DISTINCT NEAREST NEIGHBORS QUERIES FOR SIMILARITY SEARCH IN VERY LARGE MULTIMEDIA DATABASES

ACM WIDM 2009, Hong Kong, China T. Skopal, V. Dohnal, M. Batko, P. Zezula

Similarity Searching

- Exact searching in images is not sufficient.
- Content-based searching
 - Users retrieve visually similar images.
 - Even not annotated images are retrieved.
- Nearest neighbors query

Loosing its discriminative power

query image result of 10NN query (ordered by similarity to the query object)

Skopal et al: Distinct NN Queries

ACM WIDM 2009, Hong Kong, China

Distinct Nearest Neighbors Query

- 3
- Cope with density of searching space
- Idea: diminish "duplicates" of objects in the result to increase response quality
 - \blacksquare User defines a separation constant \varPhi

Example of Distinct kNN

- Database: 100 million images
- Query object:

Result of 10-NN:

Result of 10-DNN (Distinct Nearest Neighbors):

Experimental Evaluation

CoPhIR dataset:

- 100 mil. photos, MPEG-7 features
- Algorithms for distinct k-NN
 - implemented in MUFIN (http://mufin.fi.muni.cz/)
- User satisfaction with results:
 - 30 users (student of IT)
 - 45 queries
 - User did not know whether the displayed query was k-NN or k-DNN.

Query	Φ	Percentage	
Cannot decide		8%	
. Classic k-NN		26%	
10-DNN	0.8	30%	`
10-DNN	1.0	14%	66%
10-DNN	1.2	22%	J 00 /0

Experimental Evaluation (cont.)

6

- Statistical comparison of 30-NN and 30-DKNN
 - 100 mil. and 1 mil. subset
 - Ratio k' / k, where k' = # of NN checked by 30-DKNN

Ratio of intrinsic dimensionalities: $\rho = \frac{\mu^2}{2\sigma^2}$

Conclusions

- Properties of distinct nearest neighbors:
 - Returns distinct results
 - More robust than k-NN when used on large databases
 - Evaluation by real users confirmed better results
- Performance summary
 - Implemented under the same framework in Java
 - Time overhead is 2-7% of original k-NN costs
 - Including increased number of NN used
 - Including k-DNN algorithm's computation
 - Can be used in real-time