Charles University in Prague
Faculty of Mathematics and Physics
School of Computer Science
4th Term - 2004/05

Dung NGUYEN TIEN

PARALLEL TRANSACTION PROCESSING
APPLICATION FOR TEACHING PURPOSE

SPECIFICATION

Grade Project, Following Bachelor Project

Leading Teacher
RNDr. Tomas SKOPAL, Ph.D.

Last modified: 29.04.2005

Contents

1. Task
1.1. Original text of the task in Czech
1.2. Brief translation

2. Introduction
2.1. Transactions
2.2. Terminology
2.3. Structure of A Transaction Program

3. The Program
3.1. Programing Language and Framework

3.2. How It Works

3.3. Visual Functions
3.4. Serializability test
3.5. Schedule creating

4. References

1.Task

Original text of the task in Czech:

,Pfedmétem RP je simulace paralelniho zpracovani transakci pro potfeby vyuky. Aplikace bude umét
pracovat s jednoduchou databazi (v paméti), zpracovani transakci bude rozvrhovano bud' uzivatelem
nebo automaticky. Zpracovani bude mozno krokovat (i. také vidét stavy databaze). Podpora testovani

usporadatelnosti rozvrhu. Uzamykaci protokoly a prevence uvaznuti.”

Brief translation:

The task is to create a parallel transaction processing application for teaching purpose. The program
should work with a simple database in the memory, transaction processing will be scheduled
automatically or by user. The processing should enable being paced step by step, this means the user
is allowed to see actual states of the database. It also has to enable serializability testing, lock protocols

and deadlock precaution.

2. Introduction

Transactions

Transaction management is one of the most crucial requirements for enterprise application
development. Most of the large enterprise applications in the domains of finance, banking and electronic
commerce rely on transaction processing for delivering their business functionality. Given the complexity
of today's business requirements, transaction processing occupies one of the most complex segments

of enterprise level distributed applications to build, deploy and maintain.

Applications often require concurrent access to distributed data shared amongst multiple components,
to perform operations on data. Such applications should maintain integrity of data (as defined by the
business rules of the application) under the following circumstances:

e distributed access to a single resource of data

e and access to distributed resources from a single application component.

In such cases, it may be required that a group of operations on (distributed) resources be treated as
one unit of work. In a unit of work, all the participating operations should either succeed or fail and
recover together. This problem is more complicated when

e aunit of work is implemented across a group of distributed components operating on data from
multiple resources, and/or

e the participating operations are executed sequentially or in parallel threads requiring
coordination and/or synchronization.

In either case, it is required that success or failure of a unit of work be maintained by the application. In
case of a failure, all the resources should bring back the state of the data to the previous state (i.e., the
state prior to the commencement of the unit of work).

The concept of a transaction, and a transaction manager (or a transaction processing service)
simplifies construction of such enterprise level distributed applications while maintaining integrity of
data in a unit of work.

Terminology

A transaction is a unit of work that has the following properties:
Atomicity
All transactions are either performed completely - committed, or are not done at all; a partial

transaction that is aborted must be rolled back.

Consistency

The effects of a transaction must preserve required system properties. For instance, if funds are
transferred between accounts, a deposit and withdrawal must both be committed to the
database, so that the accounting system does not fall out of balance.

In double-entry accounting, the "staying in balance" property is usually not overly difficult to
maintain. The more thorny issue comes when the property is something like "Cash Balance
Cannot Drop Below Zero," or "We can't ship out inventory we don't have." In such cases, if you
have two transactions being submitted concurrently, it could be that either could be accepted,
but not both. If one of the transactions would cause balance requirements to be violated, the TP

monitor therefore needs to reject one of the transactions.

Isolation
Intermediate stages must not be made visible to other transactions. Thus, in the case of a
transfer of funds between accounts, both sides of the double-entry bookkeeping system must
change together for each transaction. This means that transactions appear to execute serially

(e.g. in order) even if some of the work is done concurrently.

Durability
Once a transaction is committed, the change must persist, except in the face of a truly

catastrophic failure.

These properties, called as ACID properties, guarantee that a transaction is never incomplete, the data
is never inconsistent, concurrent transactions are independent, and the effects of a transaction are

persistent.

Structure of A Transaction Program

BEGIN WORK

ROLLBACK
WORK

- A Notation for Transaction Models

terminate

The application program declares the start of a new transaction by invoking BEGIN_WORK().

All subsequent operations will be covered by the transaction. Eventually, the application program will
call COMMIT_WORK(), if a new consistent state has been reached. This makes sure the new state

becomes durable.

If the application program cannot complete properly (violation of consistency constraints), it will invoke
ROLLBACK_WORK(), which appeals to the atomicity of the transaction, thus removing all effects the

program might have had so far.

If for some reason the application fails to call either commit or rollback (there could be an endless loop,
a crash, a forced process termination), the transaction system will automatically invoke
ROLLBACK_WORK() for that transaction.

3. The Program

Programing Language and Framework

| chose C# , because it is a sufficient language for Windows applications, intended as an alternative to

the main language C++. It gives access to many of the facilities previously available only in C++.

The used framework will be Microsoft Visual Studio .NET 2003, as C# has been designed specifically
with the .NET framework in mind and hence is very well structured for writing code that will be compiled
for .NET.

How It Works

Our application works with an abstract database which consists of a number of variables (attributes),

these datas will be continuously modified by transactions.

The transactions of this program are represented as a pack of simple predefined instructions, such as
READ(), WRITE() or a non-specified command Operation(). The schedule (history) of transactions is
set by user or automatically. In the first case, the application controls its correctness, serializability and
proceeds transaction processing. In the second one, if it is possible, the application creates a correct

and serializable schedule and proceeds transaction processing.

Visual Functions

During transaction processing the application enables watching actual states of the database and export

of final states. The user chooses the attributes which actual states will be displayed.

T, States of Z States of X
READ(X) X =280
X:=X-5 X =80
WRITE(X) X=175
READ(Z) Z =30

7:=7 +1 Z =30

WRITE(Z) Z=31

-An example of a view at actual states of the database with attributes X and Z

Since it has to be an application for teaching purpose, it will have to be relatively user-friendly and all its

functions easy to demonstrate.

Serializability test

A schedule is given by user and the task of the program is to find out, if the schedule (history) is

correct and particuarly if it serializable

The input is as following:
o the user chooses a number of transactions
o chooses an amount of variables needed
o chooses an amount of actions on variables
0

finally creates a schedule
Steps proceeded by program:

This is based on the fact that a schedule is serializable if it is equivalent to a serial one and uses

the following algorithm:

I. Ifinall transactions the action READ() comes before WRITE()
It means in all transactions a value of an attribute is being read and afterwards potentially

written
Program constructs a graph of the schedule which has following properties:

lts nodes are the names of transactions
Its angles are (Ti, Tj) are defined by fulfilling one of the these requirements for attribute
A from transactions:

> Tiproceeds WRITE(A) before Tj proceeds READ(A)

> Tiproceeds READ(A) before Tj proceeds WRITE(A)

> Tiproceeds WRITE(A) before Tj proceeds WRITE(A)

And the schedule is serializable if its graph has no cycle. According to this fact (which is no
difficult to prove) the program appoints serializability and eventually the equivalent history

finding an acyclic topological form of the graph.

S3 S4

T4 T5 T4 T5

READ(A) READ(A)

Operationl(A) Operationl1(A)

WRITE(A) READ(A)
READ(A) Operation 3(A)
Operation3(A) WRITE(A)
WRITE(A) READ(B)

READ(B) WRITE(A)

Operation2(B) READ(B)

WRITE(B) Operation2(B)
READ(B) WRITE(B)
Operation4(B) Operation 4(B)
WRITE(B) WRITE(B)

T,

—

Il. If operation WRITE() is anywhere

Ty |' Ts

-example of transactions and their graphs

In this case, effective algorithms do not exist and Serializablility test is a NP-complete

problem.
S6
Ts T, Ty
READ(A)
WRITE(A)
WRITE(A)
WRITE(A)

-

-example with operation WRITE() is anywhere and its graph

Schedule creating

Transactions are given by user, the task of the program is to create a correct and serializable schedule

The input is as following:
o the user chooses a number of transactions
o chooses an amount of variables needed
o chooses an amount of actions on variables

o finally completes transactions

Based on those inputs, protocols and the following fact, the application creates a schedule.

Proved affirmation:

If all transactions are well formed and two-phased then every legal schedule is serializable.

A well formed transaction fulfill these requirements:

» Transaction locks the attribute which is actually needed

» Transaction does not lock the attribute which has been already locked by itself
» Transaction does not unlock the attribute which has not been locked by itself
>

After the end of transaction, all attributes which had been locked by itself are

unlocked

Tl 3 Tl4

LOCK(A)

READ(A)

WRITE(A)

UNLOCK(A)
LOCK(A)
READ(A)
WRITE(A)
UNLOCK(A)
LOCK(B)
READ(B)
WRITE(B)
UNLOCK(B)

LOCK(B)

READ(B)

WRITE(B)

UNLOCK(B)

-An example of well formed transactions

A two-phased transaction locks everything needed in its first stage and from the first unlock
operation (second stage) all transactions locked by itself are only being unlocked. This means

that the operation LOCK() is being never used anymore.

Ty Tys
LOCK(B) LOCK(B)
READ(B) READ(B)
akce5(B) akce5(B)
WRITE(B) WRITE(B)
UNLOCK(B) LOCK(A)
LOCK(A) READ(A)
READ(A) akce7(A)
akce7(A) WRITE(A)
WRITE(A) UNLOCK(B)
UNLOCK(A) UNLOCK(A)

-Transaction T9 was changed into the two-phased transaction T15

The list of functions mentioned above are the basic ones and it is supposed to be extended, especially
in the final version of the Bachelor project. For instance, strict two-phased locking protocol, multiversion
concurrency control or recovery may be implemented and generally the application may offer more

functions dealing with histories.

10

4. References

Pokorny J., Halaska |.: Databazové systémy. FEL CVUT Praha, 2003.
Halaska |., Pokorny J., Valenta M.: Databazové systémy - cvigeni. FEL CVUT Praha, 2002.
Pokorny J, Zemlicka M..: Zaklady implementace soubord a databazi. UK Praha, Karolinum, 2004.

http://kocour.ms.mff.cuni.cz/~pokorny/ - Home page of Prof. RNDr. Jaroslav Pokorny, CSc.

http://www.ms.mff.cuni.cz/~riha/ - Home page of RNDr. Antonin Riha, CSc.

http://nenya.ms.mff.cuni.cz/~ceres/txy/main.php - Home page of Ing. Petr Tima, Dr.

11

