as the maximum similarity score
(i.e. two objects Oi, Oj ∈ U for which d(Oi, Oj) = 0 are identical). Obviously,
such a restriction is possible for upper-bounded similarity functions only. Finally,
we additionally restrict the non-negative dissimilarity function to be a metric (or
distance function) as follows.

Definition 1.5 (metric)

A dissimilarity function d is called a metric (or a distance function) if the following
metric axioms are satisfied ∀Oi, Oj, Ok ∈ U:

d(Oi, Oi) = 0 reflexivity
d(Oi, Oj) > 0 (Oi 6= Oj) positivity
d(Oi, Oj) = d(Oj, Oi) symmetry

d(Oi, Oj) + d(Oj, Ok) ≥ d(Oi, Ok) triangular inequality

The couple (U, d) is called metric space. If the metric d is additionally upper-
bounded by a maximum distance value d+, i.e. d : U× U 7→ 〈0, d+〉, then (U, d)
is called a bounded metric space. �

Among many others, we name several popular metrics:

Example 1.6

The Minkowski Lp metrics, defined for D-dimensional vector spaces as

Lp(v1, v2) = (
D∑

i=1

|v1[i]− v2[i]|p)
1
p (p ≥ 1)

The most used cases for finite p are the Euclidean L2 and the Manhattan (or
city-block) L1 distances. If p = ∞, we obtain the ”Max” L∞ metric defined as
L∞(v1, v2) = maxn

i=1{|v1[i]− v2[i]|}.

Example 1.7

A generalization of Euclidean distance is the weighed Euclidean distance, defined
as

wL2(v1, v2) =

√√√√ D∑
i=1

wi(v1[i]− v2[i])2

where to i-th dimension a weight wi is assigned, allowing to adjust the significance
of each particular dimension. For the classic Euclidean distance all dimensions
are equally important, i.e. wi = 1.
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Example 1.8

The quadratic-form distance function, defined as

dQF (v1, v2) =
√

(v1 − v2)M(v1 − v2)T

where M is a positive definite matrix (positive definite matrix M guarantees that
dQF (v1, v2) ≥ 0). Each value Mij quantifies a correlation rate between the i-th
and the j-th dimension of the vectors.

In fact, the quadratic-form distance is a direct generalization of the weighed
Euclidean distance, for which the matrix M is diagonal and the weights wi are
placed just on the diagonal (i.e. Mii = wi). For the classic Euclidean distance
the weights wi are equal to one, thus in such case M is a unitary diagonal matrix.

Example 1.9

The Levenshtein metric [61] (edit distance) over strings dE(s1, s2), which counts
the minimum number of string edit operations (character insertions, deletions
and replacements) needed to transform string s1 into s2. Another string metric,
the Hamming distance, counts the number of non-matching characters on the
corresponding positions in both strings. We can also view the Hamming distance
as a special case of the Levenshtein metric, where only the replacement operation
is supported (i.e. character insertions/deletions are not allowed).

Example 1.10

The normed overlap distance (also known as the Jaccard coefficient), measuring
set similarity, defined as:

dNO(A, B) = 1− |A ∩B|
|A ∪B|

Example 1.11

The tree edit distance [91] dTE(T1, T2) over trees T1, T2 (e.g. XML trees), which
counts the minimum number of tree edit operations (node deletion, insertion and
relabeling) needed for transformation of T1 into T2.

Time Complexity

Some metrics can be considered as computationally cheap, e.g. the Lp metrics,
which are computed in linear time (according to the dimensionality of compared
vectors). On the other side, we understand some metrics as expensive, e.g. the
Levenshtein metric implemented by dynamic programming3, being of quadratic
complexity with the number of characters in strings. The quadratic-form distance
is also of quadratic complexity (due to vector-by-matrix multiplication), and the
tree edit distance is even of complexity O(n4).

3The edit distance can be also computed in linear time by a deterministic finite automaton
[63, 53, 54]. Instead of quadratic time complexity, this method requires sub-exponential space
(subexponential time for the automaton construction, respectively).
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1.4.1 Metric Queries

Nowadays, the majority of similarity search applications is based on metric search,
i.e. the similarity function is modelled by a metric. In such a scenario, the
similarity queries have to be slightly modified in order to obtain metric queries
providing the same semantics.

Definition 1.6 (metric range query)

Given a query object Q and a query radius rQ, the range query range(Q,rQ,S,d),
or simply (Q, rQ), determines all such objects Oi ∈ S for which d(Q,Oi) ≤ rQ,
that is, all the objects the distances of which (with respect to Q) are not greater
than rQ. A special case for rQ = 0 is called the point query . �

The geometric interpretation of range query is a hyper-spherical4 metric region
centered in Q and of radius rQ. All the objects in the dataset S located inside
the query hyper-sphere are returned as a query result.

Definition 1.7 (metric k-nearest neighbours query)

Given a query object Q and an integer k ≥ 1, the k-nearest neighbours query
kNN(Q,k,S,d), or simply (Q, k), determines k such objects Oi ∈ S that distances
d(Q,Oi) are the k smallest. Possible ties are resolved arbitrarily. �

The geometric interpretation of a k-NN query is similar to that of range query.
The difference is that rQ is not known in advance, it is dynamically adjusted
during the query processing.

Example 1.12

In Figure 1.1 several points Oi in two-dimensional vector space and six range
query regions (having the same query object and radius) are depicted for L1, L2,
L∞, L5, weighed Euclidean and quadratic-form distances. For other Lp metrics
(p > 2), the query regions look like squares with rounded corners. The higher p,
the sharper corners and vice versa.

The geometric difference between regions for Euclidean, weighed Euclidean
and quadratic-form distances is that for Euclidean distance it is a hyper-sphere,
for weighed Euclidean distance it is an iso-oriented hyper-ellipsoid and for quadratic-
form distance it is an arbitrarily oriented hyper-ellipsoid.

Note: For non-vector datasets, the geometric interpretation of metric regions
is complicated, nevertheless, there are ways how to embed a metric dataset into
a vector space or even into Euclidean vector space (see Section 2.5.2).

4The strict definition of term ”hyper-sphere” is related to Euclidean vector spaces. Never-
theless, for the lack of terminology we relax the meaning of ”hyper-sphere” to general metric
spaces, representing a region defined by a center object Oi ∈ U and bounded by a radius rOi

(e.g. for L1 metric it is a ”hyper-diamond”, for L2 it is a real hyper-sphere, and for L∞ it is a
hyper-cube).
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Figure 1.1 Range query regions for:
(a) Manhattan distance (L1) (b) Euclidean distance (L2)
(c) L5 metric (d) L∞ distance
(e) weighed Euclidean distance (f) quadratic-form distance

1.4.2 Limitations of the Metric Search

Since the similarity functions (dissimilarity functions actually) are modelled by
metric functions, there arise several conceptual problems (mentioned in the works
cited at the beginning of Section 1.3) related to the metric axioms, as follows.

Reflexivity

The reflexivity axiom has been refuted by similarity theories proposing that a
self-similarity of an object (stimulus respectively) also depends on the density of
objects in neighbourhood of the respective object.

Positivity

The positivity was questioned by theories of perception. The theories emphasize
that sometimes an object is identified as another object more frequently than it
is identified as itself.
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Symmetry

A number of theories refute the symmetry axiom, showing asymmetries between
objects where a less salient (less important in some sense) object is more similar
to a more salient object than vice versa.

Triangular Inequality

The triangular inequality is the most attacked condition. It is, however, the
fundamental property that allows us to organize the dataset S efficiently (as we
will see in the following chapters).

There are two aspects of similarity search in Information Retrieval. The
human aspect emphasizes that similarity search should be effective in sense that
it should effectively mimic the human mind of assessing similarity between two
objects (two stimuli respectively). On the other side, the computer performance
aspect emphasizes the efficiency of similarity search. The search must be efficient
in sense that the object dataset should be well-organized, in order to evaluate a
query quickly.

While the more general similarity (or dissimilarity) functions support the hu-
man aspect, the more restrictive properties of metric axioms sustain the computer
performance aspect. The computational model of similarity, however, should be
both effective and efficient. The trade-off between effectiveness and efficiency is
the main reason for considering currently the metric model as sufficient.

1.5 Applications of Metric Search

The similarity search in metric spaces has a plenty of applications in Information
Retrieval, in this section we mention a few of them.

1.5.1 Text Retrieval

One of the original problems in Information Retrieval is an effective retrieval
of full-text documents. Among many Text Retrieval models, the vector model
(and its extensions) uses the cosine measure as a similarity function. Given
a document (represented by a vector of term weights in the document) and a
query (represented by a vector as well), the cosine of the two vectors’ deviation
determines a similarity score between the query and the document.

Recently, we have introduced a metric approach [96] to similarity search in the
vector model, exploiting a metric analogy to the cosine measure – the deviation
metric. For more details about the approach see Chapter 8.
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1.5.2 Image Retrieval

Since there exist many interpretations of visual similarity, the subject of general
content-based Image Retrieval is very rich. Many methods of feature extraction
have been developed so far, and many similarity measures (more or less specific)
have been used to model the human perception of similarity. Due to the lack of
space, we outline only several approaches here, for a comprehensive survey we
refer to [85].

Color histograms

The most frequent type of image feature extraction is based on usage of color
histograms. In the simpler case, the histogram is extracted for the whole image,
a more sophisticated way is to segment the image and create a histogram for
each of the segments [26]. The feature vectors are classified usually according to
the quadratic-form5, Manhattan or Euclidean distance functions. Another type
of color feature extraction is a color correlogram [55], a histogram representing
spatial correlations of color changes considering the pixel distances. For simi-
larity measuring of correlograms, the Manhattan, Euclidean and quadratic-form
distances have been used.

Textures

A texture (i.e. a homogeneous pattern in image) can be represented by a his-
togram as well. For a texture histogram representation, the relative brightness of
pixel pairs is computed such that degree of contrast, regularity, coarseness and
directionality can be estimated [102]. The texture feature vectors are classified
by the same metrics as the color histograms.

Shape

For a similar-shape retrieval the points of interest in an image are recognized,
representing locations in the image where the pixel brightness is in contrast with
the brightness of neighbouring pixels. Such points usually determine corners and
edges present in the image. In [62] the shape boundary has been coded as an
ordered sequence of interest points, while the Euclidean distance has been used
on them as a dissimilarity measure.

Advanced Statistical Methods

Many sophisticated methods have appeared recently in Information Retrieval,
trying to wisely reduce the dimensionality of feature vectors. A kind of dimen-

5The quadratic-form distance is widely used [50, 89], since (due to human perception) many
colors are considered to mutually correlate.
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sionality reduction can be achieved by means of statistical preprocessing of the
dataset, so that a basis is formulated for lower-dimensional feature vector repre-
sentation. In Image Retrieval these methods have been applied to many types of
feature vectors, e.g. color histograms [101], or even vectors of all the pixels in im-
age [83]. As a representative domain application, the Karhunen-Loeve Transfor-
mation (KLT) (or Principal Component Analysis) has been used for recognition
of human faces [92, 57, 78].

1.5.3 Approximate String Matching

The databases of strings are used to collect either strings of natural language or
strings modelling a more complex data instances. In the former case, a database
can consist of e.g. sentences present in newspaper articles, while the latter case
is interesting for modelling e.g. biological data, genomic databases, XML, etc.
Besides the well-known Levenshtein (edit) [70, 10, 44] or Hamming distance, there
are used domain-specific metrics, e.g. the local sequence alignment [110] in case
of genomic databases.

1.5.4 XML Retrieval

With the evolution of native XML databases, there is a need for efficient simi-
larity search in XML documents. In [73] the authors exploit a kind of tree edit
distance to evaluate similarity between two XML trees. Recently, we have pro-
posed another approach [58], decomposing the XML database into a set of paths.
The distance between two XML paths is defined as a generalized string edit dis-
tance, where each string element (character respectively) is represented by an
XML element tag.
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Exact Search
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Chapter 2

Metric Access Methods

In this chapter we overview several state-of-the-art methods providing exact met-
ric search. Such methods search in a given metric dataset exactly, no false drops
(i.e. objects which are understood as relevant to the query but do not appear in
the query result) are tolerated.

Within the scope of Information Retrieval, we focus on searching in large
document collections (hundreds of thousands documents and more), hence an
efficient similarity search in such collections is necessary. It is obvious that even
the most qualitatively effective similarity search method is useless, if it is not
efficient. In order to keep the similarity search efficient as much as possible, there
is a need for development of search methods minimizing the overall search costs.
The most objective definition of search costs can be determined as the computer
time needed to evaluate a query. In case of metric search, the methods should
minimize two major components of the overall search costs – the computation
costs (CC) and the I/O costs (or disk access costs). The computation costs
represent the number of distance computations needed for a query evaluation.
The I/O costs are related to the volume of data needed to be transfered from a
secondary memory during a query evaluation.

There have been developed many (more or less efficient) metric access methods
(MAMs)1, providing search in general metric datasets. However, most of the
current MAMs do not consider the influence of I/O costs on the overall search
costs, assuming the time required for a distance computation is disproportionately
larger to the time needed for an I/O operation. This may be true in case of a
rather small dataset, however, in the context of searching in large collections the
I/O costs often grow beyond the computation costs (especially when a cheap
metric is used simultaneously). Hence, in order to develop a truly efficient metric
access method, we must cope with both types of the search costs.

1For an overview on various metric access methods we refer to a comprehensive survey [33].
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2.1 Background

The MAMs organize (e.g. partition and/or cluster) the dataset S among equiva-
lence classes of objects (see Figure 2.1a), such that each class Ei includes objects
sharing a common distance property (e.g. Ei consists of objects sufficiently close
to each other). The resultant data structure describing the organization is called
metric index. At this moment, we have to emphasize that the triangular inequal-
ity property of a metric d is the only and essential tool used (in various ways) by
every MAM for efficient filtering of irrelevant objects.

Each equivalence class Ei is spatially bounded by a region in the metric space
(e.g. by a hyper-sphere) spatially covering all the objects in the particular class.
The distance function, as the only tool used for partitioning, must satisfy the
triangular inequality, so that two metric regions are easy to check for an overlap.
Consequently, at query time the metric index is searched by a MAM in order to
find those ”candidate” equivalence classes, the regions of which overlap the query
region. Such candidate classes are exhaustively checked for the relevant objects
(see Figure 2.1b). A non-overlapping class contains objects which are surely
irrelevant, thus the class can be excluded (or discarded) from further processing.

Figure 2.1 (a) Structure of metric index (b) Metric query processing

The region shape of an equivalence class is specific to each particular MAM.
Furthermore, different MAMs organize the classes of objects either in a hierar-
chical or in a flat index structure (or even in a combination of both).

2.2 Spatial Access Methods

Since the dataset S is often a collection of vectors, the straightforward solution for
searching in S is utilization of a spatial access method (SAM) [18] (e.g. R-tree [52],
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UB-tree [11], X-tree [13], Pyramid-tree [12], etc.). Spatial access methods have
been originally developed for indexing vector datasets, in order to provide efficient
processing of exact-match queries, including window queries (hyper-rectangular
query specified by two boundary points), point queries, etc. However, there have
been proposed many approaches later, extending the functionality of SAMs in
order to provide also the similarity search (metric search respectively).

2.2.1 Metric Search using SAMs

Since most of the SAMs are based on similar principles, we have chosen the
R-tree [52] to demonstrate metric search realized by SAMs. The R-tree indexes
D-dimensional points by a way of height-balanced hierarchy of nested hyper-
rectangles (see an example in Figure 2.2).

Figure 2.2 (a) Hierarchy of nested MBRs
(b) Appropriate R-tree

The leaf nodes of R-tree represent the equivalence classes of objects, while
the inner nodes are used to recursively cluster all the classes. Each node is as-
sociated with a minimum bounding rectangle (MBR), in order to determine the
region in which the objects stored in descendant leaves are located. The R-tree
construction algorithms keep the MBRs to cover only those parts of space con-
taining the data objects. Since MBRs at the same R-tree level may overlap, even
a simple point query may lead to multiple search paths. This fact, however, nega-
tively affects efficiency, introducing additional search costs. In order to minimize
search costs, the R-tree construction algorithms keep the total volume of MBRs
minimized, thus smaller MBRs have a lower probability to be accessed.

For a range query region (Q, rQ), we have to retrieve such objects stored in
leaves that overlap the query region. At each level of R-tree, only those nodes
are accessed, the MBRs of which overlap the query region (see Figure 2.2).
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2.2.2 Major Drawbacks

Most of the SAMs build their indices to primarily support exact-match queries
(e.g. window queries or point queries). Concerning this, the usage of SAMs for
similarity search is limited by several drawbacks:

1. The objects in an equivalence class (e.g. in an R-tree leaf) are not clustered
according to a metric we would like to use for metric search. As an example,
consider an R-tree leaf the MBR of which is stretched over the whole domain
extent in one dimension, but in the other dimensions the MBR ranges are
small or constant. Such a ”linear” MBR is surely of small volume, however,
two objects in the MBR, each on the opposite side of the range, can be very
distant (e.g. considering any Lp metric).

2. Since SAMs generally do not cope with distance computations, they are
designed to minimize only the I/O costs. An optimization is therefore
needed, in order to minimize also the number of distance computations.

3. We showed that, in order to retrieve all the objects satisfying a range query,
all of the class regions overlapping the query region have to be accessed.
The overlap check of such two regions is an easy task if the used metric is a
simple one (e.g. the L2 metric), but this can be very difficult if the metric
is complex (e.g. the quadratic-form distance).

4. Finally, SAMs can only index vector spaces, thus they are useless for
straightforward indexing of non-vector datasets, i.e. datasets of strings,
graphs, sets, etc. Nevertheless, an indirect usage of SAMs for search in
general metric spaces is mentioned in Section 2.5.2.

2.3 Methods utilizing Global Pivots

Since in general metric spaces the distance function is the only tool for building
the structure of a metric index, an important role in metric indexing play objects
called pivots (or vantage points), i.e. some objects selected from the dataset to
which the other objects are somehow referenced by distance.

In this section we discuss MAMs exploiting a global set of pivots, assigned to
the entire metric index. We call them distance matrix methods , because there is
created a matrix of distances between pivots and all of the objects in the dataset.

2.3.1 AESA

The Approximating and Eliminating Search Algorithm (AESA) [106, 107] uses an
n × n matrix consisting of distances between all pairs of objects in the dataset.
Every object plays the role of pivot. During a range query (Q, rQ) processing, a
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pivot P ∈ S is randomly chosen. The distance between Q and P is computed
and used for discarding such objects Oi, that |d(Oi, P ) − d(Q, P )| > rQ. Next,
another pivot is chosen and all the remaining non-discarded objects are checked.
This process is repeated until the set of non-discarded objects is small enough.
The remaining non-discarded objects are compared directly against Q.

Example 2.1

In Figure 2.3 see how the filtering condition is used by processing a range query.
Since distances between all the objects and a pivot P are known, such objects
can be safely discarded, the distances of which to Q fall outside the interval
〈d(Q,P )− rQ, d(Q,P ) + rQ〉 (objects located outside the grey area).

Figure 2.3 AESA/LAESA filtering

The distance computation search costs are reported to be an order of mag-
nitude lower than by other competing MAMs. However, the construction costs
and also the I/O search costs are of quadratic complexity O(n2), thus AESA is
applicable only for search in small datasets of at most few thousands objects.

2.3.2 LAESA and Modifications

The drawback of AESA, being quadratic in space and I/O costs, is solved by
Linear AESA (LAESA) [65, 66]. This method uses p fixed pivots, so that space
costs and time needed for construction of the p × n distance matrix are O(pn).
The methods of selection an optimal set of pivots are well-known [90, 7, 28] while,
in general, we can say that a set of pivots is sampled such that distances among
pivots are maximal (for methods of optimal pivot selection see Section ??).

In the first step, some irrelevant objects are discarded using all the pivots
(the same way as AESA does it). The larger set of pivots is used, the greater
proportion of irrelevant objects is discarded. The distance computation search
costs are reported to be p + O(1), while the I/O search costs remain O(pn).
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The I/O search costs are reduced by a modification called TLAESA [64], which
(instead of a sequential index) builds a GH-tree-like structure (for GH-tree see the
next section) using the same set of p pivots. The I/O search costs for TLAESA
have been argued to be between O(log n) and O(pn). Another improvement
of LAESA is Spaghettis [29], which maintains p arrays Aj, one for each pivot
Pj. An array Aj contains n object-and-distance pairs (id(Oi), d(Pj, Oi)), sorted
according to the distance. During a range query processing, each array Aj is
queried for a distance interval 〈d(Q, Pj)− rQ, d(Q,Pj) + rQ〉. In order to obtain
the candidate objects, an intersection of all the sets of objects retrieved from the
arrays is performed. Finally, the remaining objects are filtered as usual. The
authors of Spaghettis report I/O search costs reduction to O(p log n).

2.4 Methods utilizing Local Pivots

Most of the MAMs exploit local pivots, which means that to local pivot (to a
combination of several local pivots respectively) only a part of the index is refer-
enced. For dynamic MAMs the local pivots are often dynamic as well, because
they are selected when (a part of) the metric index is created or altered.

2.4.1 GH-tree

The generalized-hyperplane tree (GH-tree) [105] is a binary tree built recursively
in top-down fashion as follows. Two local pivots Oi and Oj are selected, while
objects closer to Oi are assigned to a ”left” subset and those closer to Oj are
assigned to a ”right” subset (see an example in Figure 2.4). The partitioning of
subsets continues recursively, so that we obtain an unbalanced binary tree.

Figure 2.4 (a) Dataset partitioned by a generalized hyper-plane
(b) Root level of GH-tree
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During a range query processing we compute r1 = d(Q,Oi) and r2 = d(Q, Oj)
for each node being processed. The left subtree is processed if r1 − rQ < r2 + rQ

while the right subtree is processed if r2 − rQ ≤ r1 + rQ. It is possible to process
both subtrees. The costs analysis we present for the more general GNAT. Similar
as GH-tree are the Bisector Tree [56, 76, 77] and the Voronoi Tree [42, 75].

2.4.2 GNAT

The geometric near-neighbour access tree (GNAT) [22] is a direct generalization
of GH-tree to p-ary tree. Given a dataset S, p local pivots O1, . . . , Oj, . . . Op are
selected. Objects closest to Oj are assigned to the j-th subset (see an example in
Figure 2.5). The partitioning of subsets continues recursively, so that we obtain
an unbalanced p-ary tree. Besides p-ary partitioning principle, GNAT stores also
an information about distances between pivots and objects in subtrees. In each
internal node a p× p matrix is stored, consisting of distance ranges.

Figure 2.5 (a) Dataset partitioned by generalized hyper-planes
(b) Root level of GNAT using 4 pivots

The query processing in GNAT follows the idea of GH-tree, some additional
computation costs are saved due to the stored distance ranges. The I/O con-
struction costs (and also space costs) are O(np2), the distance computation con-
struction costs are O(np logp n). The search costs have not been analyzed by
authors, however, the experiments in [22] have shown that GNAT outperforms
GH-tree and VP-tree.

2.4.3 VP-tree

The vantage-point tree (VP-tree) [112] is based on recursive top-down decom-
position of the metric space among hyper-spherical cuts around a local pivot
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(see an example in Figure 2.6). In m-way VP-tree each internal node has a for-
mat [Oi, [µ1, . . . , µm−1], [ptr1, . . . ptrm]], where Oi is the pivot, and µj are cut-off
distances used to partition the space into m hyper-spherical cuts, so that all
the objects in dataset are distributed among m equivalence classes of (almost)
equal cardinalities. The classes are furthermore recursively partitioned – ptrj are
pointers to the child nodes of VP-tree.

Figure 2.6 (a) Dataset partitioned by 4 spherical cuts
(b) Root level of 4-way VP-tree

The algorithm for a range query recursively searches the overlapping nodes
of VP-tree, i.e. those child nodes of a node [Oi, [µ1, . . . , µm−1], [ptr1, . . . ptrm]],
pointed by ptrj+1, for which d(Q, Oi)+rQ ≥ µj∧d(Q,Oi)−rQ < µj+1 is satisfied.
The search costs are argued to be O(log n), but this is true only for very small
query radii.

2.4.4 MVP-tree

A generalization of VP-tree is the multi-vantage-point tree (MVP-tree) [20, 21],
where in each node the space is partitioned by more than one pivot. In a node
of an m-way MVP-tree, each of the p pivots divides the space into m hyper-
spherical cuts using m−1 cut-off values. The combination of all the cuts forms mp

equivalence classes in the space, while each class is assigned to a child node which
is furthermore recursively partitioned (see an example in Figure 2.7). Moreover,
an extra information is kept in the leaves for even more effective discarding of
irrelevant objects.

As for the VP-tree, the search costs of MVP-tree are O(p logmp n) but this
is true only for very small query radii. The authors show [21] that MVP-tree
outperforms the VP-tree, while a larger improvement is achieved when more
pivots is used instead of increasing m.
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Figure 2.7 (a) Dataset partitioned by 2 pivots, each sub-partitioning
among 3 hyper-spherical cuts

(b) Root level of 3-way 2-pivot MVP-tree (9-ary tree)

2.4.5 M-tree

The M-tree [37] is a dynamic and balanced metric tree, providing an efficient
secondary memory management. The M-tree maintains a hierarchy of hyper-
spherical clusters in a paged tree structure, conceptually introduced by B+-tree.
As a basis of our research, we describe the M-tree in the following chapter.

2.4.6 VP-forest

The excluded-middle-vantage-point forest (VP-forest) [111] is another member of
the family of VP-trees. The VP-forest is based on a ball partitioning technique,
where the middle-distant objects are excluded from partitioning. The dataset is
partitioned among three sets S1, S2, X, such that each object Oi of the dataset
is assigned to the appropriate set using a function:

bp(Oi, Oj, dm, ρ) =


S1 if d(Oi, Oj) ≤ dm − ρ
S2 if d(Oi, Oj) > dm + ρ
X otherwise

where Oj is a fixed pivot, dm is a medium distance, and ρ is a splitting parame-
ter. The set X is called exclusion set, and it contains objects having the middle
distances from the pivot. The sets S1, S2 are recursively repartitioned, so that we
obtain a balanced binary tree. All the exclusion sets Xk created by the recursive
partitioning are unified into a single exclusion set, and this set is repartitioned by
another tree (using different parameters Oj, dm, ρ of the partitioning function).
The trees are constructed until the last exclusion set becomes empty (or suffi-
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ciently small). The trees are linked, forming a forest, see an example of VP-forest
in Figure 2.8.

Figure 2.8 (a) Excluded middle partitioning (b) VP-forest

During a range query processing, the idea of excluding the middle distances
eliminates the examination of more than one branch of a particular tree if the
query radius is less than ρ. The next tree in VP-forest is searched only if the
exclusion set of the preceding tree must be visited.

The I/O construction costs are O(n) while the distance computation construc-
tion costs are O(n2−α), where O(n1−α) is the number of trees in the VP-forest.
Queries are answered in O(n1−αlog n) distance computations. The parameter
0 < α < 1 depends on ρ, the dataset, and the distance function. Unfortunately,
to achieve a greater value of α the parameter ρ has to be quite small.

2.4.7 D-index

Recently, an approach based on external metric hashing was proposed, called
D-index [46]. The dataset is partitioned (as in case of VP-forest) by excluded
middle ball partition functions2 (here called ball partitioning ρ-split functions)
bps1,ρ,j, defined as:

bps1,ρ,j(Oi) =


0 if d(Oi, Pj) ≤ dm − ρ
1 if d(Oi, Pj) > dm + ρ
2 otherwise

where Pj is a pivot assigned to the function bps1,ρ,j, ρ is a splitting parameter,
and dm is a medium distance. When combined k such functions (and k pivots),

2Several different types of first-order separable ρ-split functions are proposed, analyzed, and
evaluated in [45].
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we obtain a complex hashing function bpsk,ρ partitioning the dataset among 2k

partitions and one exclusion set. For each indexed object a hash key of its target
partitions is computed as a combination of binary values 0, 1 returned by par-
ticular bps1,ρ,j functions. In case that (at least) one 2 is returned by a bps1,ρ,j

function, the object is assigned to the exclusion set. In simple words, the exclu-
sion set stands for a ”border territory” separating the partitions, so that objects
in different partitions can be easily distinguished during search.

The idea of D-index is simple. A h-level hashing table is created, such that
2ki buckets are maintained at the i-th level (ki is the number of pivots used at
i-th level), where every bucket corresponds to one partition, and is accessible by
the i-th-level hashing function bpski,ρ

i . For the objects hashed into the i-th-level
exclusion set, the i+1-th level of the table is created and the remaining objects
are repartitioned by function bps

ki+1,ρ
i+1 . The last level consists of a single bucket

belonging to the exclusion set of the entire D-index. For different D-index levels,
the hashing functions bpski,ρ

i can vary in the number of ρ-split functions and,
consequently, in the number of pivots.

Example 2.2

See Figure 2.9a,b for an example of partitioning the dataset by D-index. The
entire dataset is partitioned using a 2-pivot hashing function among buckets
A1, B1, C1 and an exclusion set X1. At the second level, the exclusion set X1

is repartitioned using a single-pivot hashing function between buckets A2, B2 and
an exclusion set X2. At the third level of D-index, the rest of objects is stored
in an exclusion bucket X. The physical organization of buckets is presented in
Figure 2.9c. Since the number of objects stored in various buckets is different,
the buckets are aligned into linked blocks (disk pages respectively).

A substantial advantage of D-index is that for range queries having rQ ≤ ρ
only one bucket per level and, possibly, the exclusion bucket are accessed (see
Figure 2.9a), reducing the average search costs to O(1). Unfortunately, the ρ
value applicable for effective partitioning is usually very small, thus range queries
with reasonably high rQ must search in multiple buckets. Another advantage is
that D-index has low construction/storage requirements, it needs only a little
larger space than a simple sequential file.

A particular drawback is that D-index is an unbalanced data structure, the
buckets are of various sizes (each bucket is physically stored within a number of
blocks of fixed size), and therefore, when inappropriate pivots (or parameters ρ,
dm) are chosen, the search in a single bucket can deteriorate to sequential scan
over a large part of the dataset. The unbalance property is critical especially for
the exclusion bucket where most of the queries must search.

The authors report the D-index beats other MAMs in I/O search costs, which
is a consequence of its low storage requirements. In case of point queries and
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Figure 2.9 (a) Multi-level partitioning
(b) Buckets of D-index assigned to the partitions
(c) Physical organization of buckets of various sizes

range queries where rQ ≤ ρ, the overall search costs are very low, for rQ > ρ the
distance computation search costs are comparable to those of M-tree.

In order to speedup similarity joins on D-index, the authors have proposed
eD-index [47]. Two algorithms for similarity self-joins have been introduced,
while significant efficiency improvements have been experimentally verified.

2.5 Other Techniques

At the end of our listing, we present two MAMs which do not exploit neither
global pivots nor local pivots.

2.5.1 SAT

The spatial approximation tree (SAT) [69, 71] does not use pivots for the dataset
partitioning, it is rather based on ”spatial” approximation heuristics. An object
X is selected as the root and connected to such objects Oi ∈ S that are closer
to X more than to any other object connected to X (see an example in Figure
2.10). Each object connected to X is a root of an appropriate subtree. The SAT
was originally designed as static, a dynamic version of SAT was proposed in [72].

The range query algorithm starts in the root and follows a neighbour (i.e. a
connected object) that is closest to the query object Q. Since the query radius rQ

is nonzero, we consider that unknown objects are searched with tolerance rQ, i.e.
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Figure 2.10 (a) Dataset to index
(b) Spatial Approximation Tree

we consider that any distance may have an ”error” of at most rQ. Hence, we may
have to follow many branches of the tree, since measuring the ”error” could lead
to a different neighbour candidating to the closest one. The I/O construction
and space costs for the SAT are O(n), the distance computation construction
costs are referred to be O(n log n/log log n). The search requires to retrieve
Θ(n1−Θ(1/log log n)) objects.

2.5.2 Metric Mapping

The problem of searching in general metric spaces can be transformed to searching
in vector spaces, that is, all objects of the metric space are represented as points
in a vector space. Formally, a mapping

Ψ : (U, d) 7→ (RD, δ)

is established, turning the original metric dataset into a D-dimensional vector
dataset. In order to preserve distances at least partially, the mapping Ψ is re-
quired to be contractive, i.e. δ(Ψ(Oi), Ψ(Oj)) ≤ d(Oi, Oj), ∀Oi, Oj ∈ U. In other
words, the objects close in metric space (U, d) are required to be close (or even
closer) in the target vector space (RD, δ).

As a consequence, a range query associated with the original metric space can
be easily transformed into the target vector space by projecting the query object
Q into Ψ(Q). Due to the contractivity of Ψ, the query radius rQ remains the same
as for the original query. Since the original distances have been contracted, the
range query (Ψ(Q), rQ) will always capture the objects qualified by the original
query (Q, rQ). Unfortunately, the query (Ψ(Q), rQ) can retrieve also false hits ,
i.e. some objects not qualified by the original query (Q, rQ). Hence, all objects in
the result of query (Ψ(Q), rQ) must be additionally filtered by the original query.
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Note: If the metric space (U, d) is mapped into a vector space of form (RD, L∞),
the dataset Ψ(S) can be organized by a spatial access method providing window
queries, like R-tree, UB-tree, etc.

Example 2.3

The LAESA approach (see Section 2.3.2) exploits a mapping of form

Ψ : (U, d) 7→ (Rp, L∞)

The mapping is defined by p pivots Pj such that δ(Oi, Ok) = L∞(Ψ(Oi), Ψ(Ok)),
where Ψ(Oi) is a vector [d(P1, Oi), d(P2, Oi), . . . , d(Pp, Oi)]. The vector Ψ(Ok) is
constructed similarly. In Figure 2.11 see an example of LAESA mapping. Note
the mapping Ψ is strictly contractive, so that range query (Ψ(Q), rQ) retrieves
also a false hit O4.

Figure 2.11 LAESA-like mapping Ψ : (U, L2) 7→ (R2, L∞) utilizing 2 pivots
(a) Dataset in the original metric space (U, L2)
(b) Dataset mapped into the vector space (R2, L∞)

Example 2.4

A usual reason for embedding metric datasets into vector spaces is a substitution
of the original metric d, considered as computationally expensive, by a (much)
simpler metric δ. An approximate embedding of text strings (according to the
edit distance with moves) into a L1 vector space is described in [40], reducing the
complexity problem of string matching from O(n2) to sub-quadratic.
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Metric Multidimensional Scaling

A statistical approach to metric mapping is the metric multi-dimensional scaling
(MDS) [19]. Given an object-to-object distance matrix, the aim is to construct
a map in Euclidean space that corresponds to the original distances3 (i.e. Ψ−1

must be contractive as well), so that no false hits appear. In general, the distance
matrix is decomposed (e.g. using the principal component analysis (PCA)), such
that eigenvalues and eigenvectors are obtained. The original objects of metric
space are represented by linear combinations of the eigenvectors. The number of
nonzero eigenvalues determines the (smallest) dimensionality of a vector space, in
which the original distances are preserved by Euclidean distance. Unfortunately,
the MDS is computationally expensive and static, which limits its applicability.

2.6 Methods for Discrete Distance Functions

All of the presented MAMs suppose that a general continuous4 distance function
is used. However, there have been proposed also methods assuming that a given
distance function is discrete, or more precisely, assuming the function returns
only a small set of different values.

Example 2.5

The Levenshtein metric can be considered as a discrete distance function. Sup-
pose a collection of strings, where the length of each string is limited by 20
characters. Then the maximum distance between two strings is 20 (20 character
replacements), thus the set of all possible distances is of cardinality 20.

Since we are interested in MAMs supporting general continuous distance func-
tions, we only name the most known ”discrete” MAMs: Burkhard-Keller Tree
[23], Fixed-Queries Tree [7], Fixed-Height Fixed-Queries Tree [6, 7, 8], Fixed-
Queries Array [30]. For a detailed overview we refer to [33].

2.7 Summary

All the presented MAMs have been (more or less) successfully utilized in various
applications of metric search, as well as for many similarity search scenarios.
However, we are concerned by MAMs applicable in Information Retrieval, thus

3The object-to-object distances can be even dissimilarities, so that MDS provides a general
way how to ”metricate” a non-metric dataset.

4Actually, any distance function cannot be represented as a really continuous function in
computer. Since the set of distances is always of finite cardinality, every distance function
represented in computer is discrete. As a continuous function we rather consider a metric with
huge number of possible distance values, say at least 232 (e.g. cardinality of four-byte float).
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we require the following properties (well-known in the area of database indexing)
to be supported:

1. Efficiency
Since the typical size of a large document collection is in order of millions
of objects, a MAM should perform efficiently also when the size of dataset
grows. In particular, depending on the dataset size n = |S|, we require the
index construction costs to be sub-quadratic (i.e. lower than O(n2)) and
the search costs to be sub-linear (i.e. lower than O(n)). Naturally, we must
take into account both the I/O costs as well as the computation costs.

2. Dynamicity
A MAM has to support dynamic insertions/deletions (of sub-linear con-
struction costs) of objects to/from dataset.

3. Secondary Memory Management
Due to large volumes of data, it is impossible to store the entire dataset
in main (or primary) memory. The method, therefore, should be able to
efficiently exploit secondary storage devices.

4. Data Independence
The method should behave efficiently for all reasonable data distributions.
Furthermore, the order in which the data objects are consecutively inserted
into the index (if dynamic MAM) should not have a significant influence
on the overall search efficiency. In particular, a metric index should be
maintained balanced, and the user should not have to specify any internal
parameters of the MAM explicitly.

In Table 2.1 the overviewed MAMs are classified according to the above mentioned
properties. If a particular MAM supports a particular property, it is denoted with
the F symbol in the table (the ? symbol denotes the property is satisfied only
partially). We do not consider SAMs and the M+-tree, because they can index
only vector datasets. Moreover, we do not consider the idea of metric mapping –
actually, the methods of metric mapping are not standalone MAMs, they rather
provide a formal framework for projection of a metric space into a vector space.
As the table shows, the only MAM supporting all the properties is the M-tree,
followed by the D-index. As a basis of our research, the M-tree is described in
the following chapter.
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MAM Dyna- Constr.costs < O(n2) Search costs < O(n) Sec.mem. Data
micity I/O CC I/O CC managem. indep.

AESA F F F F
LAESA F F F F F F

TLAESA F F F F F
Spaghettis F F F F F F
GH-tree F F F F F
GNAT F F F F F
VP-tree F F F F F

MVP-tree F F F F F
VP-forest F F F F ?
D-index ? F F F F F ?
M-tree F F F F F F F

SAT F F F F F

Table 2.1 Applicability of MAMs to IR

2.8 Open Problems

So far, there has been given only a marginal attention to development of metric
access methods searching according to either a special metric (satisfying an ad-
ditional restrictive condition, besides the basic metric axioms) or, on the other
hand, a non-metric (relaxing one or more of the metric axioms).

2.8.1 Special Metrics

All of the existing kinds of metrics satisfy the triangular inequality property.
However, there exist special types of metrics5, conditioned by an additional re-
strictive inequality describable by a first-order characterization, like:

• the widely used ultrametrics , satisfying the ultrametric inequality

d(Oi, Oj) ≤ max{d(Oi, Ok), d(Oj, Ok)}

• the four-point metrics, satisfying the four-point inequality

d(Oi, Oj) + d(Ok, Ol) ≤ max{d(Oj, Ok) + d(Oi, Ol), d(Oi, Ok) + d(Oj, Ol)}

• the hypermetrics, satisfying the hypermetric inequality defined for each
b : U 7→ Z such that

∑
{b(Oi) : Oi ∈ U} = 1 as∑

{b(Oi)b(Oj)d(Oi, Oj) : Oi, Oj ∈ U} ≤ 0

5For a comprehensive survey on various kinds of metrics we refer to [108].



34 Chapter 2. Metric Access Methods

• negative-type metrics, pentagon metrics, spherical metrics, etc.

The additional restrictive properties of such metric types might be applied to
the existing (or completely new) MAMs, allowing to provide even more efficient
metric search.

2.8.2 Non-Metrics

From another point of view, the metric axioms are sometimes too restrictive
in order to model the dissimilarity function adequately to human needs. In
particular, in various areas the triangular inequality seems to be a major obstacle
for modelling a similarity measure by metric.

For similarity search requirements, there would be useful to develop access
methods for indexing semi-metric datasets6 – i.e. relaxing the triangular in-
equality to a weaker condition or even omitting it – or quasi-metric datasets –
i.e. neglecting the symmetry property. Naturally, the less restrictive properties
a dissimilarity function satisfies, the less information is available for the indexing
and, consequently, the less efficient search in such a dataset is possible. Never-
theless, ”good” (in some sense) dissimilarity distributions of non-metric functions
could compensate the lack of information provided by the metric axioms, thus an
efficient dissimilarity organization may be possible – but this is an open question.

Nowadays, general semi-metric and/or quasi-metric datasets can be searched
just by sequential scanning the entire dataset, combined with various heuristic
techniques (e.g. the usage of inverted file for vector query processing in Text
Retrieval).

6We partially address the problem of approximate semi-metric search in Chapter 7.
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M-tree

The M-tree [37, 80] organizes objects of a metric dataset S in a balanced, paged,
and dynamic tree, exploiting the idea originally established by the well-known
B+-tree. The B+-tree has been already used as a basis for development of many
spatial indexing structures, including R-tree, UB-tree, X-tree, etc. The M-tree is
a similar modification of B+-tree for purposes of indexing metric datasets. We
can even say, that organization of a metric dataset by M-tree is, in principle, very
similar to organization of a vector dataset by R-tree.

3.1 Structure

The structure of M-tree is based on hierarchical organization of data objects
Oi ∈ S according to a given metric d. Like other B-tree-based trees, the M-tree
structure consists of balanced hierarchy of nodes. The nodes have a fixed capacity
and a minimum utilization threshold. The indexed data objects are recursively
clustered in hyper-spherical metric regions associated with M-tree nodes.

The inner nodes contain routing entries describing the metric regions, while
the ground entries (stored in leaves) represent the indexed data objects. A routing
entry, stored in an inner node, is denoted as1:

rout(Oi) = [Oi, ptr(T (Oi)), rOi
, d(Oi, Par(Oi))]

where Oi ∈ S is a routing object (a local pivot actually), ptr(T (Oi)) is a pointer
to the subtree T (Oi) of rout(Oi) (called covering subtree), and rOi

is a cover-
ing radius . The routing entry rout(Oi) defines a hyper-spherical metric region
(Oi, rOi

) bounding all the objects indexed by T (Oi). The precomputed distance
d(Oi, Par(Oi)) (where Par(Oi) is the parent routing object of N) is used for op-
timizing most of the M-tree algorithms. A ground entry, stored in a leaf, is
denoted as:

grnd(Oi) = [Oi, oid(Oi), d(Oi, Par(Oi))]

1We use the original notation of node entries, introduced in [37, 80].

35
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where Oi ∈ S is an indexed data object, oid(Oi) is an identifier of the original DB
object (stored externally), and, again, d(Oi, Par(Oi)) is a precomputed distance.

In situations where the type of node entry is not important, we also denote
routing entry rout(Oi) or ground entry grnd(Oi) simply as entry(Oi). Wherever
needed, routl(Oi) denotes a routing entry stored in a node at the l-th level of
M-tree.

Figure 3.1 (a) Metric region (Oi, rOi
)

(b) Routing entry rout(Oi) in the M-tree structure

In Figure 3.1 a metric region and its appropriate routing entry rout(Oi) in
an inner node are presented. In order to provide correct discarding of irrelevant
subtrees, the M-tree hierarchy is limited by the following nesting condition.

Condition 3.1 (nesting condition)

Given a routing entry rout(Oi), all objects stored in the covering subtree T (Oi)
must be located inside the region (Oi, rOi

), i.e. ∀Oj ∈ T (Oi), d(Oi, Oj) ≤ rOi
. �

If we realize, the nesting condition is very weak, because there can be con-
structed many M-trees of the same object content but of different hierarchies.
The most important consequence is that many regions at the same M-tree level
may overlap.

Note: The nesting condition for metric regions in M-tree is similar to that for
minimum bounding rectangles in R-tree, see Section 2.2.1.

Example 3.1

In Figure 3.2 a correct M-tree hierarchy is presented for several data objects
partitioned among 3 metric regions. Note that region of rout1(O1) is ”sticking
out” the parent region rout0(O2) but, nevertheless, the nesting condition is still
preserved.
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Figure 3.2 (a) Hierarchy of M-tree regions (b) Appropriate M-tree

3.2 Queries

Before we present specific algorithms for building the M-tree, we show how the
information stored in the M-tree nodes (routing entries respectively) is used for
processing of metric queries. In order to minimize both, the I/O costs and the
distance computation costs, the information concerning (precomputed) distances
which are stored in M-tree routing entries (i.e. d(Oi, Par(Oi)) and rOi

) is used
to apply the triangular inequality property. In order to discard the irrelevant
subtrees during a query processing, the two following lemmas are applied.

Lemma 3.1

Let (Q, rQ) be a hyper-spherical query region, and (Oi, rOi
) be a metric region

described by a routing entry rout(Oi). If d(Oi, Q) > rOi
+ rQ, then for each

object Oj in T (Oi), it is d(Oj, Q) > rQ. Thus, the regions do not overlap, and
the subtree T (Oi) can be safely excluded from the search.

Proof: Since d(Oj, Oi) ≤ rOi
holds for ∀Oj ∈ T (Oi), it is

d(Oj, Oi) + d(Oj, Q) ≥ d(Oi, Q) (by triangular inequality)
d(Oj, Q) ≥ d(Oi, Q)− d(Oj, Oi)
d(Oj, Q) ≥ d(Oi, Q)− rOi

(covering radius upper bound)
d(Oj, Q) > rQ (by hypothesis)

�

Example 3.2

See the idea of Lemma 3.1 in Figure 3.3. The L1-spherical region (Oi, rOi
) does

not overlap the query region (Q, rQ) and, therefore, the appropriate T (Oi) surely
cannot contain any relevant objects. On the other side, the L2-spherical region
(Oi, rOi

) overlaps the query region, thus the appropriate T (Oi) is relevant to the
query, and cannot be excluded from the search.
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Figure 3.3 (a) Non-overlapped L1-spherical metric regions
(b) Overlapped L2-spherical metric regions

In order to apply Lemma 3.1, the distance d(Oi, Q) has to be computed.
However, in many cases this can be avoided using the precomputed distances
d(Oi, Op)

2 (stored in a routing entry rout(Oi)) and d(Q, Op) (already computed
at the previous M-tree level).

Lemma 3.2

If |d(Op, Q) − d(Oi, Op)| > rOi
+ rQ, then d(Oi, Q) > rOi

+ rQ, thus the subtree
T (Oi) can be safely excluded from the search.

Proof: This is a direct consequence of triangular inequality, which guarantees
that both d(Oi, Q) ≥ d(Op, Q) − d(Oi, Op) and d(Oi, Q) ≥ d(Oi, Op) − d(Op, Q)
hold. �

Figure 3.4 (a) Non-overlapped L1-spherical bounding region
(b) Overlapped L2-spherical bounding region

2Here we denote the parent object Par(Oi) as Op.
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Example 3.3

The idea of Lemma 3.2 (in case that d(Op, Q)−d(Oi, Op) ≥ rOi
+rQ) is presented

in Figure 3.4. The region (Oi, rOi
) is entirely embedded inside a bounding region

(Op, d(Op, Oi) + rOi
). If the regions (Q, rQ) and (Op, d(Op, Oi) + rOi

) do not
overlap, we can safely exclude the subtree T (Oi) from search, because also the
(Oi, rOi

) region cannot be overlapped (computation of d(Oi, Q) is not needed).

3.2.1 Range Queries

The range query algorithm has to follow all paths in the M-tree leading to objects
Oj overlapping the query region (Q, rQ), i.e. to objects satisfying d(Q,Oj) ≤ rQ.

In Listing 3.1 a recursive algorithm of range query is presented. The algorithm
is optimal in I/O costs, because only those nodes are accessed, the metric regions
of which (defined by parent routing entries) overlap the query region. Application
of the above mentioned lemmas is marked in the pseudo-code. Initially, the range
query algorithm is executed for the root node.

Listing 3.1 (range query algorithm)

QueryResult RangeQuery(Node N , RQuery (Q, rQ))
{

let Op be the parent routing object of N /* if N is root then d(Oi, Op)=d(Op, Q)=0 */
if N is not a leaf then {

for each rout(Oi) in N do {
if |d(Op, Q)− d(Oi, Op)| ≤ rQ + rOi then { /* application of Lemma 3.2 */

compute d(Oi, Q)
if d(Oi, Q) ≤ rQ + rOi then /* application of Lemma 3.1 */

RangeQuery(ptr(T (Oi)), (Q, rQ))
}

} /* for each ... */
} else {

for each grnd(Oi) in N do {
if |d(Op, Q)− d(Oi, Op)| ≤ rQ then { /* application of Lemma 3.2 */

compute d(Oi, Q)
if d(Oi, Q) ≤ rQ then

add Oi to the query result
}

} /* for each ... */
}

} /* RangeQuery */
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3.2.2 Nearest Neighbours Queries

Realization of the k-NN query algorithm in M-tree is a bit more complicated
modification of the range query algorithm. Since the query radius rQ, i.e. the
distance between Q and the k-th nearest neighbour, is not known in advance, it
must be determined dynamically during the query processing. For this purpose
a branch-and-bound heuristic algorithm has been introduced [37], quite similar
to that one for R-trees [84]. The k-NN query algorithm utilizes a priority queue
PR of pending requests, and a k-elements array NN used to keep the candidates
of the nearest neighbours and which, at the end of the execution, contains the
result. At the beginning of k-NN query processing, the dynamic radius rQ is set
to ∞, while during query processing the radius rQ is consecutively reduced down
to the ”true” distance between Q and the k-th nearest neighbour.

PR queue. The priority queue PR of pending requests [ptr(T (Oi)), dmin(T (Oi))]
is used to keep (pointers to) such subtrees T (Oi), which (still) cannot be ex-
cluded from the search due to overlap of their metric regions (Oi, rOi

) with the
dynamic query region (Q, rQ). The priority order of each such request is given
by dmin(T (Oi)), which is the smallest possible distance between an object stored
in T (Oi) and the query object Q. The smallest distance is defined as the lower-
bound distance between Q and the metric region (Oi, rOi

):

dmin(T (Oi)) = max{0, d(Oi, Q)− rOi
}

During k-NN query execution, the requests from PR are being processed in pri-
ority order, i.e. the request with the smallest lower-bound distance goes first.

NN array. The NN array contains k entries either of form [oid(Oi), d(Q,Oi)]
or [−, dmax(T (Oi))]. The NN array is sorted according to the distance values
in ascending order. An entry of form [oid(Oi), d(Q,Oi)] on the j-th position in
NN represents a candidate object for the j-th nearest neighbour. On the other
hand, the value dmax(T (Oi)) in an entry [−, dmax(T (Oi))] represents an upper-
bound distance between Q and objects in subtree T (Oi) (in which some k-NN
candidates could be stored). The upper-bound distance dmax(T (Oi)) is defined
as:

dmax(T (Oi)) = d(Oi, Q) + rOi

Since NN is a sorted array containing the k nearest neighbours candidates (or
at least upper-bound distances of the still relevant subtrees), the dynamic query
radius rQ can be determined as the current distance stored in the last entry
NN[k]. During query evaluation, only the closer candidates (or smaller upper-
bound distances) are inserted into NN array, i.e. those candidates, which are
currently located inside the dynamic query region (Q, rQ).

After an insertion into NN is performed, the query radius rQ is decreased (be-
cause NN[k] entry has been replaced). The priority queue PR must contain only
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the (still) relevant subtrees, i.e. such subtrees the regions of which overlap the
dynamic query region (Q, rQ). Hence, after the dynamic radius rQ is decreased,
all irrelevant requests (such that dmin(T (Oi)) > rQ) must be deleted from PR.

At the beginning of k-NN query processing, the nearest neighbours candidates
are unknown, thus all the entries in the NN array are set to [−,∞]. The query
processing begins at the root level, so that [ptr(root),∞] is the first and the only
request in PR. In Listing 3.2 the k-NN query algorithm is described in detail.

Listing 3.2 (k-NN query algorithm)

NodeSearch(Node N , kNNQuery (Q, k))
{

let Op be the parent routing object of N /* if N is root then d(Oi, Op)=d(Op, Q)=0 */
if N is an internal node then {

for each rout(Oi) in N do {
if |d(Op, Q)− d(Oi, Op)| ≤ rQ + rOi then { /* application of Lemma 3.2 */

compute d(Oi, Q)
if dmin(T (Oi)) ≤ rQ then {

insert [ptr(T (Oi)), dmin(T (Oi))] to PR
if dmax(T (Oi)) < rQ then {

rQ = NNUpdate([−, dmax(T (Oi))])
remove from PR all requests for which dmin(T (Oi)) > rQ

}
} /* if dmin( ...*/

}
} /* for each ...*/

} else { /* N is a leaf */
for each grnd(Oi) in N do {

if |d(Op, Q)− d(Oi, Op)| ≤ rQ then { /* application of Lemma 3.2 */
compute d(Oi, Q)
if d(Oi, Q) ≤ rQ then {

rQ = NNUpdate([oid(Oi), d(Oi, Q)])
remove from PR all requests for which dmin(T (Oi)) > rQ

}
}

} /* for each ...*/
}

}

Node ChooseNode(PRQueue PR)
{

let dmin(T (O∗
i )) = min{dmin(T (Oi))}, considering all the entries in PR

remove entry [ptr(T (O∗
i )), dmin(T (O∗

i ))] from PR
return *ptr(T (O∗

i ))
}
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QueryResult kNNQuery(kNNQuery (Q, k))
{

PR = {[ptr(root),∞]}
for i = 1 to k do

NN[i] = [−,∞] /* rQ = NN[k].dmax = ∞ */
while PR is not empty do {

NextNode = ChooseNode(PR)
NodeSearch(NextNode, (Q, k))

}
return NN

}

The NNUpdate operation performs an ordered insertion into the NN array, re-
ceiving back the current value of dynamic query radius rQ =NN[k].dmax.

Theorem 3.1

The k-NN query algorithm, as presented in Listing 3.2, is optimal in I/O costs,
because it only accesses those nodes, the metric regions of which overlap the
query region (Q, d(Q,NN[k].dmax)). In other words, the I/O costs of a k-NN
query (Q, k) and costs of the equivalent range query (Q, d(Q,NN[k].dmax)) are
the same.

Proof: Suppose the algorithm accesses a node N (having parent routing entry
rout(Oi)), the metric region of which does not overlap the range query hyper-
sphere (Q, d(Q,NN[k].dmax)), i.e. dmin(T (Oi)) > rQ. Let N0 be a leaf containing
the k-th nearest neighbour of Q, N1 be the parent node of N0, . . ., and Nh be the
root of M-tree. Let N0’s parent routing entry be rout(Oi0), N1’s be rout(Oi1),
and so on. From the definition of dmin and of nesting condition, it follows that

rQ ≥ dmin(T (Oi0)) ≥ . . . ≥ dmin(T (Oih−1
))

and thus (by the assumption)

dmin(T (Oi)) > rQ ≥ dmin(T (Oi0)) ≥ . . . ≥ dmin(T (Oih−1
))

During query processing, the root Nh is replaced in the PR queue by its children
Nh−1, and so on, until the leaf N0 is loaded. Since dmin(T (Oi)) > dmin(T (Oi0)),
N cannot be accessed until N0 has been loaded. If N0 is loaded, however, all the
requests having dmin greater than rQ are removed from the PR queue. Hence, N
is not accessed and this contradicts the assumption. �

Note: Although the k-NN query algorithm is optimal in I/O costs, the computa-
tion costs are not guaranteed to be optimal. Nevertheless, the computation costs
are fairly correlated to the I/O costs, so that computation costs of k-NN process-
ing are only a little higher than computation costs of the equivalent range query.
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Figure 3.5 Example of a 2-NN query processing
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Example 3.4

In Figure 3.5 see an example of a 2-NN query processing. Each of the depicted
phases shows the content of PR queue and NN array right before getting and
processing a request from PR. The algorithm consecutively eliminates the irrel-
evant subtrees using the PR and NN structures. Due to the decreasing query
radius rQ, the dynamic query region (Q, rQ) is reduced down to (Q, d(Q,O5)).
Note that the algorithm accesses 4 nodes (because processing each request from
PR involves a single node access), while the equivalent range query would also
take 4 node accesses.

3.3 M-tree Construction

The first method of M-tree construction is the dynamic insertion of each single
object of the dataset into an existing M-tree. The second method, called bulk
loading, is applicable in case that the entire dataset S is available before indexing.

3.3.1 Dynamic Object Insertion

First, we will discuss the dynamic insertion of a single object. The insertion of
an object into the M-tree follows two general steps (see also Listing 3.3):

1. Find the optimal target leaf into which the object Oi will be inserted as a
ground entry. Insert the object Oi into that leaf. Such a target leaf should
be chosen, the parent routing object of which is close to Oi. Simultaneously,
after insertion of object Oi the enlargements of (grand)parent regions’ radii
should be minimal (possibly zero).

2. If a node overflows, split the node (partition its content between two new
nodes), select two new routing objects and promote them into the parent
node. If now the parent node overflows, repeat step 2 for the parent node.
If a root is split, the M-tree grows by one level.

Listing 3.3 (dynamic object insertion)

Insert(Object Oi)
{

let N be the root node
TargetLeaf = FindLeaf(N ,Oi)
store ground entry grnd(Oi) in the TargetLeaf
if TargetLeaf is overfull then

Split(TargetLeaf)
}
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3.3.2 Choosing the Target Leaf

An optimal choice of the target leaf is tightly related to the heuristic criterion
that suggests to keep the volume3 of metric regions as small as possible. The
larger overall volume of metric regions, the higher probability of an overlap with
the query region (which leads to less efficient searching), and vice versa. We
further discuss the quality of M-tree hierarchy in the following chapter.

Considering the original approach [37], the motivation used to find the optimal
target leaf is to follow a single path in the M-tree (we denote it as single-way leaf
choice), which would avoid any enlargements of covering radii. At each level of
M-tree, the covering subtree of a rout(Oj) is chosen, for which d(Oj, Oi) ≤ rOj

.
If multiple paths with this property exist, the one for which object Oi is closest
to the routing object rout(Oj) is chosen. If no routing object exists for which
d(Oj, Oi) ≤ rOj

, an enlargement of a covering radius is necessary. In that case,
a node is chosen such that enlargement of its parent region’s covering radius is
minimal.

The single-way leaf choice will access only h nodes (where h is the height
of M-tree), one node at each M-tree level, thus its time complexity is O(log n).
In Listing 3.4 see the single-way leaf choice algorithm which can be used as a
particular implementation of the FindLeaf operation, as presented in Listing 3.3.
We denote the whole procedure of inserting an object using the single-way leaf
choice as single-way insertion.

Listing 3.4 (single-way leaf choice)

Node FindLeafSingleWay(Node N , Object Oi)
{

if N is a leaf node then
return N

let Nin be the set of entries rout(Oj) from N for which d(Oj , Oi) ≤ rOj

if Nin is not empty then
let rout(O∗

j ) be an entry in Nin such that d(O∗
j , Oi) is minimum

else {
let rout(O∗

j ) be an entry in N such that d(O∗
j , Oi)− rO∗

j
is minimum

let rO∗
j

= d(O∗
i , Oi)

}
FindLeafSingleWay(*ptr(T (O∗

j )))
}

3We consider only an imaginary volume, since there exists no universal notion of volume
in general metric spaces. However, without loss of generality, we can say that volume of a
hyper-spherical metric region grows if its covering radius increases.
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Example 3.5

In Figure 3.6 see an example of the single-way leaf choice. At the root level,
the child node of entry rout0(O1) is chosen, having the routing object closest
to the inserted object Oi. At the second level, there exist no routing entry
the metric region of which bounds Oi and, therefore, the child node of entry
rout1(O1) is chosen, because the enlargement of its covering radius is smaller than
for rout1(O3). The child leaf of entry rout1(O1) is returned as the target leaf.

Figure 3.6 Single-way leaf choice:
(a) The target enlarged region (grayed) represented by rout1(O1)
(b) Single path leading to the chosen leaf

3.3.3 Node Splitting

After a node overflows, it must be split. In order to keep the overlap between
regions of the two new nodes minimal , a suitable splitting policy must be chosen,
determining how to split a given node. In particular, the splitting algorithm must
decide which objects to select as the new routing objects (a promotion policy),
and how to partition the objects between the new nodes (a partition policy). In
Listing 3.5 see the algorithm of node splitting.

As the original experiments [80] have shown, the minMAX RAD promotion policy
(in the split algorithm denoted as Promote) causes the best search efficiency of

the M-tree. The minMAX RAD method examines all of the m(m−1)
2

(where m is the
number of entries in node) pairs of objects candidating to the two new routing
objects. For every such pair, the remaining entries in the node are temporarily
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partitioned between two groups, belonging to the objects of the pair. For each pair
of candidate routing objects a maximal covering radius is determined. Finally,
such a pair (rout(Oi), rout(Oj)) of new routing objects is chosen (or promoted),
for which the maximal radius (the greater of the two radii rOi

, rOj
) is minimal.

For the object partition policy (in the split algorithm denoted as Partition),
a distribution according to general hyperplane is used as the most beneficial
method. An object is simply assigned to the closer routing object. In order
to preserve the minimal node utilization threshold, a fixed number of objects is
distributed according to the balanced distribution.

A comprehensive description of various M-tree construction details as well as
the discussion about the splitting policies is included in [80].

Listing 3.5 (node splitting)

Split(Node N)
{

let N be the set of entries in node N
if N is not the root then

let rout(Op) be the parent entry of N , stored in a node Np

allocate a new node N ′

Promote(N ,Or1 ,Or2)
Partition(N ,Or1 ,Or2 ,Nr1 ,Nr2)
store Nr1 ’s entries in N and Nr2 ’s entries in N ′

if N is the current root then {
allocate a new root node Np

store rout(Or1) and rout(Or2) in Np

} else {
replace entry rout(Op) with entry rout(Or1) in Np

store rout(Or2) in Np

if Np is overfull then
Split(Np)

}
}

3.3.4 Bulk Loading

The bulk loading algorithm has been proposed in [34], allowing to construct
M-tree for the entire dataset S in a batch. On a given dataset, a hierarchy is
recursively built, resulting into a complete M-tree. Basically, the bulk loading
algorithm follows the GNAT partitioning idea, and can be described as follows:

1. First, given a dataset of objects S, we perform a k-way clustering by sam-
pling k objects O1, . . . , Ok from S.
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2. Then, for each object in S we determine its nearest sample Oi, and insert
the object into a set Fi. In this way we obtain k clusters of objects.

3. Now, we invoke the bulk loading algorithm recursively on each of the k
clusters F1, . . . ,Fk, obtaining k sub-trees T1, . . . , Tk.

4. Finally, for the k sub-trees a root is created, resulting into a single k-ary
tree.

The bulk loading algorithm, as presented, would produce a non-balanced tree
(GNAT actually). In order to obtain an M-tree, two different techniques are used:

• The objects in an underfull set Fi are reinserted into the other sets, and
the corresponding sample object is deleted.

• The taller sub-trees are split, obtaining shorter sub-trees. The roots of the
new sub-trees are inserted into the sample set, replacing the original sample
objects.

For a more precise description of the bulk loading algorithm we refer to [34] or [80].

3.4 M-tree Modifications

Recently, several modifications of M-tree have appeared. The Slim-trees [103]
extend the M-tree by a new splitting technique based on minimum spanning tree
(MST), thus decreasing the distance computation construction costs. Moreover,
the slim-down algorithm is introduced, a post-processing method decreasing the
search costs.

Besides the original distance function d (used for indexing), an extension of
M-tree, called Query-Index-Comparison (QIC) [36], allows to exploit a query dis-
tance function dQ and a comparison distance function dC . The query distance
functions provide a more flexible querying in M-tree, because the user can formu-
late a query exploiting any metric dQ for which d is lower-bounding. Moreover,
any cheap comparison distance function dC which lower-bounds d can be used to
quickly discard irrelevant subtrees of the M-tree during search. The dQ as well
as dC distance functions even need not to be full metrics. The authors point out
that the Query-Index-Comparison approach can be extended to other MAMs,
namely the VP-tree, GNAT, and LAESA.

Very recently, the M+-tree was introduced [114], a modification of M-tree de-
signed to index datasets embedded within Euclidean vector spaces. The M+-tree
exploits a key dimension concept, according to which a single hyper-spherical
region is divided (in a generalized hyper-plane way) in two parts, each belonging
to one half of so-called twin-node. The authors of M+-tree report a slightly better
search efficiency in average, when compared to the original M-tree.
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Quality of M-tree Hierarchy

Since the M-tree’s nesting condition is very weak, the efficiency of search in a given
dataset is significantly influenced by particular M-tree hierarchy, even though
the correctness and the logic of search are guaranteed for all M-tree hierarchies
satisfying the nesting condition. The key problem of M-tree search efficiency
resides in:

1. the overall volume of M-tree regions defined by routing entries. The larger
volume, the higher probability of an overlap with query region and, conse-
quently, the higher search costs.

2. a quantity of overlaps among metric regions. If we realize, the query pro-
cessing must access all nodes, the parent metric regions of which overlap
the query region. If the query region lies (even partially) in an overlap of
two or more regions, all the appropriate nodes must be accessed, thus the
search costs grow.

Originally, the algorithms on M-tree have been developed to achieve a trade-
off, an efficient construction and a (relatively) efficient searching. Consequently,
the M-tree construction techniques incorporate decision moments, that regard
only a partial knowledge about the distance distribution in a given dataset. Using
single-way dynamic insertion, the M-tree hierarchy is constructed locally – at a
moment when the nodes are about to split. On the other side, the bulk loading
algorithm works with the entire dataset, however, it also works locally – according
to several sample objects. The local construction methods cause the M-tree
hierarchies are not compact enough, which increases the overall volume of metric
regions as well as the quantity of overlaps among them.

In our approach, we wanted to utilize also global techniques of (re)building
M-tree, providing a reasonable optimization of the M-tree hierarchy. In order
to improve the search efficiency at the expense of construction costs, in this
chapter we propose two global methods of constructing more compact M-tree
hierarchies [98] – the generalized slim-down algorithm and the multi-way object

49
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insertion. The motivation for such efforts has been well-founded by a common
DBMS scenario, in which the database (dataset S) is updated only occasionally
(the dynamic insertions/deletions are not frequent) but, on the other hand, there
are many queries issued at a moment. In such scenario, we rather favour to
speedup the search process, while the costs of index updating are not so impor-
tant. Following this idea, the two proposed methods decrease both the overlaps
among metric regions as well as the overall volume, which leads to a higher search
efficiency.

4.1 Slim-Down Algorithm

Recently, a post-construction method has been proposed for the Slim-tree [103]
(which is, in fact, the same structure as M-tree), called the slim-down algorithm.
The slim-down algorithm has been used for improvement of Slim-tree hierarchy
already built by dynamic object insertions.

The basic idea of the slim-down algorithm is an assumption, that a more suit-
able leaf exists for a ground entry stored in a leaf. Given a ground entry grnd(Oi)
in a leaf N (having parent routing entry rout(Op)) where d(Oi, Op) = rOp , the
task is to find a non-full leaf N∗ (having parent routing entry rout(O∗

p)) such
that d(Oi, O

∗
p) < rO∗

p
. If such a leaf exists, the entry grnd(Oi) is inserted into

them (without a need of rO∗
p

enlargement), and deleted from N together with a
decrease of rOp (if Oi was the most distant object from Op in N). The algorithm
is repeated for all ground entries in all leaves as long as the movements of entries
occur. The experiments [103] have shown, that the original version of slim-down
algorithm improves the search efficiency by 35% (in average).

4.1.1 Generalized Slim-Down Algorithm

We have generalized [98] the slim-down algorithm also for the inner nodes as
follows:

1. The algorithm traverses each M-tree level, starting at the leaf level k = h−1.
For each node N at the k-th level (h > k > 0), a better location for each
of its entries entry(Oi) is tried to find:

(a) For a routing entry rout(Oi) in an inner node N , a set of relevant
nodes N is retrieved. This is achieved by the node sieve operation
(see Listing 4.1), which returns such nodes Nj (at the k-th level of
M-tree), the parent metric regions (Oj, rOj

) of which entirely contain
the region (Oi, rOi

), i.e. ∀Oj, d(Oj, Oi) + rOi
< rOj

. In other words,
the M-tree is used as a hierarchical sieve having hyper-spherical holes,
through which the ”region ball” (Oi, rOi

) may fall onto the k-th level.
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(b) For a ground entry grnd(Oi) in a leaf N , a set of relevant leaves N is
retrieved using a leaf sieve, which is a special case of the node sieve
where the ”region ball” is just a point (Oi, 0). In fact, the same leaves
are retrieved as those accessed by a point query (Oi, 0).

2. Among the nodes in N , a non-full node N∗ is chosen:

(a) In case of routing entry rout(Oi), such node N∗ is chosen, the parent
routing object O∗

p of which is closest to the farthest possible object in
T (Oi), i.e. N∗ is chosen such that d(Oi, O

∗
p) + rOi

is minimal.

(b) In case of ground entry grnd(Oi), such leaf N∗ is chosen, the parent
routing object O∗

p of which is closest to Oi, i.e. such that d(Oi, O
∗
p) is

minimal.

3. The entry entry(Oi) is moved from N to the node N∗. Note that, due
to correct node sieve filtering, the movements of entries do not violate the
nesting condition.

4. Let rout(Op) be the parent routing entry of N . If d(Oi, Op) + rOi
= rOp ,

the covering radius rOp of the N ’s parent routing entry rout(Op) (as well
as radii of all grandparent entries) could be decreased.

Processing a given level could be repeated as long as any movements of entries
occur. After a level is finished, the algorithm starts for the (k−1)-th level. During
the algorithm processing, the number of nodes at each M-tree level is preserved,
since only redistribution of entries at the same level is performed. In Listing 4.2
see a more precise description of the generalized slim-down algorithm.

Listing 4.1 (node sieve algorithm)

Node[] NodeSieve(Node N , RQuery (Q, rQ), int CurrentLevel, int TargetLevel)
{

let Op be the parent routing object of N
for each entry(Oj) in N do {

if |d(Op, Q)− d(Oj , Op)| ≤ rQ + rOj then { /* application of Lemma 3.2 */
compute d(Oj , Q)
if d(Oj , Q) + rQ < rOj then /* the ”sieve” condition */

if CurrentLevel < TargetLevel then
NodeSieve(ptr(T (Oj)), (Q, rQ), CurrentLevel+1, TargetLevel)

else
add N to the query result

}
} /* for each ... */

}
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Listing 4.2 (generalized slim-down algorithm)

SlimDown(MTree T )
{

for k = h− 1 to 1 do /* the root level (k=0) cannot be slimmed */
for each node N at the k-th level of T do

for each entry(Oi) in N do { /* either routing or ground entry */
if N is leaf then

let N = NodeSieve(root(T ), (Oi, 0), 0, k)
else

let N = NodeSieve(root(T ), (Oi, rOi), 0, k)
let rout(O∗

j ) be parent routing entry of a non-full node N∗ in N ,
such that d(O∗

j , Oi) + rOi is minimal
move rout(O∗

j ) from N to N∗ (but only if N does not underflow)
adequately decrease the covering radii of all the N ’s (grand)parent routing entries

}
}

Example 4.1

In Figure 4.1 see an example of the generalized slim-down algorithm processing.
In Figure 4.1a the original M-tree is represented. The M-tree hierarchy after
slimming-down the leaf level is shown in Figure 4.1b. The ground entries 4 and 6
have been moved from leaf B (D respectively) into leaf A, while the appropriate
covering radii of the (grand)parent routing entries have been decreased. The
M-tree hierarchy after slimming-down the middle level is shown in Figure 4.1c.
The routing entries B and D have been moved from node II. (I. respectively)
into node I. (II. respectively) and, again, appropriate covering radii of the parent
routing entries have been decreased. Note that the M-tree metric region volumes
have been significantly decreased, and the overlaps among regions have become
smaller.

4.1.2 Construction Costs

The generalized slim-down algorithm is quite expensive, it consumes O(n) node
sieve operations (one for each node entry). If we realize, the node sieve op-
eration is similar to point query processing, it takes from O(n) (in the worst
case) to O(log n) (in the best case) of search costs. Hence, the overall costs of
slim-down algorithm are ranged between O(n log n) and O(n2). However, for
well-structured M-tree hierarchies, the average costs of point query (the node
sieve operation respectively) approach to O(log n). Moreover, search costs of
the node sieve operation can be reduced to e.g. O(c log n) (where c is a con-
stant) by selection of only sub-optimal nodes used for the object redistribution.
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Figure 4.1 (a) The original (not slimmed) M-tree
(b) The M-tree after slimming-down the leaf level
(c) The M-tree after slimming-down the middle level

From the DMBS point of view, the slim-down algorithm is not a transaction, it
can be whenever interrupted and resumed. This capability is suitable for run-
ning the slim-down algorithm in processor idle mode, thus construction costs
can be spread over the time.

4.2 Multi-Way Leaf Choice

The original (single-way) leaf choice heuristic used by dynamic object insertion
keeps the construction costs as low as possible and, simultaneously, tries to find a
leaf node for which the insertion of object Oi does not enlarge the metric regions
much. However, this heuristic behaves very locally (only one path in the M-tree
is processed), thus the optimal leaf is rarely chosen.

In our approach, the priority has been focused on choice of the most optimal
leaf node at all, by means of multi-way leaf choice [98]. In principle, a point
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query is executed (leaf sieve operation respectively, see Listing 4.1), defined by
the inserted object Oi. For all the accessed relevant leaves (their parent routing
objects rout(Oj) respectively), the distances d(Oj, Oi) are computed, and the leaf
is chosen for which the distance is minimal (see Listing 4.3). If no such a leaf is
found, i.e. no region (Oj, rOj

) bounding Oi exists, the single-way leaf choice is
performed.

Listing 4.3 (multi-way leaf choice)

Node FindLeafMultiWay(Node N , Object Oi)
{

let N = NodeSieve(N , (Oi,0), 0, h− 1)
if N is empty then

return FindLeafSingleWay(N , Oi)
let rout(O∗

j ) be parent routing entry of a (non-full) node N∗ in N , such that d(O∗
j , Oi)

is minimum
return N∗

}

The multi-way leaf choice behaves more globally, since multiple paths in the
M-tree are examined. In fact, all the leaves the regions of which spatially contain
the object Oi are candidates for the optimal leaf. Furthermore, the multi-way
leaf choice can optionally consider only the non-full leaves for an object inser-
tion, which leads to a higher node utilization (see experiments in Section 4.4).
Considering only the non-full leaves, a leaf is split in case it is overfull, but this
can happen only for the single-way leaf choice (i.e. after an unsuccessful attempt
of the multi-way leaf choice). The FindLeafMultiWay operation is incorporated
into the insertion algorithm presented in Listing 3.3, replacing the FindLeaf oper-
ation. We denote the whole procedure of inserting an object using the multi-way
leaf choice as multi-way insertion.

Example 4.2

In Figure 4.2 see an example of the multi-way leaf choice (the same situation for
the single-way choice has been presented in Example 3.5). The leaf sieve returns
two candidate leaves, the metric regions of which spatially contain the inserted
object Oi. Between these leaves the one is chosen, the parent routing object of
which is closer to Oi. Note that no enlargement of a covering radius is needed.

4.2.1 Construction Costs

Unlike the single-way leaf choice, the multi-way leaf choice is not of logarithmic
complexity yet, the point query (leaf sieve operation respectively) search costs
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Figure 4.2 Multi-way leaf choice:
(a) The target leaf region (grayed) represented by rout1(O5)
(b) Multiple paths leading to candidate leaves

take from O(n), in the worst case, to O(log n), in the best case. Nevertheless,
the costs of leaf sieve operation could be reduced, similarly like for the slim-
down algorithm, to e.g. O(c log n) (where c is a constant) by selection of only
sub-optimal leaves used for the object insertion.

4.3 Fat-Factor

In order to evaluate the quality of an M-tree hierarchy built either by the general-
ized slim-down algorithm or by the multi-way object insertion, we need a measure
to quantify the amount of metric region overlaps. In general metric spaces we
cannot quantify the volume of two metric regions overlap, and we cannot even
compute the volume of a whole metric region. Thus, we cannot measure the
quality of an M-tree hierarchy as a sum of overlap volumes.

With the introduction of Slim-tree [103], the fat-factor has been introduced
as a way how to quantify the number of region overlaps in Slim-tree. We can
adopt the fat-factor for usage in M-tree as well. The fat-factor is tightly related
to the M-tree search efficiency, because it gives an information about the objects
located in region overlaps by means of sequence of point queries.

Definition 4.1 (fat-factor)

For the fat-factor computation, a point query for each ground entry in the M-tree
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is performed. Let h be the height of an M-tree T , n be the number of ground
entries in T , m be the number of nodes, and Ic be the total I/Os spent by all the
n point queries. Then,

ff(T ) =
Ic − h · n

n
· 1

(m− h)

is the fat-factor of T , a number in interval 〈0, 1〉. �

For an optimal M-tree hierarchy, the ff(T ) is zero. On the other side, for the
worst possible M-tree, the ff(T ) is equal to one. For an M-tree with ff(T ) = 0,
every performed point query costs h I/Os, while for ff(T ) = 1 every performed
point query costs m I/Os, i.e. the entire M-tree index is traversed.

4.4 Experimental Results

We made several experiments on synthetic vector datasets of multi-dimensional
tuples. The datasets were of various dimensionalities, from D = 2 to D = 50,
while the size of a dataset was increasing with the dimensionality, from 20,000
2D tuples to 1 million 50D tuples.

Figure 4.3 Two-dimensional dataset distribution

The tuples were distributed uniformly, inside L2-spherical clusters with radii
increasing from 10% of the domain extent (for 2D tuples) to 80% of the domain
extent (for 50D tuples). The number of clusters was increasing with the increasing
dimensionality – from 50 to 1,000 clusters. In such distributed datasets, the
hyper-spherical clusters became highly overlapping, because of their quantity
and large radii. See an example of 2D dataset distribution in Figure 4.3.

4.4.1 Building the M-tree

The datasets were indexed in five ways. The single-way insertion method and the
bulk loading algorithm (in the graphs denoted as SingleWay and Bulk Loading)
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represent the original methods of M-tree construction. In addition, the multi-way
insertion method (denoted as MultiWay) and the generalized slim-down algorithm
represent the new building techniques introduced in this chapter. The slim-down
algorithm, as a post-processing technique, was applied on both SingleWay and
MultiWay indices, which resulted into indices SingleWay+SlimDown and Multi-
Way+SlimDown. Some general M-tree statistics are presented in Table 4.2.

Metric: L2 (Euclidean) Node capacity: 20 objs. Dimensions: 2 – 50
Objects(n): 20,000 – 1,000,000 Tree height(h): 3 – 5 Index size: 1 – 400 MB

Minimal node utilization: 30% (i.e. 6 objects)

Table 4.2 M-tree statistics

The first experiment evaluated the M-tree construction costs. The I/O con-
struction costs are presented in Figure 4.4a. We can see that the SingleWay and
Bulk Loading indices were built much cheaply than the others, but the construc-
tion costs have not been the primary objective in our approach. Figure 4.4b
illustrates the average realtime costs per one inserted object.

Figure 4.4 Building the M-tree: (a) I/O costs
(b) Realtimes per one object

In Figure 4.5a the fat-factor characteristics of the indices are depicted. The
fat-factor of SingleWay+SlimDown and MultiWay+SlimDown indices was very low,
which indicates that these indices contained (relatively) few overlapping regions.

An interesting fact can be observed in Figure 4.5b, showing the average node
utilization. Thanks to the multi-way selection favouring the non-full leaves, the
MultiWay index utilization was by more than 10% higher than utilization of the
SingleWay index. This value is not relevant for the SingleWay+SlimDown and Mul-
tiWay+SlimDown indices, since the ”slimming-down” did not change the average
node utilization, i.e. the results were the same as those achieved for SingleWay
and MultiWay indices.
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Figure 4.5 Building the M-tree: (a) Fat-factor (b) Node utilization

4.4.2 Range Queries

The objective of our approach was to increase the search efficiency of M-tree. For
the querying experiments, many query objects were randomly selected from the
datasets. Each query test consisted from 100 to 750 queries (according to the
dimensionality and dataset size). The results are averaged.

Figure 4.6 Range queries: (a) Query selectivity (b) Realtimes

In Figure 4.6a the average range query selectivity (i.e. the average number of
objects in query result) is presented for each dataset. For every range query, the
selectivity was set below 1% of all the objects in the respective dataset. The real-
time costs for range queries are presented in Figure 4.6b. We can see that query
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evaluation using SingleWay+SlimDown and MultiWay+SlimDown indices was al-
most twice as efficient, when compared to the SingleWay index.

Figure 4.7 Range queries: (a) I/O costs (b) Computation costs

The I/O costs and the computation costs for range queries are presented in
Figure 4.7. The computation costs represent the total number of the distance
computations needed for a query evaluation.

Figure 4.8 10-NN queries: (a) I/O costs (b) Computation costs

4.4.3 Nearest Neighbours Queries

The search efficiency growth is even more obvious for k-NN queries processing.
In Figure 4.8a the I/O costs are presented for 10-NN queries. As the results
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show, querying the SingleWay+SlimDown index consumed 3.5-times less I/Os than
querying the SingleWay index. A similar behaviour can be observed also for the
computation costs, presented in Figure 4.8b.

Figure 4.9 100-NN queries: (a) I/O costs (b) Realtimes

The most promising results are presented in Figure 4.9, for the 100-NN queries
testing. The search efficiency of the SingleWay+SlimDown index is here by more
than 300% higher than search efficiency of the SingleWay index.

An additional experimental evaluation of the generalized slim-down algorithm
on real-world datasets is included in Chapter 6 (in the context of PM-tree) and
Chapter 8 (in the context of semi-metric search in Text Retrieval).



Chapter 5

PM-tree

As we have discussed previously, the efficiency of search in M-tree is dependent
on the overall volume of metric regions. The higher volume, the lower search
efficiency. In the previous chapter, we have presented two ways of reducing the
overall volume using object redistribution but, however, the redistribution alone
is not an ultimate solution and, moreover, it is computationally expensive.

In order to achieve even higher volume reduction and to keep the construction
costs low, we consider also another region reduction in this chapter, a modification
of metric region shape.

5.1 Motivation

Each metric region of M-tree is described by a bounding hyper-sphere (defined by
a local pivot and a covering radius). However, the shape of hyper-spherical region
is far from optimal, because it does not bound the data objects tightly together,
thus the region volume is too large. In other words, relatively to the hyper-sphere
volume, there is only ”few” objects spread inside the hyper-sphere, and a huge
proportion of empty space1 is covered. Consequently, for hyper-spherical regions
of large volumes the probability of overlap with the query region grows, thus
query processing becomes less efficient.

On the other side, the tightest possible boundary for a set of objects (i.e.
boundary for which the proportion of dead space is zero) is the set of objects
itself. Unfortunately, the simple description of such a ”grain region” is useless,
since storage of all the objects is too large, and an overlap check with a query
region would take many distance computations. In fact, checking a ”grain region”
for an overlap is equivalent to sequential search over all the objects stored in the
appropriate covering subtree.

Keeping the previous observations in mind (properties of the hyper-sphere
region and the ”grain region”), we can formulate four requirements on a compact

1The uselessly indexed empty space is often referred as the ”dead space” [18].

61
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metric region shape (a trade-off between region volume and storage/computation
costs), bounding a given set of objects:

• The representation of a region stored in a routing entry should be as small
as possible, so that storage of inner nodes will be (by far) smaller than
storage of the leaves.

• The shape of region should be easy to check for an overlap with the query
region (query hyper-sphere respectively).

• The shape should be compact , it should bound the objects tightly together,
so that probability of an empty intersection with the query region (i.e. a
case that no indexed objects are located in the intersection) will be minimal.

• Given a set of regions, there should be easy to create a super-region the
shape of which bounds each of the regions. This requirement is tree-specific
– it ensures that creating a super-region (when splitting an inner node)
can be automatically handled. Moreover, the requirement guarantees the
nesting condition (introduced for M-tree) is still preserved.

5.1.1 Hyper-Ring Region

In the following, we will introduce the concept of hyper-ring metric region, a
combination of two nested hyper-spheres, the first one acting as usual while the
second one acting as a ”hole” inside the first hyper-sphere.

Definition 5.1 (complementary-spherical metric region)

We denote ¬(Oi, rOi
) ⊂ U a complementary-spherical metric region, such that an

object Oj ∈ U is covered by the region, i.e. Oj ∈ ¬(Oi, rOi
), just in case that

d(Oj, Oi) ≥ rOi
. �

Lemma 5.1

Let ¬(Oi, rOi
) be a complementary-spherical metric region, and (Q, rQ) be a

hyper-spherical query region. If d(Oi, Q) + rQ < rOi
, then for each object

Oj ∈ ¬(Oi, rOi
), it is d(Oj, Q) > rQ. Thus, the regions do not overlap.

Proof: Since d(Oj, Oi) ≥ rOi
holds for ∀Oj ∈ ¬(Oi, rOi

), it is

d(Oi, Q) + rQ < d(Oj, Oi) (by hypothesis and Definition 5.1)
rQ < d(Oj, Oi)− d(Oi, Q)

d(Oj, Q) ≥ d(Oj, Oi)− d(Oi, Q) (by triangular inequality)
d(Oj, Q) > rQ �

Example 5.1

See the idea of Lemma 5.1 in Figure 5.1. While the L1-complementary-spherical
region ¬(Oi, rOi

) overlaps the query region, the L2-complementary-spherical re-
gion ¬(Oi, rOi

) does not overlap the query region.
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Figure 5.1 (a) Overlapped L1-complementary-spherical metric region
(b) Non-overlapped L2-complementary-spherical metric region

Definition 5.2 (hyper-ring metric region)

We call (Oi, r
low
Oi

, rup
Oi

) ⊂ U (where 0 ≤ rlow
Oi

≤ rup
Oi

) hyper-ring metric region, such
that an object Oj ∈ U is covered by the region, i.e. Oj ∈ (Oi, r

low
Oi

, rup
Oi

), just in
case that rlow

Oi
≤ d(Oj, Oi) ≤ rup

Oi
.We call rlow

Oi
a hyper-ring lower-bound distance

and rup
Oi

a hyper-ring upper-bound distance. �

Lemma 5.2

Let (Oi, r
low
Oi

, rup
Oi

) be a hyper-ring metric region, and (Q, rQ) be a hyper-spherical
query region. If d(Oi, Q) + rQ < rlow

Oi
∨ d(Oi, Q) > rQ + rup

Oi
, then for each object

Oj ∈ (Oi, r
low
Oi

, rup
Oi

), it is d(Oj, Q) > rQ. Thus, the regions do not overlap.

Proof: Follows immediately from Definition 5.2 and Lemmas 3.1 and 5.1. �

Example 5.2

See the idea of Lemma 5.2 in Figure 5.2. While the L1-hyper-ring region (Oi, r
low
Oi

, rup
Oi

)
does not overlap the query region, the L2-hyper-ring region (Oi, r

low
Oi

, rup
Oi

) overlaps
the query region.

5.2 Structure of PM-tree

Recently [93, 100], we have proposed the Pivoting M-tree (PM-tree), an extension
of M-tree exploiting a combination of hyper-ring regions for M-tree region volume
reduction. The idea of PM-tree has been motivated by the previously mentioned
observations on metric region representation, that is, the PM-tree structure has
been designed in order to satisfy the four requirements on metric region shape.

Since PM-tree is an extension of M-tree, we just describe the new facts instead
of a comprehensive definition. First of all, a set of p global pivots Pt ∈ S must be
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Figure 5.2 (a) Non-overlapped L1-hyper-ring metric region
(b) Overlapped L2-hyper-ring metric region

selected, similarly like by LAESA method. The set of pivots is stored externally
in a pivot file – the size of pivot file is fixed for all the lifetime of a particular
PM-tree index. A routing entry, in a PM-tree inner node, is defined as:

routPM(Oi) = [Oi, ptr(T (Oi)), rOi
, d(Oi, Par(Oi)), HR]

The new HR attribute stands for an array of phr (phr ≤ p) intervals, where
the t-th interval HR[t] = 〈HR[t].min, HR[t].max〉 is the smallest interval covering
distances between pivot Pt and each of the objects stored in leaves of T (Oi), i.e.
∀Oj ∈ T (Oi):

HR[t].min = min
⋃
j

{d(Pt, Oj)}

HR[t].max = max
⋃
j

{d(Pt, Oj)}

The set of global pivots and the array HR define a set of phr hyper-ring regions
(Pt, HR[t].min, HR[t].max), or simply (Pt, HR[t]), such that all objects stored
in the covering subtree T (Oi) are located inside each of the hyper-rings, i.e.
∀Oj ∈ T (Oi),∀t ≤ phr ⇒ Oj ∈ (Pt, HR[t]).

Since each hyper-ring region (Pt, HR[t]) defines a metric region containing all
the objects stored in T (Oi), an intersection of all the hyper-rings and the hyper-
sphere (Oi, rOi

) forms a metric region bounding all the objects in T (Oi) as well.
Due to the intersection with hyper-sphere, the PM-tree metric region is always
smaller than the original M-tree region defined just by the hyper-sphere. For a
comparison of an M-tree region and an equivalent PM-tree region, see Figure 5.3.
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Example 5.3

In Figure 5.4 see a hierarchy of PM-tree regions and the appropriate PM-tree.
Two global pivots P1 and P2 are used. Each PM-tree metric region is represented
by an intersection of the hyper-sphere (Oi, rOi

) and two hyper-rings (P1, HR[1])
and (P2, HR[2]).

Figure 5.3 (a) Region of M-tree
(b) Region of PM-tree (reduced by three hyper-rings)

Figure 5.4 (a) Hierarchy of PM-tree regions (b) Appropriate PM-tree

Note: The nesting condition (see Condition 3.1), satisfied by the M-tree, is
preserved by the PM-tree as well, because each hyper-ring interval HR[t] is nested
inside a larger (or equal) interval defined by the parent routing entry, thus also
each hyper-ring region (Pt, HR[t]) is nested inside its parent hyper-ring.
For a PM-tree leaf, we define a ground entry as:

grndPM(Oi) = [Oi, oid(Oi), d(Oi, Par(Oi)), PD]
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The new PD attribute stands for an array of ppd pivot distances (ppd ≤ p), where
the t-th distance PD[t] = d(Oi, Pt). Using PD arrays, the leaves of PM-tree can be
filtered the same way, as are filtered objects organized by LAESA-like methods.

The numbers phr and ppd (both fixed for a PM-tree index lifetime) allow us
to specify the ”amount of pivoting”. Obviously, specifying a suitable phr > 0 and
ppd > 0, the PM-tree can be tuned to achieve an optimal search efficiency.

5.2.1 Object-to-pivot Distance Representation

In order to minimize the storage volume of HR and PD arrays in PM-tree nodes,
a short representation of object-to-pivot distances is necessary. We can easily
represent each interval HR[t] by two 4-byte reals, and a pivot distance PD[t] by a
single 4-byte real. However, when (a part of) the dataset S is known in advance,
we can approximate the 4-byte representation by a single byte. For this reason,
a distance distribution histogram for each pivot is created, by random sampling
objects from the dataset and computing distances from each sample object to
the pivot. Then a distance interval 〈dlow, dup〉 is created, so that majority of the
histogram distances falls into that interval, see an example in Figure 5.5.

Figure 5.5 Distance distribution histogram for a pivot Pt,
90% of distances d(Pt, Oi),∀Oi ∈ S are in interval 〈dlow

t , dup
t 〉

Distance values in HR and PD are scaled into the interval 〈dlow
t , dup

t 〉 as
1-byte approximations. Using 1-byte approximations, the storage savings are
considerable. As an example, for phr = 50 together with using 4-byte distances,
the HR arrays stored in an inner node having capacity 30 entries will consume
30 · 50 · 2 · 4 = 12000 bytes, while by using 1-byte approximations the HR arrays
will take only 30 · 50 · 2 · 1 = 3000 bytes.

The intervals 〈dlow
t , dup

t 〉 assigned to the pivots Pt are stored, together with
the pivots, in the pivot file.
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5.3 Query Processing

Before processing a similarity query, the distances d(Q,Pt), ∀t ≤ max(phr, ppd),
have to be computed. During query processing, the PM-tree hierarchy is tra-
versed down. Only if the metric region, described by a routing entry rout(Oi),
is overlapping the query region (Q, rQ), the covering subtree T (Oi) is relevant to
the query, and thus it has to be further processed. A routing entry is relevant
to the query just in case, that the query region overlaps all the hyper-rings rep-
resented by HR. Hence, prior to the standard hyper-sphere overlap check (used
by M-tree), the overlap of hyper-rings HR[t] against the query region is checked2

(considering Lemma 5.2 and the definition of HR array) as follows:

phr∧
t=1

d(Q,Pt)− rQ ≤ HR[t].max ∧ d(Q,Pt) + rQ ≥ HR[t].min (5.1)

If the above condition is false, the subtree T (Oi) is not relevant to the query, thus
can be discarded from further processing. In Figure 5.4 a range query situation
is illustrated. Although the M-tree metric region cannot be discarded (see Figure
5.4a), the PM-tree region can be safely discarded, because the hyper-ring HR[2]
is not overlapped (see Figure 5.4b).

Note: The condition (5.1) is only a necessary condition, it does not guarantee
that a query region overlapping all the hyper-rings and the hyper-sphere is over-
lapping also the PM-tree region. Actually, the ”geometric” shape of PM-tree
region cannot be determined, since it is dependent on a particular metric d. The
condition (5.1) is a sufficient condition just for a point query (Q, 0).

Example 5.4

In Figure 5.6a see an intersection of two L2-hyper-rings and a L2-hyper-sphere.
Even though the query region overlaps both the hyper-rings and the hyper-sphere,
it does not overlap the intersection. On the other side, in Figure 5.6b see an inter-
section of two L∞-hyper-rings and a L∞-hyper-sphere, having the same properties
as in the former case (the same values in HR, rOi

, rQ). Now, the query region
overlaps also the intersection.

Nevertheless, the negation of overlap condition (5.1) can be used as a sufficient
condition, that a query region does not overlap the PM-tree region.

At the leaf level, an irrelevant ground entry is determined such that the fol-
lowing condition is not satisfied:

ppd∧
t=1

|d(Q,Pt)− PD[t]| ≤ rQ (5.2)

2Note that no additional distance computation is needed.
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Figure 5.6 (a) Query region not overlapping the PM-tree region
(b) Query region overlapping the PM-tree region

The condition (5.2) provides the same functionality for the ground entries in
PM-tree leaves, as is provided by LAESA-like filtering for the entire dataset S.

5.3.1 Range Query Processing

The conditions (5.1) and (5.2) can be integrated into the original M-tree’s range
query as well as k-NN query algorithms. In case of range query, the adjustment
is straightforward, see Listing 5.1.

The range query algorithm is executed by RangeQuery method, which must
initially precompute the distances between Q and all of the pivots Pt. The re-
cursive range query algorithm itself is subsequently executed by method Range-
QueryRec. The operations HROverlap and PDOverlap provide the functionality
of condition (5.1) and (5.2), respectively.

Listing 5.1 (PM-tree range query algorithm)

QueryResult RangeQuery(RQuery (Q, rQ))
{

let dist be an array of max(phr, ppd) floats
for t=1 to max(phr, ppd) do /* compute distances of Q to all pivots Pt */

dist[t] = d(Pt, Q)
return RangeQueryRec(root, (Q, rQ), dist)

}
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QueryResult RangeQueryRec(Node N , RQuery (Q, rQ), float[] dist)
{

let Op be the parent routing object of N
if N is not a leaf then {

for each rout(Oi) in N do {
if |d(Op, Q)− d(Oi, Op)| ≤ rQ + rOi then { /* application of Lemma 3.2 */

if HROverlap(HR, dist, rQ) then { /* application of condition (5.1) */
compute d(Oi, Q)
if d(Oi, Q) ≤ rQ + rOi then /* application of Lemma 3.1 */

RangeQueryRec(ptr(T (Oi)), (Q, rQ))
}

}
} /* for each ... */

} else {
for each grnd(Oi) in N do {

if |d(Op, Q)− d(Oi, Op)| ≤ rQ then { /* application of Lemma 3.2 */
if PDOverlap(PD, dist, rQ) then { /* application of condition (5.2) */

compute d(Oi, Q)
if d(Oi, Q) ≤ rQ then

add Oi to the query result
}

}
} /* for each ... */

}
} /* RangeQueryRec */

boolean HROverlap(HRarray HR, float[] dist, float rQ)
{

for t=1 to phr do
if dist[t] − rQ > HR[t].max OR dist[t] + rQ < HR[t].min then /* by Lemma 5.2 */

return false
return true

}

boolean PDOverlap(float[] PD, float[] dist, float rQ)
{

for t=1 to ppd do
if |dist[t] − PD[t]| > rQ then

return false
return true

}
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5.3.2 Nearest Neighbours Query Processing

In [99] we have proposed an optimal k-NN query algorithm for the PM-tree. We
have modified the M-tree’s k-NN query algorithm by revisiting the lower-bound
distance dmin and the upper-bound distance dmax.

The requests [ptr(T (Oi)), dmin(T (Oi))] in PR queue represent the still relevant
subtrees T (Oi), i.e. such subtrees, the parent metric regions of which overlap the
dynamic query region (Q, rQ). In the case of a PM-tree region, the lower-bound
distance is further increased using the hyper-rings HR[t] as follows:

dmin(T (Oi)) = max{0, d(Oi, Q)− rOi
, dlow

HRmax, d
low
HRmin}

dlow
HRmax = max

phr⋃
t=1

{d(Pt, Q)− HR[t].max}

dlow
HRmin = max

phr⋃
t=1

{HR[t].min− d(Pt, Q)}

where dlow
HR = max{dlow

HRmax, d
low
HRmin} determines the lower-bound distance be-

tween the query object Q and objects located in the farthest hyper-ring. In other
words, when compared to M-tree’s k-NN algorithm, the lower-bound distance
dmin(T (Oi)) for a PM-tree region could be correctly increased due to the hyper-
rings. The adjusted lower-bound distance dmin guarantees the property, that met-
ric region of each request in PR always overlaps the dynamic query region (Q, rQ).

The entries [oid(Oi), d(Q,Oi)] or [−, dmax(T (Oi))] in NN array represent the
current k candidates for nearest neighbours (or at least upper-bound distances
of the still relevant subtrees). In the case of a subtree T (Oi), the upper-bound
distance dmax(T (Oi)) can be further decreased by means of the hyper-rings HR[t]
as follows:

dmax(T (Oi)) = min{d(Oi, Q) + rOi
, dup

HR}

dup
HR = min

phr⋃
t=1

{d(Pt, Q) + HR[t].max}

where dup
HR determines the upper-bound distance between the query object Q and

objects located in the nearest hyper-ring.
The PM-tree’s k-NN query algorithm, presented in Listing 5.2, is similar to

that one presented for M-tree in Listing 3.2. The PM-tree version of the k-NN
algorithm is adjusted similarly like the PM-tree range query algorithm:

• Initially, the distances between Q and all the pivots Pt have to be precom-
puted.
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• Prior to each hyper-sphere overlap check, a hyper-rings overlap check (i.e.
application of condition (5.1)) is performed.

• Another difference between the M-tree’s and PM-tree’s k-NN algorithms
is in the construction of dmax(T (Oi)) and dmin(T (Oi)) bounds, but the
construction is not specified in the listing explicitly.

Listing 5.2 (PM-tree k-NN query algorithm)

NodeSearch(Node N , kNNQuery (Q, k))
{

let Op be the parent routing object of node N , let dist be array of max(phr, ppd) floats
for t=1 to max(phr, ppd) do /* compute distances of Q to all pivots Pt */

dist[t] = d(Pt, Q)
if N is an internal node then {

for each rout(Oi) in N do {
if |d(Op, Q)− d(Oi, Op)| ≤ rQ + rOi then { /* application of Lemma 3.2 */

if HROverlap(HR, dist, rQ) then { /* application of condition (5.1) */
compute d(Oi, Q)
if dmin(T (Oi)) ≤ rQ then {

insert [ptr(T (Oi)), dmin(T (Oi))] to PR
if dmax(T (Oi)) < rQ then {

rQ = NNUpdate([−, dmax(T (Oi))])
remove from PR all requests for which dmin(T (Oi)) > rQ

}
} /* if dmin( ...*/

}
}

} /* for each ...*/
} else { /* N is a leaf */

for each grnd(Oi) in N do {
if |d(Op, Q)− d(Oi, Op)| ≤ rQ then { /* application of Lemma 3.2 */

if PDOverlap(PD, dist, rQ) then { /* application of condition (5.2) */
compute d(Oi, Q)
if d(Oi, Q) ≤ rQ then {

rQ = NNUpdate([oid(Oi), d(Oi, Q)])
remove from PR all requests for which dmin(T (Oi)) > rQ

}
}

}
} /* for each ...*/

}
}
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Theorem 5.1

The PM-tree’s k-NN query algorithm kNNQuery is optimal in I/O costs, be-
cause it only accesses those PM-tree nodes, the metric regions of which over-
lap the query region (Q, d(Q,NN[k].dmax)). In other words, the I/O costs of a
PM-tree k-NN query (Q, k) and I/O costs of the equivalent PM-tree range query
(Q, d(Q,NN[k].dmax)) are the same.

Proof: The proof is identical to that of Theorem 3.1. The only difference is the
way, in which dmax(T (Oi)) and dmin(T (Oi)) distance bounds are constructed. �

Example 5.5

In Figure 5.7 see an example of a 2-NN query processing. The PM-tree hierarchy
is the same as the M-tree hierarchy presented in Example 3.4, but the query
processing behaves a bit differently. Although in this example both the M-tree’s
and the PM-tree’s k-NN query algorithms access 4 nodes, searching the PM-tree
saves one insertion into the PR queue.
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Figure 5.7 Example of a 2-NN query processing in PM-tree
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5.4 Building the PM-tree

The PM-tree is constructed the same way as is constructed the M-tree, i.e. the
hyper-ring information stored in nodes is not used for an optimization of PM-tree
hierarchy. Although, involvement of such an information into the construction
algorithms is a subject of our future work.

In order to keep the HR and PD arrays up-to-date, the original M-tree con-
struction algorithms [80, 98] have to be adjusted. We have to mention that the
adjusted algorithms still preserve logarithmic time complexity.

5.4.1 Object Insertion

After a data object Oi is inserted into a leaf, the HR arrays of all routing entries
in the insertion path are updated by values d(Oi, Pt), ∀t ≤ phr. In case of the leaf
in the insertion path, the PD array stored in the new ground entry is populated
by values d(Oi, Pt),∀t ≤ ppd.

Listing 5.3 (dynamic object insertion into PM-tree)

Insert(Object Oi)
{

let N be the root node, let dist be an array of max(phr, ppd) floats
for t=1 to max(phr, ppd) do /* compute distances of Oi to all pivots Pt */

dist[t] = d(Pt, Q)
TargetLeaf = FindLeaf(N ,Oi)
store ground entry grnd(Oi) in the TargetLeaf where PD = dist
update HR arrays of all the parent routing entries of TargetLeaf by values stored in dist
if TargetLeaf is overfull then

Split(TargetLeaf)
}

A particular FindLeaf method (searching for an optimal leaf whereto insert the
object Oi) is the same as for insertion into the M-tree (see Chapters 3,4).

5.4.2 Node Splitting

After a node is split, a new HR array for the left new routing entry is created by
merging all appropriate intervals HR[t] (or computing HR in case of a leaf split)
stored in routing entries (ground entries respectively) of the left new node. A new
HR array for the right new routing entry is created similarly. These particular
algorithmic modifications are to be integrated into the Partition operation used
by the Split method, as presented in Listing 3.5.
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5.5 Selecting the Pivots

The methods of selecting an optimal set of pivots have been intensively studied
[90, 7, 28, 25] while, in general, we can say that a set of pivots is optimal, such
that distances among pivots are maximal (close pivots give almost the same
information), and the pivots are located outside the data clusters.

In the context of PM-tree, the optimal set of pivots causes that the hyper-
spherical region is effectively ”chopped off” by hyper-rings, such that the small-
est overall volume of PM-tree regions (considering the volume of intersection of
hyper-rings and the hyper-sphere) is obtained.

Example 5.6

In Figure 5.8 see two selections of pivots. In the first situation (Figure 5.8a), the
pivots are close to each other, and both are located near the data clusters, thus
appropriate hyper-rings do not reduce the hyper-spheres effectively. In the second
situation (Figure 5.8b), the pivots are distant and outside the data clusters. In
the second case, the hyper-spheres are reduced by hyper-rings more effectively.

Figure 5.8 Pivot selection: (a) Not optimal (b) Optimal

5.5.1 Pivot Selection Methods

We briefly describe four heuristics of pivot selection. For two of them (proposed
in [25]), an efficiency criterion µD has been introduced, measuring a quality of
the selected pivots Pt, t ≤ p. The criterion µD is estimated as the variance of
distance distribution, considering distances d(Pt, Oi),∀Oi ∈ S, t ≤ p, where the
set of pivots Pt is fixed. In other words, when a high µD is achieved, each of the
pivots Pt views the dataset from another ”side”. In context of PM-tree, a set of
pivots with high µD allows to chop off the hyper-spherical regions effectively.
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Random Selection

A simple method, denoted as Random, selects p pivots from the dataset S at
random. This cheap method is suitable especially when searching in intrin-
sically high-dimensional datasets (for definition of intrinsic dimensionality see
Chapter 6), where it practically does not matter which pivots are selected.

A more sophisticated method RandomNgroups chooses N groups of p pivots at
random. For each of the groups, the criterion µD is calculated so that the group
is selected, for which the µD value is maximal.

A cheaper variant of the previous method, denoted as RandomNmax, chooses
N groups of p pivots at random. The group is selected, for which the sum of
distances among pivots is maximal.

Incremental Selection

A pivot P1 is selected from a sample of N objects of the dataset, such that the
pivot alone has the maximum µD value. Then, a second pivot P2 is chosen from
another sample of N objects, such that set {P1, P2} has the maximum µD value,
considering P1 fixed. The third pivot P3 is chosen from another sample of N
objects, such that {P1, P2, P3} has the maximum µD value, considering P1 and
P2 fixed. The process is repeated until p pivots have been selected.

5.5.2 Selecting Pivots for the PM-tree

We can select the set of pivots in two ways, either statically or dynamically:

1. Static selection
The pivots are sampled from the dataset S right before the PM-tree con-
struction is started. However, such a selection requires the dataset to be
available (at least partially) in advance.

2. Dynamic selection
If the dataset is not available in advance, the pivots can be collected dy-
namically, being selected from the first k objects inserted into the PM-tree.

The HR and PD arrays are not utilized (keeping them empty) until the
k-th object is inserted into the PM-tree. Then, p pivots are selected among
the k already indexed objects, and the HR and PD arrays are recomputed.
Similarly, the pivot histograms used for the 1-byte approximation of object-
to-pivot distances (see Section 5.2.1) can be recomputed after insertion of
a sufficiently large number of objects. The usage of dynamic selection of
pivots makes the PM-tree a completely dynamic MAM.

Note: Suppose the objects of S are inserted into PM-tree in a random order.
Then pairwise distances among dynamically selected pivots will be similar to the
distances among pivots selected statically using the Random method.
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5.5.3 Re-pivoting

Since the structure of PM-tree hierarchy is not dependent on the particular se-
lection of global pivots, the set of pivots can be replaced by a more optimal one
(the PM-tree is ”re-pivoted”), achieving smaller region volumes and thus a higher
retrieval efficiency. Then, since the pivots Pt have been replaced, the leaves of
PM-tree have to be traversed, so that for each ground entry its PD array is recom-
puted as well as the HR arrays of all the parent routing entries. The re-pivoting
can be suitable:

• when a more optimal set of pivots can be determined, e.g. when a larger
part of the dataset is available

• after an application of the M-tree’s slim-down algorithm (see Section 4.1),
which does not keep the HR and PD arrays up-to-date

Example 5.7

In Figure 5.9a see PM-tree regions reduced by two hyper-rings centered in pivots
P1 and P2. Since a more optimal pair of pivots is available, the PM-tree is
re-pivoted, achieving smaller volumes of regions A,B,D,II., see Figure 5.9b.

Figure 5.9 PM-tree regions: (a) Before re-pivoting (b) After re-pivoting

5.6 Cost Models

In this section, we present node-based and level-based cost models for query pro-
cessing in PM-tree, allowing to predict the search costs. Since PM-tree is an
extension of M-tree, we have extended the original cost models developed for
M-tree [38]. Like M-tree cost models, also the PM-tree cost models are condi-
tioned by the following assumptions:

• The only information used is the distance distribution of objects in a given
dataset, because no information about data distribution is known.
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• A biased query model is considered, i.e. the distribution of query objects
is equal to that of data objects.

• The dataset S is supposed to have high ”homogeneity of viewpoints” (for
details we refer to [38, 80]).

The basic tool used in the cost models is a probability, that two hyper-spheres
overlap, i.e.

Pr{spheres (O1, rO1) and (O2, rO2) overlap} = Pr{d(O1, O2) ≤ rO1 + rO2}

where O1, O2 are center objects and rO1 , rO2 are covering radii of the hyper-
spheres. For this purpose, the overall distance distribution function is used, de-
fined as:

F (x) = Pr{d(Oi, Oj) ≤ x},∀Oi, Oj ∈ U
and also the relative distance distribution function is used, defined as:

FOk
(x) = Pr{d(Ok, Oi) ≤ x}, Ok ∈ U,∀Oi ∈ U

For an approximate F or FOk
evaluation, a set O of s objects Oi ∈ S is sampled.

A value of F is computed using the s × s matrix of pairwise distances between
objects in O. For evaluation of function FOk

, only the vector of s distances
d(Oi, Ok) is needed.

5.6.1 Node-based Cost Model

In the node-based cost model (NB-CM), a probability of access to each PM-tree
node is predicted. Basically, a node N is accessed if its metric region (described
by the parent routing entry of N) overlaps the query hyper-sphere (Q, rQ):

Pr{node N is accessed} = Pr{metric region of N is overlapped by (Q, rQ)}

Specifically, a PM-tree node N is accessed if all the components of its metric region
(i.e. the hyper-sphere and phr hyper-rings) overlap the query hyper-sphere:

Pr{N is accessed} =

= Pr{hyper-sphere is overlapped} ·
phr∏
t=1

Pr{t-th hyper-ring is overlapped}

and finally (for a query radius rQ and the parent routing entry rout(Oi) of N)

Pr{N accessed} ≈ F (rOi
+rQ)·

phr∏
t=1

FPt(HROi
[t].max+rQ)·(1−FPt(rQ−HROi

[t].min))

In order to determine the estimated I/O costs for a range query, it is sufficient
to sum the above probabilities over all the m nodes Ni in the PM-tree:
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nodesNB(RQ(Q, rQ)) =
∑m

i=1 Pr{node Ni is accessed} =

=
m∑

i=1

F (rOi
+ rQ) ·

phr∏
t=1

FPt(HROi
[t].max + rQ) · (1− FPt(rQ − HROi

[t].min))

The computation costs3 are estimated considering the probability that a node is
accessed, multiplied by the number of its entries, e(Ni), thus obtaining

distsNB(RQ(Q, rQ)) =

=
m∑

i=1

e(Ni) ·F (rOi
+ rQ) ·

phr∏
t=1

FPt(HROi
[t].max+ rQ) · (1−FPt(rQ−HROi

[t].min))

In order to formulate cost models for k-NN queries, it is sufficient to estimate the
distance between Q and the k-th nearest neighbour, and apply the distance as a
query radius to the range query cost models.

Let nnQ,k be a random variable, standing for the distance between the k-th
nearest neighbour and Q. The probability that nnQ,k is at most r, is equal to
the probability that at least k objects are inside the hyper-sphere (Q, r), that is

PQ,k(r) = Pr{nnQ,k ≤ r} =

=
n∑

i=k

(
n

i

)
·Pr{d(Q,Oj) ≤ r}i ·Pr{d(Q, Oj) > r}n−i ≈

≈ 1−
k−1∑
i=0

(
n

i

)
· F (r)i · (1− F (r))n−i

The expected k-th nearest neighbour distance E[nnQ,k] is computed by inte-
gration of PQ,k(r) over all r values, and subtracting it from the upper-bound
distance d+:

E[nnQ,k] = d+ −
∫ d+

0

PQ,k(r) dr

In order to determine the estimated I/O costs for a k-NN query, the estimated
k-NN distance E[nnQ,k] is applied to the range query cost model as the query
radius:

nodesNB(NN(Q, k)) = nodesNB(RQ(Q,E[nnQ,k]))

The estimated computation costs for a k-NN query are determined similarly:

distsNB(NN(Q, k)) = distsNB(RQ(Q,E[nnQ,k]))

3Optimizations utilizing the precomputed distances (see Section 3.1) are not considered here.
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5.6.2 Level-based Cost Model

The problem with NB-CM is that maintaining statistics for every node is very
time consuming when the PM-tree index is large. To overcome this, we consider a
simplified level-based cost model (LB-CM), which uses only average information
collected for each level of the PM-tree. For each level l of the tree (l = 0 for the
root level, l = h − 1 for the leaf level), LB-CM uses this information: ml (the
number of nodes at level l), rl (the average value of covering radius considering
all the nodes at level l), HRl[i].min and HRl[i].max (the average information
about hyper-rings considering all the nodes at level l). Given these statistics, the
number of nodes accessed by a range query can be estimated as

nodesLB(RQ(Q, rQ)) ≈

≈
h−1∑
l=0

ml · F (rl + rQ) ·
phr∏
t=1

FPt(HRl[t].max + rQ) · (1− FPt(rQ − HRl[t].min))

Similarly, we can estimate computation costs as

distsLB(RQ(Q, rQ)) ≈

≈
h−1∑
l=0

ml+1 · F (rl + rQ) ·
phr∏
t=1

FPt(HRl[t].max + rQ) · (1− FPt(rQ − HRl[t].min))

where mh
def
= n is the number of indexed objects.

The number of nodes accessed by a k-NN query can be estimated using LB-CM as

nodesLB(NN(Q, k)) = nodesLB(RQ(Q,E[nnQ,k]))

The estimated computation costs for a k-NN query can be estimated as

distsLB(NN(Q, k)) = distsLB(RQ(Q,E[nnQ,k]))

5.6.3 Experimental Evaluation

In order to evaluate accuracy of the presented cost models, we performed several
experiments on a synthetic dataset. The dataset consisted of 10,000 10-dimensional
tuples (embedded inside the unitary hyper-cube), uniformly distributed among
100 L2-spherical clusters of diameter d+

10
(d+ =

√
10). The labels ”PM-tree(x,y)”

in the graphs below are described in Section 5.7.
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Figure 5.10 Range queries: (a) Estimated I/O costs
(b) Estimated computation costs

Range Queries

The first set of experiments investigated the accuracy of estimated costs for range
queries. The range query selectivity (the average number of objects in the query
result) was set to 200. In Figure 5.10a we present the estimated I/O costs as
well as the real I/O costs, related to the increasing number of pivots used by the

PM-tree. The relative error (i.e. err = 1 − min(estimated costs,real costs)
max(estimated costs,real costs)

) of NB-CM
estimates was below 0.2. Surprisingly, the relative error of LB-CM estimates was
smaller than for NB-CM, below 0.15.

Figure 5.11 Range queries: (a) Estimated I/O costs
(b) Estimated computation costs
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The estimates of computation costs (see Figure 5.10b) were even more accurate
than for the I/O costs estimates, below 0.05 (for NB-CM) and 0.04 (for LB-CM).

In Figure 5.11 see the estimated and the real costs, according to the increasing
query selectivity. The relative error of NB-CM I/O costs estimates (see Figure
5.11a) was below 0.1. Again, the relative error of LB-CM estimates was very
small, below 0.02. The error of computation costs (see Figure 5.11b) was below
0.07 (for NB-CM) and 0.05 (for LB-CM).

k-NN Queries

The second set of experiments was focused on the accuracy of estimated costs for
k-NN queries. In Figure 5.12 the estimated I/O costs as well as the computation
costs are presented, according to the increasing number of neighbours.

Figure 5.12 k-NN queries: (a) Estimated I/O costs
(b) Estimated computation costs

We can observe that the estimated costs for k-NN queries were less accurate
than those for range queries. This was caused by the estimated distance E[nnQ,k]
to the k-th nearest neighbour, which was slightly underestimated. Hence, the I/O
costs were underestimated as well. The computation costs were overestimated as
a consequence of the fact, that k-NN query is not optimal in distance computa-
tions, while the k-NN query cost models are based on range query cost models.

5.7 Experimental Results

In order to evaluate the overall PM-tree performance, we present some results
of experiments made on large synthetic as well as real-world vector datasets. In
most of the experiments, the search efficiency of range queries and k-NN queries
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processing was examined. The query objects were randomly selected from the
respective dataset, while each particular query test consisted of 1000 queries of
the same query selectivity. In all experiments the Euclidean distance was used.
For selection of pivots Pt the static RandomNmax method (N = 10, 000) was used.

Abbreviations in Figures

Each label of form ”PM-tree(x,y)” stands for a PM-tree index, where phr = x
and ppd = y. A label ”<index> + SlimDown” denotes an index subsequently
post-processed using the generalized slim-down algorithm (see Section 4.1).

5.7.1 Synthetic Datasets

For the first set of experiments, a collection of 8 synthetic vector datasets of
increasing dimensionality (from D = 4 to D = 60) was generated. Each dataset
(embedded inside unitary hyper-cube) consisted of 100,000 D-dimensional tuples,
uniformly distributed among 1000 L2-spherical uniformly distributed clusters.
The diameter of each cluster was set to d+

10
, where d+ =

√
D. These datasets

were indexed by PM-tree (for various phr and ppd) as well as by M-tree. Some
statistics about the created indices are described in Table 5.1.

Figure 5.13 Construction costs: (a) I/O costs (b) Computation costs

Construction methods: SingleWay + minMAX RAD (+ SlimDown)
Dimensionalities: 4,8,16,20,30,40,50,60 Inner node capacities: 10 – 28

Index file sizes: 4.5 MB – 55 MB Leaf node capacities: 16 – 36
Pivot file sizes4: 2 KB – 17 KB Avg. node utilization: 66%

Node (disk page) sizes: 1 KB (D = 4, 8), 2 KB (D = 16, 20), 4 KB (D ≥ 30)

Table 5.1 PM-tree index statistics (synthetic datasets)
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Index Construction

Index construction costs (for 30-dimensional indices), according to the increas-
ing number of pivots, are presented in Figure 5.13. The I/O costs for PM-tree
indices with up to 16 pivots were similar to those for M-tree index (see Figure
5.13a). For PM-tree(128, 0) and PM-tree(128, 28) indices, the I/O costs were
about 1.4 times higher than those for the M-tree index. The increasing trend of
computation costs (see Figure 5.13b) depended mainly on the p object-to-pivot
distance computations performed during each object insertion – additional dis-
tance computations were needed after leaf splitting, in order to create HR arrays
of the new routing entries.

Range Queries

In Figure 5.14 the range query costs (for 30-dimensional indices and query selec-
tivity 50 objects) according to the number of pivots are presented. The I/O costs

Figure 5.14 Range queries: (a) I/O costs
(b) Computation costs

rapidly decreased with the increasing number of pivots. The PM-tree(128, 0) and
PM-tree(128, 28) indices needed only 27% of I/O costs spent by the M-tree in-
dex. Moreover, the PM-tree was superior even after the slim-down algorithm
post-processing, e.g. the ”slimmed” PM-tree(128, 0) index needed only 23% of
I/O costs spent by the slimmed M-tree index (and only 6.7% of I/O costs spent
by the not slimmed M-tree). The decreasing trend of computation costs was even
more steep than for I/O costs, the PM-tree(128, 28) index needed only 5.5% of
the M-tree computation costs.

4Access costs to the pivot files, storing pivots Pt and the scaling intervals for all pivots (see
Section 5.2.1), were not considered because of their negligible sizes.
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Figure 5.15 Range queries: (a) I/O costs
(b) Computation costs

The influence of increasing dimensionality D is depicted in Figure 5.15. Since
the disk page sizes for different indices grew with the increasing dimensionality,
the presentation of I/O costs as well as the computation costs of PM-tree indices is
related (in percent) to the I/O costs (CC resp.) of M-tree indices. For 8 ≤ D ≤ 40
the I/O costs stayed approximately fixed, for D > 40 they slightly increased.

Figure 5.16 20-NN queries: (a) I/O costs
(b) Computation costs
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k-NN Queries

Since the k-NN algorithm is optimal in I/O costs, the results for k-NN queries
are similar to those for range queries. In Figure 5.16 the 20-NN query costs (for
30-dimensional indices) according to the number of pivots are presented. The
I/O costs as well as the computation costs rapidly decreased with the increasing
number of pivots. The influence of increasing D is depicted in Figure 5.17.

Figure 5.17 20-NN queries: (a) I/O costs
(b) Computation costs

5.7.2 Image Database

For the second set of experiments, a collection of approximately 10,000 web-
crawled images [109] was used (see a sample in Figure 5.18). Each image was
converted into a 256-level gray scale, and a gray frequency histogram (256-
dimensional vector) was extracted and indexed. See the statistics about image
indices in Table 5.2.

Construction methods: SingleWay + minMAX RAD (+ SlimDown)
Dimensionality: 256 Inner node capacities: 10 – 31
Index file sizes: 16 MB – 20 MB Leaf node capacities: 29 – 31
Pivot file sizes: 4 KB – 1 MB Avg. node utilization: 67%

Node (disk page) size: 32 KB

Table 5.2 PM-tree index statistics (image database)

Range Queries

In Figure 5.19 the range query costs (for query selectivity 20 objects) according
to increasing number of pivots are presented. We can observe that e.g. the
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Figure 5.18 A sample of WBIIS image database

”slimmed” PM-tree(1024,50) index consumed only 42% of I/O costs spent by
the slimmed M-tree index, see Figure 5.19a. The computation costs (see Figure
5.19b) for p ≤ 64 decreased down to 36% of M-tree computation costs.

Figure 5.19 Range queries: (a) I/O costs
(b) Computation costs

However, for p > 64 the overall computation costs grew, because the num-
ber of computed query-to-pivot distances (i.e. p distance computations for each
query) was proportionally too large. Nevertheless, this fact is dependent on the
database size – for 100,000 objects the proportion of p query-to-pivot distance
computations would be smaller, when compared to the overall computation costs.
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The range query costs according to increasing selectivity are presented in
Figure 5.20. The I/O costs stayed below 73% of M-tree I/O costs (below 58% in
case of slimmed indices). The computation costs stayed below 43% (49% resp.).

Figure 5.20 Range queries: (a) I/O costs (b) Computation costs

k-NN Queries

In Figure 5.21 the k-NN query costs for increasing number of pivots are presented.
Again, the results were similar to those for range queries. The query costs ac-

Figure 5.21 20-NN queries: (a) I/O costs (b) Computation costs

cording to increasing number of nearest neighbours are presented in Figure 5.22.
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Figure 5.22 20-NN queries: (a) I/O costs (b) Computation costs

Range Queries vs. k-NN Queries

In the last experiment, we examined the computation costs for 50-NN queries as
well as for the equivalent range queries of selectivity 50 objects. Since the k-NN
query algorithm is not guaranteed to be optimal in computation costs, the costs
for k-NN queries have been supposed to be a little higher than the costs of range
queries. As we can see in Figure 5.23, the hypothesis was fairly verified.

Figure 5.23 Range queries vs. k-NN queries – Computation costs

Moreover, an interesting trend of computation costs can be observed with re-
spect to the ratio of k-NN query costs to the range query costs. For PM-tree(0,0)
index (i.e. the M-tree index) the ratio was about 107%, while for the PM-tree(p,0)
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index the ratio was decreasing down to 101.4%.

5.7.3 Summary

The results of experiments, made on synthetic datasets and mainly on the im-
age database, have demonstrated the general benefits of PM-tree. The index
construction (object insertion respectively) is dynamic and still preserves the
logarithmic time complexity. For suitably high phr and ppd, the index size growth
is minor, which is true especially for high-dimensional datasets (e.g. for the
256-dimensional image dataset), where the size of pivoting information stored in
ground/routing entries is negligible when compared to the size of the data object
(i.e. the vector) itself. A particular (but not serious) limitation of the PM-tree
is that a part of the dataset must be known in advance for the static selection of
pivots, and when using object-to-pivot distance distribution histograms.

Furthermore, the PM-tree could serve as a constructionally much cheaper
alternative to the slim-down algorithm on M-tree – the above presented exper-
imental results have shown that the search efficiency of PM-tree (having suffi-
ciently high phr, ppd) is comparable or even better than an equivalent ”slimmed”
M-tree. Finally, a combination of PM-tree and the slim-down algorithm makes
the PM-tree a very efficient metric access method.

5.8 Future Work

In the future, we plan to adjust the dynamic insertion algorithm in a way that
also the hyper-ring information will be used for the decision about the optimal
target leaf choice. Such a modification should improve the quality of PM-tree
hierarchy, leading to a more efficient query processing.

Second, the above presented experimental results were performed on PM-trees,
where the entire dataset S was available before PM-tree construction. In order
to verify the strength of PM-tree as a completely dynamic MAM, there must be
designed and implemented various policies of selecting the pivots dynamically,
as it has been mentioned in Section 5.5. We also plan to examine another pivot
selection techniques, besides the RandomNmax method.
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Chapter 6

Approximate Similarity Search

In this part, we are concerned with metric access methods providing a kind
of approximate search. Unlike the exact MAMs (discussed in Chapter 2), the
approximate MAMs are aimed to efficiently search in a given dataset such that
a small proportion of false drops is allowed.

6.1 Motivation

In various areas of Information Retrieval, the models of similarity are inherently
inexact (or fuzzy) and, consequently, searching using a similarity measure is more
or less approximate. In order to evaluate the subjective effectiveness of IR models,
there are widely used two classifiers, the precision P and the recall R, defined for a
query Q and a dataset S as P =

RQ

AQ
, R =

RQ

RF
, where RQ is the number of relevant

objects in the query result, RF is the number of all relevant objects in the dataset
S, and AQ is the total number of objects in the query result. The parameters
RQ, RF are obviously subjective, i.e. assessed by human. In real applications,
the precision/recall values do never reach up to 100% while, moreover, the query
object Q itself is often a ”guess”. From this point of view, a second approximation
involved in the approximate search methods may be acceptable, since it can only
(slightly) lower the precision/recall values.

On the other side, in order to compensate the lack of inaccuracy, the ap-
proximate search methods are expected to be much more efficient than the exact
MAMs. Moreover, the approximate MAMs are sometimes the only efficient solu-
tion for searching in metric datasets, which are poorly intrinsically structured. In
this chapter we discuss just the approximate search in poorly structured datasets.

6.2 Intrinsic Dimensionality

A property common to all MAMs (either exact or approximate) is an ability to
recognize a kind of ”diversity” present within the indexed dataset. This diversity
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has to be transformed by a MAM into a metric index, that allows to discard
irrelevant parts of the dataset for a given query. However, if there is only a
low diversity present in the dataset, the exact MAMs fail in both creating the
structure and, mainly, in searching efficiently.

The diversity in metric dataset can be formalized by a concept of intrinsic di-
mensionality [32], a generalization of the classic topological (also called ”embed-
ding”) dimensionality into metric spaces. There have appeared several definitions
of intrinsic dimensionality (e.g. the fractal dimensionality [51]), however, we use
the concept [31] based on statistical analysis of distance distribution histogram.

Definition 6.1 (intrinsic dimensionality)

Let H be a distance distribution histogram of S (denoted also as d-DDH), con-
sidering distances d(Oi, Oj) between all pairs of objects Oi, Oj ∈ S. Then

ρ =
µ2

2σ2

is called the intrinsic dimensionality of dataset S. The µ and σ2 are the mean
and the variance of the distance distribution histogram H. �

Note: If all the pairs of indexed objects are almost equally distant, then intrinsic
dimensionality of S is high (i.e. the mean is high and the variance is low), which
means the dataset is poorly intrinsically structured.

Figure 6.1 DDHs indicating (a) low (b) high intrinsic dimensionality

Example 6.1

In Figure 6.1 see DDHs of two metric datasets. We can observe that first dataset
is well structured, because variance of the distances is high – represented by the
wide bell in the histogram. On the other side, the intrinsic dimensionality of the
second dataset is high, because the variance of distances is low – reflected by the
narrow bell in the histogram. Generally, the more narrow and/or right-shifted is
the bell in histogram, the higher is also intrinsic dimensionality of S.
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6.2.1 Curse of Dimensionality

In the area of multi-dimensional indexing, the spatial access methods suffer from
a similar problem, known as curse of dimensionality [18, 32], causing that exact
SAMs become inefficient for searching in high-dimensional1 vector datasets. In-
stead of general metric search in D-dimensional spaces, most of the SAMs have
been developed to support window queries , through which a vector dataset can be
searched for objects located inside a hyper-rectangle [a1, a2, ..., aD][A1, A2, ..., AD].
However, processing a window query is equivalent to processing a metric range
query, where the metric is a weighed L∞ distance, thus we can think those SAMs
as special MAMs. Consequently, the curse of dimensionality can be considered
as a special case of the problem of high intrinsic dimensionality.

In case of vector datasets, the intrinsic dimensionality negatively depends
on the correlations among coordinates of vectors in the dataset. The intrinsic
dimensionality ρ can reach up to the value of the classic dimensionality D, i.e.
ρ ≈ D, which is the case of uniformly distributed vector datasets.

The curse of dimensionality is apparent even in real-world datasets, where
the (groups of) coordinates are correlated. However, in such cases the intrinsic
dimensionality is lower, it is affected by the number of independent coordinates.

Example 6.2

Let us show how the classic dimensionality D influences the distance distribution
and, hence, the intrinsic dimensionality. For simplicity, we choose L1 metric and,
furthermore, we consider a dataset of vectors where the coordinate values are all
independent and uniformly distributed over interval 〈0, k〉 of integers.

The distribution of i-th coordinate of a vector O1 can be represented by a
random variable ui. Similarly, a random variable vi can represent the distribution
of i-th coordinate of a vector O2. Then L1 distance between two randomly chosen
vectors O1 and O2 is defined as L1(O1, O2) =

∑D
i=1 |ui − vi|.

For D = 1 the distance distribution of L1(O1, O2) is not uniform. The proba-
bility of zero distance is the same as probability of the mean distance. Otherwise,
the greater distance, the lower probability (the less occurrences in distance distri-
bution histogram). Specifically, the probability that |u1− v1| = 1 is higher than
probability that |u1 − v1| = 2 which is higher than probability that |u1−v1| = 3
and so on. Thus, for D = 1 the most probable distance is 1, while the least
probable distance is k.

For D > 1 the distance L1(O1, O2) is a sum of D 1-dimensional distances
|ui − vi|. The effect of adding the 1-dimensional distances is similar to creating
an average 1-dimensional distance, having D attempts for sampling the most
”representative” 1-dimensional distance. The higher dimensionality D, the more
attempts and the stronger influence of distance averaging reflected by a more

1As high-dimensional we usually consider datasets with dimensionality D ≥ 20 [18].
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right-shifted and more narrow bell in the distance distribution histogram. In
Figure 6.1a see L1-DDH for a 2D dataset, in Figure 6.1b see L1-DDH for a 30D
dataset. Finally, for D → ∞ the distance L1(O1, O2) between two randomly
chosen vectors O1, O2 statistically tends to a single value (but infinite).

6.2.2 Intrinsic Dimensionality and MAMs

In order to demonstrate the effects of high intrinsic dimensionality on exact
MAMs, we have to consider the following properties of high-dimensional datasets2:

1. All objects in the dataset are almost equally distant from each other, i.e.
only such triplets (Oi, Oj, Ok) occur, that d(Oi, Oj) ≈ d(Oj, Ok) ≈ d(Oi, Ok).

2. Distance of Q’s nearest neighbour is similar to distance of its farthest neigh-
bour.

3. Query radius of any reasonable range query (having selectivity at least one
object except Q) is very large, it is close to query radius covering all the
objects.

Considering the above mentioned observations, we can demonstrate the be-
haviour of LAESA and M-tree, when a high-dimensional dataset has to be searched.

LAESA

For a high-dimensional dataset, the distance distribution histogram related to an
arbitrary pivot Pt (i.e. considering d(Pt, Oi),∀Oi ∈ S) is similar to the overall
distance distribution histogram (i.e. considering d(Oi, Oj),∀Oi, Oj ∈ S).

Given a pivot Pt, all the objects in S are located inside a ”virtual” hyper-
ring region (Pt, min(d(Pt, Oi)), max(d(Pt, Oi))), where min(d(Pt, Oi)) is distance
to the nearest neighbour of Pt, and max(d(Pt, Oi)) is distance to the farthest
neighbour of Pt. Due to the above mentioned observations, the hyper-ring region
is very thin, because min(d(Pt, Oi)) ≈ max(d(Pt, Oi)). Since the distribution
of query objects is assumed to be equal to the distribution of data objects, an
arbitrary query object Q will be located inside the hyper-ring region as well.

However, for any reasonable range query (Q, rQ) the query radius rQ is large,
rQ = min(d(Q,Oi)) ≈ min(d(Pt, Oi)). On the other side, the width of hyper-ring
max(d(Pt, Oi))−min(d(Pt, Oi)) is far smaller than rQ.

As a consequence, the interval 〈min(d(Pt, Oi)), max(d(Pt, Oi))〉 is entirely
nested inside the interval 〈d(Pt, Q) − rQ, d(Pt, Q) + rQ〉, thus no elimination of
objects can be performed by LAESA (even when many pivots are used), and all
the objects must be directly compared against Q, see Figure 6.2a.

2In the following we think ”high-dimensional” as ”intrinsically high-dimensional”.
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Figure 6.2 Effects of high intrinsic dimensionality (a) LAESA (b) M-tree

M-tree

In case of M-tree, the indexing of a high-dimensional dataset will lead to a hi-
erarchy of nodes, where almost all the metric regions are entirely overlapped.
Obviously, in order to process a range query in such an M-tree, all nodes have to
be accessed (see Figure 6.2b).

6.3 Related Work

Nowadays, an efficient search in high-dimensional datasets is feasible solely by us-
age of approximate methods. The approximate metric search is realized by either
approximately correct methods or probabilistic methods. Among many approaches
to the approximate search, in this section we outline several representative meth-
ods, that were applied to M-tree, LAESA and sequential search.

6.3.1 Approximately Correct Search

In [113] the authors have proposed three techniques of approximate search in
M-tree, differentiating in the way how to give up the query result precision for the
sake of improved search efficiency. The techniques were applied to k-NN search.

Relative Distance Error

The first technique3 of approximate k-NN search considers a user-defined relative
distance error ε ≥ 0. The error ε states that the distance between Q and an
approximation of k-th nearest neighbor Ok

A must be no more than (1 + ε) times

3A similar approach, but oriented to BBD-trees, was proposed in [5].
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farther, than the real k-th nearest neighbour Ok
N , i.e. d(Q,Ok

A) ≤ (1+ε)d(Q,Ok
N).

Then Ok
A is called the (1 + ε) k-th nearest neighbour.

In order to provide approximate search, the k-NN query algorithm of M-tree
(described in Section 3.2.2) is adjusted in a way that query radius r′Q, used for
discarding irrelevant regions from PR queue, is 1+ε times smaller than the proper
dynamic query radius rQ (i.e. r′Q = rQ/(1+ε)). Due to the faster reduction of the
dynamic query radius r′Q, the entries of PR queue are discarded more frequently,
which leads to an earlier termination of the whole k-NN query processing, as is
shown in the following example.

Example 6.3

In Figure 6.3 see a situation of 1-NN query processing, right after the node B was
processed, and its entry removed from the PR queue. The new NN candidate is
now O4. Although the dynamic query region (Q, rQ) overlaps the region of node A
(containing the real nearest neighbour O2), the (1+ε)-reduced ”discarding region”
(Q, r′Q) does not overlap A, thus A’s entry is removed from PR queue. In the
next step, the node C is processed as the last relevant entry remaining in the PR
queue.

Figure 6.3 Approximate k-NN search in M-tree using relative dist. error

Distance Distribution

The second technique proposed in [113] is a usage of distance distribution FQ(x)
(as described in Section 5.6) for approximate k-NN search. More specifically,
FQ(x) represents the fraction of objects in the dataset, for which the distance to
Q is less than or equal to x. Provided there are n objects in the dataset, n ·FQ(x)
objects should have distance to Q not greater than x.

Given a k-NN candidate Ok
A, FQ(d(Q,Ok

A)) determines the fraction of the best
approximations of k-NN. In other words, there are estimated n · FQ(d(Q,Ok

A))
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k-th nearest neighbour candidates that are better (closer) than Ok
A. Such a

property can be easily exploited for the approximate k-NN search. Given a user-
defined threshold ρ ∈ 〈0, 1〉, we retrieve k objects among those belonging to the
fraction ρ of the best k-NN approximations. The stop condition is defined as
FQ(d(Q, Ok

A)) ≤ ρ, and used in the k-NN algorithm to terminate the search,
possibly before the real nearest neighbours are found.

Slowdown of Distance Improvements

The third approximation heuristic proposed in [113] stops the k-NN algorithm
processing as soon as the intermediate results in NN array change only slowly.
In such cases, most of the k-NN algorithm runtime is spent on negligible changes
in NN array, where d(Q, Ok

A) = NN[k].dmax is changing even slower.

Assume a strictly decreasing continuous function f : R+
0 7→ {d(Q, Ok

A)} rep-
resenting, in a time t ∈ R+

0 , the distance between Q and the current k-NN
candidate Ok

A. The continuous time is approximated by the number of distance
computations, already performed during the k-NN algorithm running. Then, the
derivative f ′(t) represents the chance for finding a better k-NN candidate in a
given time t.

Finally, given a user-defined constraint κ > 0, we stop the k-NN algorithm
processing as soon as f ′(t) ≤ κ.

6.3.2 Probabilistic Search

Given a user-defined threshold δ ∈ 〈0, 1〉, the probabilistic methods search such
that probability of a false drop in query result is at most δ. The user can tune
the δ parameter in order to achieve an optimal efficiency/accuracy trade-off.

Probabilistic LAESA

A probabilistic approach to LAESA-like methods has been proposed in [32],
”stretching” the triangular inequality by a multiplier β ≥ 1. Specifically, the
filtering condition |d(Oi, Pt)− d(Q,Pt)| > rQ is stretched by β as:

β|d(Oi, Pt)− d(Q, Pt)| > rQ , i.e., |d(Oi, Pt)− d(Q, Pt)| >
rQ

β

The effect of stretching is visible in Figure 6.4, where for higher β the interval
〈d(Pt, Q)− rQ/β, d(Pt, Q) + rQ/β〉 gets smaller, thus a probability of discarding
an irrelevant object becomes higher. Unfortunately, the probability of a false
drop becomes higher as well.
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Figure 6.4 (a) Exact LAESA-like filtering, i.e. β = 1
(b) Approximate LAESA-like filtering, i.e. β > 1

In order to preserve a user-defined probability δ of a false drop, the upper-
bound for β is computed as (for details see [32])

β ≤
rQ

√
1− (1− δ)

1
p

√
2σ

where p is the number of pivots, and σ2 is variance of the dataset’s DDH.
In general, this approach is similar to the first technique for M-tree, presented

in Section 6.3.1 (replacing 1 + ε by β), but here the search accuracy β is upper-
bounded by a probability δ of a false drop.

PAC Queries

When searching in a high-dimensional dataset, even the approximately correct
methods often search inefficiently. In [35] the authors propose probably approx-
imately correct (PAC) nearest neighbour search, even more reducing the search
costs at the expense of only probabilistic search. The method extends the (1+ ε)
nearest neighbour search (presented in Section 6.3.1) by a user-defined confidence
parameter δ. The method searches so that the retrieved object is a (1+ε) nearest
neighbour with probability at least δ.

Given a distance distribution FQ(x), the distance rQ to the nearest neighbour
OA is estimated as δ-radius of Q, denoted rδ

Q, representing the maximum value
of distance from Q, for which the probability that there exists at least one object
Oi where d(Q, Oi) ≤ rδ

Q is not greater than δ. In other words, the δ-radius rδ
Q

guarantees that query region (Q, rδ
Q) is empty with probability at least δ. The

δ-radius is constructed as rδ
Q = G−1

Q (δ), where GQ(x) is distance distribution of
the nearest neighbour, given by GQ(x) = Pr{rQ ≤ x} = 1− (1−FQ(x))n, where
n is size of the dataset.
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The NN algorithm is enhanced by a stop condition, which terminates the NN
search if the distance to the current (1 + ε) NN candidate falls below rδ

Q. The
PAC-NN algorithm has been applied to M-tree as well as to sequential file index.

Recent Work

Recently, an approach [2] has been proposed, predicting a probability that inter-
section of a query region and a data region contains some indexed objects. If the
probability is lower than a user-defined threshold, the data region (e.g. M-tree
node) is not processed. The probability is predicted by means of region proximity,
computed using the dataset’s distance distribution.

Very recently, a method of probabilistic metric search based on compact par-
titions has been introduced in [24]. The idea is to fix in advance the limit of
distance computations allowed to answer a query. Moreover, an advanced ver-
sion exploits a ranking of the regions to be searched, so that the most promising
regions are processed at first.
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Chapter 7

Semi-metric Search

Recently, we have proposed [95, 97] an approach to approximate search, based
on a straightforward reduction of the dataset’s intrinsic dimensionality. The re-
duction is achieved by utilizing so-called semi-metric modifications of the original
metric, due to which the variance of distance distribution histogram is increased
and/or the mean is decreased.

7.1 Semi-metric Modifications

As a key tool, we define increasing modification df of an original metric d, pre-
serving the similarity ordering among objects as follows.

Definition 7.1 (increasing modification)

Given a metric d, we call a function df

df (Oi, Oj) = f(d(Oi, Oj))

the increasing modification of d, where f : 〈0, d+〉 → R+
0 , called modifying func-

tion, is a strictly increasing function for which f(0) = 0. �

Definition 7.2 (similarity ordering)

Let s : U× U → R+
0 be a similarity function (or a distance function). We define

a function SimOrder s : U → P(S× S) as

〈Oi, Oj〉 ∈ SimOrders(Q) ⇔ s(Oi, Q) < s(Oj, Q)

∀Oi, Oj ∈ S,∀Q ∈ U. In other words, the function SimOrder s orders the objects
of S according to the distances to a query object Q. �

Lemma 7.1

For a metric d and an increasing modification df , the following equality holds:

SimOrderd(Q) = SimOrderdf (Q),∀Q ∈ U

103
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Proof: ”⊂”: The function f is strictly increasing. If for each Oi, Oj, Ok, Ol ∈ U,
d(Oi, Oj) > d(Ok, Ol) holds then f(d(Oi, Oj)) > f(d(Ok, Ol)) must hold as well.
”⊃”: The second part of proof is similar. �

As a consequence of Lemma 7.1, if a query is processed sequentially (i.e. by
processing of all objects of the dataset S), then it does not matter if we use either
d or any df , because both of the ways will return the same query result.

Lemma 7.2

Let f be a modifying function. Then
(a) If f is subadditive (i.e. ∀x, y ∈ R+

0 , f(x) + f(y) ≥ f(x + y)), then f is
metric-preserving function [39], i.e. an increasing modification df is still
metric, considering any metric d.

(b) A strictly concave function f is metric-preserving.
(c) A convex (even partially convex) function f is not metric-preserving,

we call such function as metric-violating .

Proof: We refer to [39]. �

A modification df , where f is a metric-violating function, is generally a
semi-metric, i.e. a function satisfying all the metric axioms except the trian-
gular inequality. In such case, we call df a semi-metric modification of d.

Figure 7.1 (a) Metric-preserving functions (b) Metric-violating functions

Example 7.1

Let the maximal distance be d+ = π and Im(f) = 〈0, 1〉. In Figure 7.1a see sev-
eral concave (i.e. metric-preserving) functions, while in Figure 7.1b see (partially)
convex (i.e. metric-violating) functions.
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7.1.1 Clustering Properties

Let us discuss the clustering properties of modifications df (see also Figure 7.1).
Considering concave functions f , two objects Oi, Oj ∈ U close to each other
according to d(Oi, Oj) will be more distant according to df (Oi, Oj). Conversely,
for convex f the close objects according to d will be even closer according to df .

As a consequence, the concave modifications df have a negative influence
on clustering, since the object clusters become indistinct. On the other side,
the convex modifications df even more tighten the object clusters, making the
cluster structure of the dataset more evident. From another point of view, the
convex modifications increase the DDH’s variance (and/or decrease the mean),
decreasing the intrinsic dimensionality. Obviously, the semi-metric modifications
violate the original topology of d, we will discuss the violating properties in the
following section.

Figure 7.2 DDHs for 5-dimensional dataset, d = L2, f(x) = xε

(a) original metric d (df , ε = 1) (b) semi-metric df , ε = 3
2

(c) semi-metric df , ε = 4 (d) metric df , ε = 1
2
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Example 7.2

Consider a 5-dimensional uniformly distributed dataset embedded inside unitary
hyper-cube. The dataset’s L2-DDH is presented in Figure 7.2a. The Figures 7.2b
and 7.2c1 show the dataset’s df -DDHs, where df is semi-metric modification,
d = L2, f(x) = x

3
2 , f(x) = x4. In Figure 7.2d a DDH for metric modification df ,

f(x) =
√

x is shown.
Note that for a more convex f the bell in DDH is more left-shifted (the

decreased mean) and also more wide (the increased variance). Conversely, for a
concave f (i.e. metric modification df ) the bell in DDH is right-shifted and more
narrow.

As a consequence of the above mentioned clustering properties, the intrinsic
dimensionality is lower considering df -DDHs where f(x) = x

3
2 , f(x) = x4 and

higher for f(x) =
√

x.

7.1.2 Analysis of Metric-violating Functions

Although all convex functions are metric-violating, the functions can be differen-
tiated by their convexity. Generally, due to the convexity of modifying function
f , the distance distortion of df is more apparent for close objects than for dis-
tant objects. In other words, the original topology is more violated for the close
objects, which are even closer, but it is less violated for the distant objects.

Intuitively, the more convex a function f is, the more could one expect a
modification df will violate the triangular inequality. In order to quantify ”how
much” a particular modification df violates the triangular inequality, we inspect
which triangular triplets are preserved after an application of f , and which are
not.

Definition 7.3 (triangular triplet)

A triplet (a, b, c), where a, b, c ∈ 〈0, d+〉 are arbitrarily chosen distances, is called
triangular triplet iff a + b ≥ c ∧ b + c ≥ a ∧ a + c ≥ b. �

Given a metric d, any triplet (d(Oi, Oj), d(Oj, Ok), d(Oi, Ok)), Oi, Oj, Ok ∈
U is triangular triplet (which follows from the triangular inequality property).
Furthermore, given a metric-violating function f , some of the triplets are not
preserved by df , i.e. some triplets (f(d(Oi, Oj)), f(d(Oj, Ok)), f(d(Oi, Ok))) are
not triangular triplets. In the following definition we quantify the proportion of
triangular triplets preserved by df .

Definition 7.4 (triangle-violation error δf )

Let f be a strictly convex modifying function. Let Ω ⊂ 〈0, d+〉3 be a region con-
sisting of points representing all possible triangular triplets (a, b, c). Let Ωf ⊂ Ω

1In order to make the histogram more legible, the tall column at the right of Figure 7.2c
represents sum of frequencies of all remaining distances beyond d+.
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be a subregion consisting of points representing such triangular triplets (a, b, c)
for which also (f(a), f(b), f(c)) are triangular triplets. Then, for function f we
define the triangle-violation error δf as

δf = 1− V (Ωf )

V (Ω)

where V (Ωf ) is the volume of region Ωf and V (Ω) is the volume of region Ω. The
volume of Ω can be determined as

V (Ω) =

∫ d+

c=0

2d+c− 3

2
c2 dc =

d+3

2

i.e. the volume is one half of the cube 〈0, d+〉3. Since f is increasing, there must
exist an inverse function f−1, and the volume of Ωf can be determined as

V (Ωf ) = d+3−
∫ d+

c=0

∫ c

a=0

f−1(f(c)−f(a))da dc−2

∫ d+

c=0

∫ d+

a=c

f−1(f(a)−f(c))da dc

�

In other words, a modifying function f preserves (at least) a fraction 1 − δf

of all possible triangular triplets.

Example 7.3

Given a modifying functions of form f(x) = xε, ε ≥ 1 and d+ = 1, then V (Ω) = 1
2
,

while the volume of Ωf is

V (Ωf ) = 1−
∫ 1

c=0

∫ c

a=0

ε
√

cε − aε da dc− 2

∫ 1

c=0

∫ 1

a=c

ε
√

aε − cε da dc

Note that Ωf is really a subregion of Ω, which is achieved by the requirement
on strictly convex f (consider f(x) = xε). In Figures 7.3a–d see 4 c-cuts of Ω and
Ωf for different c and ε. In Figure 7.4a see the dependence between δf and ε.

Suppose a strictly concave function f is used (e.g f(x) =
√

x), then the
situation is inverse, Ω is a subregion of Ωf (see Figure 7.3e). This also means,
when a concave modifying function is used, that some triplets (a, b, c) are not
triangular, but their modifications (f(a), f(b), f(c)) are triangular triplets.

In case that only partially convex function f is used, the two previous situ-
ations are combined, i.e. the regions Ωf and Ω overlap such that Ωf * Ω and
Ω * Ωf (see Figure 7.3f). Generally, for partially convex functions the triangle-
violation error δf is useless, because Ωf and Ω are not nested regions, making

the volume ratio V (Ωf )
V (Ω)

insignificant.
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Figure 7.3 Triangular triplet regions Ω and Ωf , c-cuts for different c and ε
(a) – (d) Strictly convex modifying function f(x) = xε, ε ≥ 1
(e) Strictly concave modifying function f(x) =

√
x

(f) Partially convex modifying function f(x) =
(

1−cos(x)
2

)ε

, ε = 0.7

Moreover, the triangle-violation error is meaningful primarily for metrics gen-
erating all of the triangular triplets, e.g. the L2 metric. An example of metric
which does not generate e.g. triplets of form (a, b, a+ b), a, b > 0 is the ”normed”
L2 metric, i.e. NL2(v1, v2) = L2(

v1

||v1|| ,
v2

||v2||). Using NL2 the points are L2-normed

(i.e. projected onto the surface of a unitary L2-hyper-sphere) and then measured
by L2 metric, see Figure 7.4b.

7.2 Semi-metric Search in M-tree

The increasing modifications df can be utilized by MAMs, instead of the original
metric d. In order to preserve the selectivity of a range query (Q, rQ), the user-
defined query radius rQ must be modified to f(rQ).

We have utilized the semi-metric modifications for approximate search in
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Figure 7.4 (a) Delta-epsilon dependence (b) NL2 triangular triplet (a, b, c)

M-tree. Since in case of a semi-metric modification df the dataset is of lower
intrinsic dimensionality, the query processing in M-tree is more efficient because
of smaller overlaps among metric regions. On the other side, processing of semi-
metric queries introduces a probability of false drops (see the definition of relative
output error in Section 7.2.3), making the metric search only approximate.

Unfortunately, a usage of metric modifications for which a false drop cannot
occur is not beneficial, because their clustering properties are worse and the
overlaps among metric regions in M-tree become larger.

7.2.1 Semi-Metric Indexing vs. Search

Instead of metric d, a semi-metric modification df can be used for all operations
on the M-tree, i.e. for M-tree building as well as for M-tree querying. Moreover,
in the following we show that an M-tree built using a metric d can be queried
the same way as it was built by any modification df .

Theorem 7.1

Let the dataset S be dynamically indexed by two M-trees (using the minMAX RAD

splitting policy), the first M-tree built using the metric d while the second M-tree
built using a semi-metric df . Then, both M-trees are of the same hierarchy of
metric regions.

Proof: An M-tree hierarchy is dynamically built at two moments. First, for
the inserted object a suitable leaf must be found. The single-way leaf choice (see
Section 3.3.2) as well as the multi-way leaf choice (see Section 4.2) traverse such
path(s) in the M-tree, for which the inserted object is closest to the appropriate
routing object. However, since the similarity ordering between the inserted object
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and the candidate routing objects is preserved (by Lemma 7.1), there is the same
leaf chosen, regardless of using either metric d or any semi-metric df .

Second, an overfull node must be split such that two new routing objects
are sampled and the node content is redistributed. Suppose that minMAX RAD

promoting policy is used. Since f is increasing, the minimal radius for d is
minimal for df as well, thus the same pair of routing objects is chosen. �

Hence, an M-tree built using a metric d can be queried using any modification
df , allowing to specify the modifying function just at the query time. Such semi-
metric queries must be extended by a modifying function f , which is an additional
parameter. A semi-metric range query is defined as SM-range(Q,rQ,f,S) while
a k-NN query is defined as SM-kNN(Q,k,f,S). The query algorithms of M-tree
have to be modified such that during a semi-metric query processing the function
f is applied to each value computed using d as well as it is applied to the metric
region radii and precomputed distances stored in the routing entries.

7.2.2 Semi-metric Search Behaviour

The difference between metric search and semi-metric search in M-tree resides in
the testing whether a given query region (Q, rQ) overlaps a metric region (Oi, rOi

)
described by a routing entry rout(Oi).

Figure 7.5 (a) d-overlapping regions
(b) df1-overlapping regions
(c) df2-non-overlapping regions

Given a convex modifying function f , we can distinguish three cases:

1. If the regions are overlapped (using d) such that Q is located inside (Oi, rOi
)

or Oi is located inside (Q, rQ), then the regions are overlapped also when
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used any semi-metric modification df , i.e. d(Oi, Q) ≤ max({rQ, rOi
}) ⇒

df (Oi, Q) ≤ f(rQ) + f(rOi
).

2. If the regions are not overlapped (using d) then the regions are not over-
lapped also when used any semi-metric modification df , i.e. d(Oi, Q) >
rQ + rOi

⇒ df (Oi, Q) > f(rQ) + f(rOi
).

3. The difference between metric and semi-metric search becomes evident in
the last case, i.e. when d(Oi, Q) > max({rQ, rOi

}) ∧ d(Oi, Q) ≤ rQ + rOi

(see Figure 7.5a). The regions do overlap (using df ) just in case that the
triangle-violation error δf is small enough. Since (d(Oi, Q), rQ, rOi

) is a
triangular triplet, the probability that (df (Oi, Q), f(rQ), f(rOi

)) is also tri-
angular triplet grows with decreasing δf . In Figure 7.5b see that the regions
do overlap when used a modification df1 having a small δf1 . In Figure 7.5c
the regions do not overlap since the used modification df2 has too high δf2 .

Another interpretation of approximate semi-metric search is that, given a
semi-metric modification df , a region is discarded in case when the volume of its
intersection (roughly indicated by rOi

, rQ, d(Oi, Q)) with the query region is too
small (relatively to δf ), i.e. a probability that some indexed objects are located
inside the intersection is small as well. Such an interpretation is somewhat similar
to the idea of region proximity (cited in the previous chapter), but the semi-metric
approach is much simpler, utilizing just the information about region distances
and covering radii.

7.2.3 Relative Error of Semi-metric Search

Since a semi-metric does not satisfy the triangular inequality required for exact
search in M-tree, the semi-metric search will return more or less approximate
results. In order to quantify the relative output error we define a normed overlap
error as

ENO = 1−
|resultMtree ∩ resultscan|

max(|resultMtree|, |resultscan|)

where resultMtree is a query result returned by the M-tree (using a semi-metric
query), and resultscan is a result of the same query returned by sequential search
over the entire dataset. The error ENO can be interpreted as a relative precision
of the M-tree query result with respect to the result of full sequential scan.

In the following chapter we present an experimental evaluation of the semi-metric
search in M-tree, as a part of a real-world application – searching in vector model
of Text Retrieval.
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7.3 Summary

An advantage of semi-metric approach is that reduction of the dataset’s intrinsic
dimensionality is achieved without an information about the dataset’s distance
distribution, i.e. no static dataset preprocessing is necessary. Moreover, the
modifying function f (and thus the intrinsic dimensionality reduction) can be
specified at the query time, which allows to tune the precision/efficiency trade-off.
By the way, the modifying function is computationally cheap, thus calculations
of f have negligible negative influence on the computation costs. In general, due
to the above mentioned properties the method is fully applicable for dynamic
MAMs.

7.4 Future Work

In the future we would like to propose a version of semi-metric search utilizing
different modifying functions f at different levels of the searched M-tree. As an
example, the functions f used at upper levels can have a higher δf while the
functions used at the leaf level can have a smaller δf .

Another important issue for the future is a formulation of an analytical error
model for the semi-metric search in M-tree, allowing to predict and control the
normed overlap error ENO. The error model might utilize the triangle-violation
error δf , together with the dataset’s distance distribution. However, usage of the
analytical error prediction can make the method dependent on a certain dataset
preprocessing, and thus the method can lose its dynamicity.

Finally, we want to apply the semi-metric search principles into several other
MAMs, e.g. the PM-tree or LAESA.



Chapter 8

Searching in Vector Model of
Text Retrieval

As a real application, we have exploited the methods of metric and semi-metric
search for efficient query processing in the vector model of Text Retrieval1.

The models of Text Retrieval [15, 9] provide a formal framework for meth-
ods aimed to search in large collections of text documents. The classic vector
model as well as its algebraic extension LSI have been proved to be more effec-
tive (according to the precision/recall measures) than the other existing models2.
However, the current methods of vector query processing are inefficient for pro-
cessing many-term queries and, moreover, in the LSI model they are inefficient
for processing any reasonable query.

8.1 Classic Vector Model

In the classic vector model, each document Dj in a collection C (0 ≤ j ≤ n,
n = |C|) is characterized by a single vector dj, where each dj’s coordinate is
associated with a term ti from the set of all unique terms in C (0 ≤ i ≤ m, where
m is the number of terms). The value of a vector coordinate is a real number
wij ≥ 0, representing the weight of the i-th term in the j-th document. Hence, a
collection of documents can be represented by an m×n term-by-document matrix
A. There are many ways how to compute the term weights wij stored in A – a
popular weight construction is computed as tf ∗ idf (see e.g. [15]).

Example 8.1

In Table 8.1 see an example of term-by-document matrix A containing five
6-dimensional document vectors (the columns).

1Besides the Text Retrieval and Image Retrieval applications, we have also used the M-tree
for similarity search in XML databases [58] and face collections [59].

2For a comparison over various Text Retrieval models we refer to [86, 41].
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document
term \ D1 D2 D3 D4 D5

database 0 0.48 0.05 0 0.70
vector 0.23 0 0.23 0 0
index 0.43 0 0 0 0
image 0 0 0.10 0 0.54

compression 0 0 0 0 0.21
multimedia 0.12 0.52 0.62 0 0

Table 8.1 Term-by-document matrix A

8.1.1 Sparse Matrix Management

Since a document usually contains only a small subset of all the terms, the matrix
A is very sparse. For the purpose of vector model, the favourable sparse matrix
storage format is the Compressed Column Storage (CCS)3 or the Compressed
Row Storage (CRS) [15]. Because the matrix storage volume can reach up to the
order of gigabytes, there is a need for a secondary memory management. The
CCS and CRS formats can be easily implemented on the disk.

CCS Format

In CCS format, the sparse matrix is represented by three arrays: val, row ind,
and col ptr. The val array stores the nonzero elements of the term-by-document
matrix A as they are traversed columnwise, i.e. stores all the weights of each
document. The row ind array stores the corresponding row indices of the weights
in the val array, hence, val[k]= wij ⇒ row ind[k]= i. The cols ptr array
stores the positions in the val array that begin a column.

For the purposes of efficient secondary memory management, the row ind

and val arrays can be stored in a single RowVal array, where each element is a
pair (r, w) representing a weight w stored on position r in a column (document
vector). Each pair (r, w) takes one integer for r and one float for w, say 8 bytes.
Suppose the average number of nonzero weights in a document vector is 512,
then storage of a sparse document vector takes 512 · 8 bytes = 4 kB in average.
If we realize, in such case a random access into the matrix is not much worse
in I/O efficiency when compared to the sequential scan, because the storage of
document vectors is usually large (say 4 kB), so that a random access to the
matrix is always aligned to 4 kB or greater blocks.

In order to achieve an efficient behaviour, the large RowVal array is stored
on disk while the small cols ptr is loaded in the main memory. In fact, the
cols ptr array serves as a lookup table to the matrix columns.

3also known as the Harwell-Boeing sparse matrix format [48]
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8.1.2 Queries

The most important problem about the vector model is the querying mechanism
that searches matrix A with respect to a query Q, and returns only the relevant
document vectors (appropriate documents respectively). The query Q is repre-
sented by a vector q the same way as a document dj is represented. The goal is
to return the most similar documents to the query. For this purpose a similarity
measure must be defined, assessing a similarity value to each pair of query and
document vectors (q, dj). In the context of Text Retrieval, the cosine measure

SIMcos(q, dj) =

∑m
i=1 qiwij√∑m

i=1 qi
2 ·

∑m
i=1 wij

2

is widely used. During query processing the columns of A (the document vectors)
are compared against the query vector using the cosine measure, while documents
sufficiently similar to Q are returned as a result.

Generally, there are two ways how to specify a query Q. First, a few-term
query is specified by several terms, while an appropriate vector for such a query is
very sparse. Second, a many-term query is specified using a whole text document,
thus appropriate query vector will be more dense. We focus just on the many-
term queries, because they better satisfy the similarity search paradigm which
the vector model should follow.

8.2 LSI Vector Model

Simply said, the LSI (latent semantic indexing) model [41, 15] is an algebraical
extension of the classic vector model. First, the term-by-document matrix A is
decomposed by singular value decomposition (SVD) as

A = UΣV T

The matrix U contains concept vectors, where each concept vector is a linear
combination of the original terms. A concept can be interpreted as a kind of meta-
term appearing in the original documents. While the term-by-document matrix
A stores document vectors, the concept-by-document matrix ΣV T stores pseudo-
document vectors. Each coordinate of a pseudo-document vector represents a
weight of an appropriate concept in a document.

8.2.1 Latent Semantics

The concept vectors are ordered with respect to their significance (appropriate
singular values in Σ). Consequently, only a small number of concepts is really
significant – these concepts represent (statistically) the main themes present in
the collection – let us denote the number as k. The remaining concepts are
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unimportant (noisy concepts) and can be omitted, thus the dimensionality is
reduced from m to k. Finally, we get an approximation (rank-k SVD)

A ≈ UkΣkV
T
k

where for sufficiently high k the approximation error will be negligible. More-
over, for a low k the effectiveness can be subjectively even higher (according to
the precision/recall values) than for a higher k. When searching a real-world
collection, the optimal k is usually ranged from several tens to several hundreds.
Unlike the term-by-document matrix A, the concept-by-document matrix ΣkV

T
k

and the concept base matrix U are dense.

Example 8.2

In Table 8.2 see an example of concept-by-document matrix Σ4V
T
4 (k = 4) con-

taining five 4-dimensional pseudo-document vectors (the columns).

document
concept \ D1 D2 D3 D4 D5

concept1 -0.21 0.48 -0.05 0.10 0.70
concept2 0.32 0.20 -0.13 0.45 0
concept3 -0.49 0.02 0.77 0.24 -0.06
concept4 0.31 -0.01 0.11 0 0.28

Table 8.2 Concept-by-document matrix Σ4V
T
4

8.2.2 Queries

Querying for documents in the LSI model is performed the same way as in the
classic vector model, the difference is that matrix ΣkV

T
k is searched instead of A.

Moreover, the query vector q must be projected into the concept base, i.e. UT
k q

is the pseudo-query vector used by LSI. Since the concept vectors of U are dense,
the pseudo-query vector is dense as well.

8.3 Related Work

In this thesis we focus on efficiency of similarity search. In case of vector model,
we can say that a query is processed efficiently if only a small proportion of the
matrix storage volume is needed to load and process. In the following we outline
several existing approaches to the vector query processing.

8.3.1 Document Vector Scanning

The simplest method how to process a query is the sequential scanning of all the
document vectors (i.e. the columns of A, ΣkV

T
k respectively). Each document
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vector is compared against the query vector using the similarity measure while
sufficiently similar documents are returned to the user. It is obvious that for any
query the whole matrix must be processed.

8.3.2 Term Vector Filtering

For sparse query vectors (few-term queries respectively), there exists a more ef-
ficient scanning method. Instead of document vectors, the term vectors (i.e. the
rows of the matrix) are processed. The cosine measure is being computed si-
multaneously for all the document vectors, ”orthogonally” involved in the term
vectors. Due to the simultaneous cosine measure evaluation, a set of n accumu-
lators (storing the evolving similarities between each document and the query)
must be maintained in memory. The advantage of term filtering is that only
those term vectors must be scanned, for which the appropriate term weights in
the query vector are nonzero. The term vector filtering can be easily provided
using inverted file [67], as a part of the boolean model implementation.

The simple method of term filtering was improved by an approximate ap-
proach [81], reducing the time as well as space costs. Generally, the improvement
is based on early termination of query processing, exploiting a restructured in-
verted file where the term entries are sorted according to the decreasing occur-
rences of a term in document. Thus, the most relevant documents in each term
entry are processed first. As soon as the first document is found in which the
number of term occurrences is less than a given addition threshold, the processing
of term entry can stop because all the remaining documents have the same or
less importance as the first rejected document. Since some of the documents are
never reached during a query processing, the number of used accumulators can
be smaller than n, which saves also the space costs. Another improvement of the
inverted file, exploiting quantized weights, was proposed recently [3], even more
reducing the search costs.

Despite the above mentioned improvements, the term vector filtering is gen-
erally not much efficient for many-term queries where the number of filtered term
vectors is small. Moreover, the term vector filtering is completely useless for
the LSI model because each pseudo-query vector is dense, thus none of the term
vectors can be skipped.

8.3.3 Signature Methods

Signature files are a popular filtering method in the boolean model [49], however,
there have been only a few attempts made to use them in the vector model,
because their usage is not so straightforward due to the term weights. Weight-
partitioned signature files (WPSF) [60] try to solve the problem by recording the
term weights in so-called TF-groups. Unfortunately, a sequential file organization
was chosen for the WPSF which caused excessive search of the signature file. An
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improvement was proposed recently [68], using the S-trees [43] to speedup the
signature file search. Another signature-like approach is the VA-file [17].

Generally, usage of the signature methods is still complicated for the vector
model, and the results achieved so far are rather poor.

8.4 Metric Search in the Vector Model

In our approach, we have turned the problem of searching using cosine measure
into a problem of searching in a metric space. The objects Oi of metric space
are represented by the (pseudo-)document vectors di, i.e. by columns of either
term-by-document or concept-by-document matrix, respectively. We cannot use
directly the cosine measure SIMcos(di, dj) as a metric function, because it does not
satisfy the metric axioms (and e.g. 1− SIMcos(di, dj) still violates the triangular
inequality). As an appropriate metric to the cosine measure, we use the deviation
metric (also known as angular distance [88]), defined as

ddev(di, dj) = arccos(SIMcos(di, dj))

which is, instead of cosine, the angle between two vectors di, dj (i.e. d+ = π).
Informally, the deviation metric can be interpreted as an Euclidean-like distance
along the surface of a unitary hyper-sphere.

Note: The function arccos in strictly decreasing, thus, by Definition 1.4, the
deviation metric ddev is a dissimilarity function complementary to the cosine
measure SIMcos.

Consider a similarity range query range(Q,α, S, SIMcos). In order to obtain
an equivalent metric range query range(Q, rQ, S, ddev), we set the query radius
as rQ = arccos(α). The similarity k-NN query needs not to be explicitly trans-
formed into its metric variant, because the query radius is computed implicitly
(dynamically respectively), during the query processing.

Application of M-tree

Since we have turned the similarity queries of vector model into their metric
equivalents, we can use the M-tree to index and search in a collection of text doc-
uments (in the respective term-by-document or concept-by-document matrices
respectively).

8.4.1 Implementation Issues

We have implemented a secondary memory management for both the sparse term-
by-document matrix (in CCS format, as presented in Section 8.1.1) as well as for
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the dense concept-by-document matrix. In case of dense matrix, the implemen-
tation was straightforward, because each document vector was stored in a disk
page of fixed size, thus random access to the matrix was easily provided.

The entries of M-tree nodes stored just the document vector identifiers (i.e.
pointers to the matrix columns), thus the M-tree storage volume was minimized.
Due to this fact, the respective matrix was accessed separately for each particular
(pseudo-)document vector. Moreover, a document vector was accessed just in case
that a distance computation was required to compute, thus the I/O costs were
equal to the computation costs.

8.5 Experimental Results

We have used the Los Angeles Times collection (a part of TREC 5 [74]) for
the experiments, consisting of 131,780 newspaper articles. The entire collection
contained 240,703 unique terms. As ”rich” many-term queries, we have used
articles consisting of at least 1000 unique terms. The experiments were focused on
I/O costs spent during k-NN queries processing. Each k-NN query was repeated
for 100 different query documents and the results were averaged. The I/Os were
aligned to 512B blocks, considering both access to the M-tree index as well as to
the respective matrix.

Since the deviation metric is computationally cheap (it is of linear complexity
according to the dimensionality), in the experiments we have inspected just the
I/O costs. The overall query I/O costs are presented either in megabytes or in
a proportion of the matrix volume needed to process. In Table 8.3 the M-tree
configuration used in the experiments is presented.

Page size: 512 B; Capacity (leaves: 42, nodes: 21)
Construction: MinMax + SingleWay + SlimDown

Tree height: 3-4; Avg. util. (leaves: 56%, nodes: 52%)

Table 8.3 The M-tree configuration

The labels DevSQxx, Cos, DevSQRT, and UL2 in the figures below stand for
modifying functions f used by semi-metric search. In particular, several convex
(i.e. metric-violating) functions of form DevSQp(α) =

(
α
π

)p
, Cos(α) = 1−cos(α)

2
,

and two concave (i.e. metric-preserving) functions DevSQRT(α) =
√

α
π
, and

UL2(α) =
√

2(1− cos(α))/2 were examined as the modifying function f , turning

the metric ddev into a semi-metric modification df
dev. The queries labeled as Dev

represent the original metric queries (utilizing ddev), as presented in Section 8.4.

8.5.1 Classic Vector Model

First, we performed tests for the classic vector model. The storage of the term-
by-document matrix (in CCS format) took 220 MB (consisting of the 131,780
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document vectors), while storage of the M-tree index was about 4MB (i.e. 1.8%
of the matrix storage volume (MSV)).

For an idea about the intrinsic dimensionality of the collection of document
vectors (where the classic dimensionality D = m = 240, 703 is extremely high),
see the distance distribution histograms in Figure 8.1. In the first graph ddev-DDH
is presented, where almost 60% of the pairwise distances are approximately equal.
With increasing convexity (ε parameter) of the modifying function f(x) = xε,
the df

dev-DDH bell gets wider and left-shifted (see the remaining graphs), thereby
decreasing the intrinsic dimensionality. In order to preserve legibility, different
scales of the distance axis were chosen for each DDH graph in the figure.

Figure 8.1 Classic vector model: DDHs for ddev and df
dev

In Figure 8.2a the comparison of document vector scanning, simple term vec-
tor filtering as well as metric and semi-metric search is presented. It is obvious
that using document vector scanning the whole matrix (i.e. 220 MB I/Os) has
to be loaded and processed. Since the query vector contains many zero weights,
the term vector filtering works more efficiently (76 MB I/Os, i.e. 34% of MSV).
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Figure 8.2 Classic vector model: (a) I/O costs (b) ENO error

The metric search Dev was not performing well – the curse of dimensionality
(m = 240,703) forced almost 100% of the matrix to be processed. The extra 30
MB I/Os overhead (beyond the 220 MB of MSV) was caused by non-sequential
access to the matrix columns. On the other side, the semi-metric search per-
formed quite efficiently. The DevSQ10 queries for k = 5 consumed only 30 MB
I/Os (i.e. 13.6% of MSV).

Figure 8.2b shows the normed overlap error ENO of the semi-metric search.
For DevSQ4 queries the error was negligible. The error for DevSQ6 and k > 35
remained below 0.1. The DevSQ10 queries were affected by a relatively high error
from 0.25 to 0.2 (with increasing k).

Figure 8.3 Classic vector model: (a) I/O costs (b) ENO error
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In Figure 8.3a the I/O costs according to increasing number of documents are
presented for 10-NN queries. With the growing size of collection the proportion
of MSV needed to process decreased. The error ENO grew quickly for DevSQ10,
for the remaining functions the error was kept below 0.1, see Figure 8.3b.

8.5.2 LSI Model

The second set of tests was made for the LSI model. The target (reduced)
dimension was set to 200. The storage of the concept-by-document matrix took
105 MB, while size of the M-tree index was about 3 MB (i.e. 2.9 % of MSV).

Figure 8.4 LSI model: DDHs for ddev and df
dev

Because the size of term-by-document matrix was very large, the direct cal-
culation of SVD was technically impossible. Therefore, we have used a two-step
method [79], which in the first step calculates a random projection of the docu-
ment vectors into a smaller dimensionality of pseudo-concepts (see e.g. [1, 16]).
This is done by multiplication of a zero-mean unit-variance random matrix and
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the term-by-document matrix. Second, a rank-2k SVD is calculated on the re-
sulting pseudoconcept-by-document matrix, giving us a very good approximation
of the classic rank-k SVD.

In Figure 8.4 see DDHs for the 200-dimensional collection of pseudo-document
vectors. As for the classic vector model, the intrinsic dimensionality gets lower4

with the increasing ε. In the fourth graph note that a metric modification (i.e.
f(x) =

√
x) shifts the bell right, thereby increasing the mean (and also the

intrinsic dimensionality as a whole).

The Figure 8.5a shows that already the metric search Dev itself was more
than twice as efficient as the document vector scanning. Even better results were
achieved by the semi-metric search. The DevSQ3 queries for k = 5 consumed only
5.8 MB I/Os (i.e. 5.5% of MSV). Figure 8.5b shows the error ENO. For DevSQ1.5
queries the error was negligible, for DevSQ2 it remained below 0.06. The DevSQ3

queries were affected by a relatively high error.

Figure 8.5 LSI model: (a) I/O costs (b) ENO error

In Figure 8.6a the I/O costs according to growing collection size are presented.
Besides the convex (i.e. semi-metric) modifications we also examined the concave
(i.e. metric) modifications DevSQRT and UL2. As expected, we can observe that
metric modifications performed worse than the original (not modified) metric ddev

(Dev respectively). In Figure 8.6b we can observe that the error ENO for Cos and
DevSQ1.5 was below 0.05.

4The comparison of DDHs could be a bit difficult to the reader, since the graphs of DDHs
do not share a common distance scale.



124 Chapter 8. Searching in Vector Model of Text Retrieval

Figure 8.6 LSI model: (a) I/O costs (b) ENO error

8.5.3 Summary

The experimental results have shown that metric indexing itself is suitable for
an efficient search in the LSI model. The approximate semi-metric search allows
us to provide quite efficient similarity search in the classic vector model. Fur-
thermore, the semi-metric search provides a very efficient solution for search in
the LSI model. The relative output error of semi-metric search can be effectively
tuned by choosing such modifying functions, that preserve an expected accuracy
sufficiently.
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Conclusions

In this thesis, we have presented several contributions to metric indexing in the
context of Information Retrieval. We have proposed methods for exact as well
as for approximate searching in large metric datasets. All of the contributions
have been related to the M-tree, which is a dynamic indexing structure providing
similarity search in large metric datasets.

We can summarize the main contributions as follows:

• In the field of exact metric search, we have proposed:

– two algorithms of building the M-tree, allowing to achieve a higher
search efficiency at the expense of higher construction costs

– the PM-tree, a dynamic indexing structure exploiting – when com-
pared to the M-tree – a more compact shape of metric regions, which
is, in turn, reflected by even higher search efficiency together with only
a little growth of construction costs

• In the field of approximate metric search, we have proposed a concept of
semi-metric modifications that have been utilized for an approximate search
using the M-tree. A particular advantage of this approach is a property that
no information about the dataset’s distance distribution is needed, making
the method suitable for dynamic DBMS environments.

• Finally, we have applied the metric indexing approach in order to efficiently
handle the problem of similarity search in vector model of Text Retrieval.
As the experimental results have shown, the metric and semi-metric search
is especially favourable in case of search in the LSI vector model, for which
there has not been proposed any efficient method of similarity search yet.

The presented methods have been evaluated by many experiments on syn-
thetic as well as real-world datasets. The new construction algorithms on M-tree
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achieved an increase of search efficiency by up to 300%. When comparing to the
original M-tree, the PM-tree combined with the slim-down algorithm achieved
an increase of search efficiency even by an order of magnitude. The approxi-
mate semi-metric search can be tuned to achieve a favourable trade-off between
the efficiency and the accuracy of searching. In particular, when compared to
the sequential scan, searching in a real text collection (in the LSI vector model)
achieved 10 times higher efficiency, keeping the relative precision above 95%.

9.1 Outlook

In the future, we want to continue the ideas established in this thesis. Besides the
conclusions stated at the end of particular chapters, we head our future efforts
towards the following objectives:

• As for the PM-tree, we would like to propose even more compact shapes of
metric regions for another M-tree modifications, reducing the probability
of a ”region false hit” and thus improving the search efficiency.

• Our next goal is to propose algorithms for processing some other types of
similarity queries in (P)M-tree, e.g. the reverse neighbour queries and the
similarity joins.

• In the area of approximate search, we plan to formulate a probabilistic
framework for the semi-metric search, providing a control of the search
accuracy.

• Finally, we intend to compare various metric access methods in a single
real-time application environment. More specifically, we want to implement
an Image Retrieval System, providing similarity search in large image and
video databases.
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Pokorný. An Efficient Implementation of the Vector Model in Information
Retrieval. In Proceedings of the 5th National Russian Research Conference
on Digital Libraries (RCDL), St. Petersburg, Russia, pages 170–179, 2003.



136 Bibliography
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Metric and Semi-Metric Indexing of Vector Models in Information Re-
trieval Systems (in czech), Proceedings of the 3rd conference ZNALOSTI, pages
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Implementation of XPath Axes in the Multidimensional Approach to
Indexing XML Data (in czech), Proceedings of the 3rd conference ZNALOSTI,
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Properties Of Space Filling Curves And Usage With UB-trees, Proceed-
ings of the Workshop on Information Technologies - Applications and Theory
(ITAT), pages 155–166, P.J. Safarik University, Malino Brdo, Slovakia, 2002
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Appendix B

Implementation Issues

The Framework

We have completely reimplemented the M-tree in C++ using Amphora Tree Ob-
ject Model (ATOM) – a framework for advanced tree-based indexing – developed
by Amphora Research Group (ARG) at VŠB–Technical University of Ostrava,
Department of Computer Science.

Thus, we have completely reimplemented the M-tree (we have not used the
public GiST-based implementation). In particular, in our implementation we
have optimized some critical operations, e.g. we have eliminated majority of
dynamic memory allocations, which is a very expensive operation comparable to
a physical access to disk. Due to the optimizations our M-tree implementation
is roughly 12 times faster (and more stable) than the original GiST-based one.

Measuring I/O Costs

We have measured logical I/Os in manipulation with indices, i.e. the I/O counters
have been incremented whenever a node page retrieval/storage was requested,
regardless if the node already remained in the disk cache. Although many physical
disk accesses could be eliminated due to caching, the logical I/Os give a more
clear view about the pure index performance.
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