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Similarity Searching

o Exact searching in images is not sufficient.
o Content-based searching

Users retrieve visually similar images.

Even not annotated images are retrieved.
- Nearest neighbors query

Loosing its discriminative power

query image result of 10NN query (ordered by similarity to the query object)
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Distinct Nearest Neighbors Query
o Cope with density of searching space

o ldea: diminish “duplicates” of objects in the result
to increase response quality

User defines a separation constant @

Common k-NN (k=4) Distinct K-NN (k=4)
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Example of Distinct KNN

o Database: 100 million images
o Query object:

1 Result of 10-NN:
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o Result of 10-DNN (Dlstlnct Nearest Nelghbors):
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Experimental Evaluation

CoPhIR dataset:

100 mil. photos, MPEG-7 features

Algorithms for distinct k-NN

Implemented in MUFIN (http://mufin.fi.muni.cz/)

User satisfaction with results:

30 users (student of IT)
45 queries

User did not know whether
the displayed query was
K-NN or k-DNN.

Query ()
Cannot decide
Classic k-NN
10-DNN 0.8
10-DNN @ 1.0
10-DNN 1.2

Percentage

8%

26%
30%
14%
22%

}e6%



Experimental Evaluation (cont.)

o Statistical comparison of 30-NN and 30-DKNN
100 mil. and 1 mil. subset
Ratio k' / k, where k' = # of NN (:hec:ked2 by 30-DKNN
Ratio of intrinsic dimensionalities: p = £
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Conclusions

Properties of distinct nearest neighbors:
Returns distinct results
More robust than k-NN when used on large databases
Evaluation by real users confirmed better results

Performance summary
Implemented under the same framework in Java

Time overhead is 2-7% of original k-NN costs
Including increased number of NN used
Including k-DNN algorithm’s computation

Can be used In real-time



