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D-cache: Universal Distance Cache for Metric
Access Methods

Tomas Skopal, Jakub Loko€, and Benjamin Bustos

Abstract—The caching of accessed disk pages has been successfully used for decades in database technology, resulting in effective
amortization of I/O operations needed within a stream of query or update requests. However, in modern complex databases, like
multimedia databases, the I/O cost becomes a minor performance factor. In particular, metric access methods (MAMs), used for
similarity search in complex unstructured data, have been designed to minimize rather the number of distance computations than 1/0
cost (when indexing or querying). Inspired by I/O caching in traditional databases, in this paper we introduce the idea of distance
caching for usage with MAMs — a novel approach to streamline similarity search. As a result, we present the D-cache, a main-memory
data structure which can be easily implemented into any MAM, in order to spare the distance computations spent by queries/updates.
In particular, we have modified two state-of-the-art MAMs to make use of D-cache — the M-tree and Pivot tables. Moreover, we present
the D-file, an index-free MAM based on simple sequential search augmented by D-cache. The experimental evaluation shows that
performance gain achieved due to D-cache is significant for all the MAMs, especially for the D-file.

Index Terms—metric indexing, similarity search, distance caching, metric access methods, D-cache, MAM, index-free search

1 INTRODUCTION

In database technology, the majority of problems concerns
the efficiency issues, that is, the performance of a DBMS.
For decades, the number of accesses to disk (required by
I/O operations) was the dominant factor affecting the DBMS
performance. There were developed indexing structures [1],
[2], storage layouts [3], and also disk caching/buffering tech-
niques [4]; all of these designs aimed to minimize the number
of physical I/Os spent within a database transaction flow. In
particular, disk caching was proven to be extremely effective in
situations where access to some disk pages happens repeatedly
during a single runtime session.

However, the situation is dramatically different in modern
complex databases consisting of snapshots of nature (i.e.,
images, sounds, or other signals), like multimedia databases,
bioinformatic databases, time series, etc. Here we often
adopt the similarity search within the content-based retrieval
paradigm, where a similarity function &(q,0) serves as a
measure saying how much a database object o € S is relevant
to a query object ¢ € U (where S is the database and U is
the object universe, S C U). To speed up similarity search in
such a database, there have been many indexing techniques
developed — some of them domain-specific and some others
more general. Also, there were distributed indexing techniques
developed [5] that use parallelism to speed up similarity
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queries. An important fact is that the retrieval performance
of such a system is more affected by CPU cost than by
I/O cost. In particular, in similarity-search community the
computation of a single value ¢ is employed as the logical unit
for indexing/retrieval cost, because of its dominant impact on
the overall performance [6], [7]. Thus, the I/O cost is mostly
regarded as a minor component of the overall cost. The number
of computations § needed to answer a query (or to index a
database) is referred to as the computation cost.

Among general techniques, the metric access methods
(MAMs) are suitable in situations where the similarity measure
0 is a metric distance (in mathematical meaning). The metric
properties (1), (2), (3), (4) allow us to organize a database S
within equivalence classes, embedded in a data structure which
is stored in an index file.

0z,y) = O&ax=y identity (1)
5(z,y) > 0& x#y  non-negativity (2)
é(r,y) = Oy, ) symmetry (3)
Oz, y) +0(y,2) > d(x,2) triangle inequal.(4)

The index is later used to quickly answer typical similarity
queries — either a k nearest neighbors (kNN) query like “return
the 3 most similar images to my image of a horse”, or a range
query like “return all voices more similar than 80% to the voice
of a nightingale”. In particular, when issued a similarity query,
the MAMs exclude many non-relevant equivalence classes
from the search (based on metric properties of J), so only
several candidate classes of objects have to be exhaustively
(sequentially) searched. In consequence, searching a small
number of candidate classes turns out in reduced computation
cost of the query. For a comprehensive survey on MAMs,
we refer to [7], [8] or monographs [6], [9]. Again, we have
to emphasize the assumption on computationally expensive
distance metric ¢ (i.e., > O(n), where n is the size of
object 0;). In other words, the real time spent in distance
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computations is assumed to dominate the real time spent in
other parts of MAMS’ algorithms (including I/O cost).

1.1 Motivation for Distance Caching

Importantly, after a metric index is built, the existing MAMs
solve every query request separately, that is, every query is
evaluated as it would be the only query to be answered.
In general, no optimization for a stream of queries (query
requests spread in time) has been considered for MAMs up to
date. Instead, huge efforts were given to “materializing” the
filtering knowledge into the index file itself.

In this paper, we change this paradigm and propose a
structure for caching distances computed during the current
runtime session. The distance cache ought to be an analogy to
the classic disk cache widely used in database management to
optimize I/O cost. Hence, instead of sparing 1/Os, the distance
cache should spare distance computations. A desired feature of
distance cache should be its universal usage with all MAMs,
similarly like disk caching is universal for standard I/O man-
agement. The main idea behind the distance caching resides in
approximating the requested distances by providing their lower
and upper bounds “for free”. Since some “useful” distances
could have been computed during previous querying/indexing,
such distances could still “sit” in the distance cache and thus
could be used to infer (more or less tight) approximations of
distances we request.

1.2 Paper Contribution

We present D-cache (distance cache), a tool for general metric
access methods that helps to reduce the cost of both, indexing
and querying. The basic task of D-cache is to cheaply de-
termine tight lower- and upper bound of an unknown distance
between two objects, based on stored distances computed dur-
ing previous querying and/or indexing. Although the D-cache
was already introduced in our preliminary work [10], it was
applied in a more narrowed context — as a tool for efficient
index-free similarity search (resulting in a new method, the
D-file). Moreover, in this paper we not only employ the
D-cache in various MAMs, but we present a completely re-
designed D-cache variant that is more effective (provides
tighter lower/upper bounds) and also more efficient (faster
bound determination) than the previous version.

2 MEeTRIC ACCESS METHODS

In the following, we consider three out of dozens of existing
MAMs — the sequential file (a trivial MAM), the Pivor Tables,
and the M-tree. Later in the paper we will consider extensions
of these MAMs by the announced D-cache structure.

2.1 Sequential File

The sequential file is simply the original database, where any
query involves a sequential scan over all the database objects.
For a query object ¢ and every database object o;, a distance
d(q,0;) must be computed (regardless of query selectivity).
Although this kind of “MAM?” is not very smart, it does not
require any index (and no indexing), which can be useful in
many situations (as discussed in Section 4.1).

2.2 Pivot Tables

A simple but efficient solution to similarity search represent
methods called pivot tables (or distance matrix methods). In
general, a set of p objects (so-called pivots) is selected from
the database, while for every database object a p-dimensional
vector of distances to the pivots is created. The vectors
belonging to the database objects then form a distance matrix
— the pivot table. When performing a range query (g, rad),
a distance vector for the query object ¢ is determined the
same way as for a database object. From the query vector and
the query radius rad a p-dimensional hyper-cube is created,
centered in the query vector (query point, actually) and with
edges of length 2rad. Then, the range query is processed
on the pivot table, such that vectors of database objects that
do not fall into the query cube are filtered out from further
processing. The database objects that cannot be filtered have
to be subsequently checked by the usual sequential search.
There have been many MAMs developed based on pivot
tables. The AESA [11] treats all the database objects as pivots,
so the resulting distance matrix has quadratic size with respect
to the database size. Also, the search algorithms of AESA
is different, otherwise the determination of a query vector
would turn out in sequential scan of the entire database. The
advantage of AESA is empirical average constant complexity
of nearest neighbor search. The drawback is quadratic space
complexity and also quadratic time complexity of indexing
(creating the matrix) and of the external CPU cost (loading
the matrix when querying). The LAESA [12] is a linear
variant of AESA, where the number of pivots is assumed far
smaller than the size of the database (so that query vector
determination is not a large overhead). The concept of LAESA
was implemented many times under different conditions, we
name, e.g., TLAESA [13] (pivot table indexed by GH-tree-like
structure), Spaghettis [14] (pivot table indexed by multiple
sorted arrays), OMNI family [15] (pivot table indexed by
R-tree), PM-tree [16] (hybrid approach combining M-tree and
pivot tables). In the rest of the paper we consider the simplest
implementation of pivot tables — the original LAESA.

2.3 M-tree

The M-tree [17] is a dynamic index structure that provides
good performance in secondary memory (i.e., in database
environments). The M-tree is a hierarchical index, where some
of the data objects are selected as centers (local pivots) of ball-
shaped regions, while the remaining objects are partitioned
among the regions in order to build up a balanced and compact
hierarchy of data regions, see Figure 1. Each region (subtree)
is indexed recursively in a B-tree-like (bottom-up) way of
construction.

The inner nodes of M-tree store routing entries rout;(0;) =
[0i,7ad,,, §(0s, Par(o;)), ptr(T(0;))], where o; € S is a data
object representing the center of the respective ball region,
rad,, is a covering radius of the ball, §(o;, Par(o;)) is
the so-called fo-parent distance (the distance from o; to the
object of the parent routing entry), and finally ptr(T(0;)) is a
pointer to the entry’s subtree. The data is stored in the leaves
of M-tree. Each leaf contains ground entries grnd(o;) =
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[0i, (04, Par(0;))], where o; € S is an indexed database
object and §(o;, Par(o;)) is, again, the to-parent distance.

[ [6ar= w0559 ] |

ptr(T(O4))
‘ 0,, 5(04,04)‘03, 5(03,04)‘ ‘
gnd(O4)é  grnd(O3)é

ptr(T(O5))

Fig. 1. M-tree (hierarchical space decomposition and the
tree structure).

Range and kNN queries are implemented by traversing the
tree, starting from the root. Those nodes are accessed, whose
parent regions (described by the routing entries) are overlapped
by the query ball (g, rad). In case of a kNN query the radius
rad is not known beforehand, so we have to additionally
employ a heuristics to dynamically decrease the radius during
the search (initially set to oo). The kNN algorithm performs
a best-first traversal of the index, where regions are accessed
in the order of increasing lower bound distance to q.

2.3.1 M-tree Construction

In the original M-tree proposal [17], the index was constructed
by multiple dynamic insertions, which consisted of two steps.
First, an appropriate leaf node for the newly inserted object
is found by traversing a single path in the tree (so-called
single-way leaf selection). Second, if a leaf gets overfull after
the insertion, it is split, such that two objects from the split
leaf are selected as centers of the new two leafs, while the
remaining objects within the split leaf are distributed among
the new leafs. Simultaneously, the new centers form new
routing entries that are inserted into the parent node (if the
parent gets overfull as well, the splitting proceeds recursively).

In addition to the original M-tree, in this paper we con-
sider also recent advanced techniques of dynamic M-tree
construction [18]. In particular, we consider the multi-way leaf
selection. Although the multi-way selection is more expensive
than the single-way variant, the target leaf is more appropriate
for the newly inserted object. Specifically, a point query is
issued, such that from all the “touched” leaves the selected
one has its center closest to the newly inserted object. Another
improvement in M-tree construction is adopting the well-
known technique of forced reinsertions. When a leaf is about
to split after a new insertion, some objects are removed from
the leaf and inserted again into the M-tree under the hope they
will not all arrive into the same leaf again (thus avoiding the
split). Both of the advanced construction techniques (multi-
way leaf selection and forced reinsertions) lead to more
compact M-tree hierarchies, which, in turn, leads to faster
query processing.

3 D-CACHE

We propose a non-persistent (main-memory) structure called
D-cache (distance cache), that stores distances already com-
puted by a MAM. We consider a single runtime session of a
search engine, that is, a contiguous usage of a MAM for a
sequence of queries, insertions, or both. The track of distance
computations is stored as a set of triplets, each of form:

[id(0:), id(05), (04, 05)]

where id(0;),id(0;) are unique identifiers of objects o;,0;,
and &(o;, 05) is their distance.

To distinguish between the roles of “active and passive
objects”, we use the term runtime object, that denotes an
object that is currently subject to an operation on MAM
(either query or insertion). Once the operation is finished, the
respective object becomes past runtime object, meaning either
a regular database object (after an insertion) or a past query
object. All objects are uniquely identified, regardless of their
role (query, inserted object, database object). For instance, the
runtime objects could be identified by the order they enter the
index (forever, i.e., also for their past-runtime role), where as
“entering” we mean either an insertion or a query.

Instead of considering a set of triplet entries, we can view
the content of D-cache as a sparse matrix

01 02 03 On
o1 012 013

D = 02 521 62n
03
Om 5m1 5m3

where the rows and columns refer to objects, and the cells
store the respective object-to-object distances. Naturally, as
new runtime objects appear during the session, the matrix gets
larger (in number of rows and/or columns). At the beginning
of the session the matrix is empty, while during the session
the matrix is being extended and filled. Note that runtime
objects do not have to be external, that is, a runtime object
could originate from the database (e.g., a query or a re-
inserted object). From this point of view, an object could
have different roles at different moments, however, the unique
objects identification ensures the D-cache content is correct.

Because of frequent insertions of triplets into D-cache,
the matrix should be efficiently updatable. Moreover, due to
operations described in the next subsection, we should be able
to quickly retrieve the value of a particular cell.

3.1

The desired functionality of D-cache is twofold:

First, given a pair runtime object/database object (r, o), the
D-cache should quickly determine the exact value J(r,0) in
case the distance is stored in the D-cache. However, as the
exact value could only be found when the actual distance was
already computed previously in the session, this functionality
is limited to rather special cases, like re-indexing of data ob-
jects (or index rearrangements), repeated queries or querying
by database objects.

Principle of D-cache
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The second functionality, which is the main D-cache con-
tribution, is more general. Given a runtime object r and
a database object o on input, the D-cache should quickly
determine the tightest possible lower or upper bound of
d(r, 0) without the need of an explicit distance computation.
This cheap determination of lower/upper bound distances then
serves a MAM in order to filter out a non-relevant database
object or even a whole part of the index. Let us denote a
lower-bound distance of d(r,0) as d;,5(r,0) < §(r,0) and an
upper-bound distance as dy p(r,0) > 6(r, 0).

In order to facilitate the second functionality, we have to
feed the D-cache with relevant information about the involved
objects. In particular, we would like to know distances to some
past runtime objects dp] which are very close to or very far
from the current runtime r, that is, suppose for a while we
know some 6 (dp7,r),d(dp5,7), ... These past runtime objects
will serve as dynamic pivots made-to-measure to 7. Formally
defined, dp] € DP C PR C U, where PR is the set of
all past runtime objects within the current session and DP is
an actual set of selected dynamic pivots (see the next section).
Regarding the size of D P, we could choose either DP = PR,
or set a fixed size |DP| = k < |PR)|. Note that dynamic pivots
could originate outside the database S (necessary for queries
and newly inserted objects).

maxima
lower-bound
distance

~dp,
minimal
upper-bound
distane

Fig. 2. Lower/upper bounds to 4(r, o).

Since the dynamic pivots are supposed either close to r or
far from r, they should be effective for pruning by a MAM
(they provide tight approximations of §(r, 0;) distances). After
the dynamic pivots are selected, the lower/upper bound dis-
tances are constructed using the distances d(dp?, o) still “sit-
ting” in the D-cache matrix, where they were inserted earlier
during the session. In particular, with respect to dp; and avail-
able distances (dpj,o0) in the matrix, mazgpr{|0(dp},0) —
d(dpl,r)|} is the tightest lower-bound distance &5 (r,0).
Similarly, ming,r{d(dpj,0)+3(dp;,r)} is the tightest upper-
bound distance oy (7, 0). See the situation in Figure 2.

3.1.1

In the past decade, there were many sophisticated techniques
for selection of effective pivots developed, allowing an ef-
ficient similarity search [19], [20]. This classic approach
assumes the pivot selection procedure as a part of the index-
ing/preprocessing phase (e.g., before the distance matrix for
pivot tables is established). However, in D-cache the dynamic
pivots have to be selected at the moment a query or insertion

Selection of Dynamic Pivots

starts. So, there is not much room for preprocessing, such as an
expensive pivot selection, even though we select pivots from
a rather small set of past runtime objects. Hence, we propose
the following cheap pivot selection technique.

We need to choose some k runtime objects from all of the
past runtime objects before the current runtime processing
actually starts (i.e., before processing a query or insertion).
Based on observations taken from the preliminary work on D-
cache [10], we consider just the recent selection policy. That
is, the k most recent runtime objects are selected as dynamic
pivots, because it is more probable that recent runtime objects
have more distances stored in the D-cache than the older ones
(i.e., not replaced by other distances, see Section 3.3.2).

After the dynamic pivots are determined, their distances to r
have to be computed. Note that this is the only moment where
some extra distances are explicitly computed, that would not
be computed when not using D-cache.

3.2 Distance Matrix Structure

Because the main memory is always limited and the distance
matrix could expand to an enormous size, we need to choose
a compact data structure that consumes a user-defined portion
of main memory. In order to provide also fast retrieval, the
D-cache implements the distance matrix as a linear hash table
consisting of entries [id1,id2, (041, 0i42)]. The hash key
(pointing to a position in the hash table) is derived from the
two ids of objects whose distance is being retrieved or stored.
In addition, there is a constant-size collision interval de-
fined, that allows to move from the hashed position to a
more suitable one (due to replacement policies, see below).
However, in order to keep the D-cache as fast as possible,
the collision interval should be very small, preferably just one
position in the hash table (i.e., only the hashed position).

3.2.1 Hashing Function
To achieve uniform distribution of the hashed distances, we
consider two variants of hashing function f, both taking two
integer numbers ¢d1,id2 as arguments (the ids of objects).
Simple. The faster variant of f multiplies the ids (modulo
the size D of hash table), i.e., f(id1,id2) = (id1-id2) mod D.
The motivation here is that we expect the ids entering the
hashing function are random combinations, so the simple
multiplication should produce distribution uniform enough.
Universal. A slightly slower variant of f is based on the
Simple variant and on universal hashing [21]. Let p be a
large prime (p > D), and let a,b be two random integer
numbers smaller than p. All the numbers p,a,b are fixed
during D-cache lifetime. Then, the hashing function is defined
as f(idl,id2) = ((a - idl - id2 4+ b) mod p) mod D.

3.3 Operations on D-cache

The D-cache is initialized by a MAM when loading the index
(the session begins). Besides the initialization, the D-cache is
also notified by a MAM whenever a new query/insertion is to
be started (the MAM calls method StartRuntimeProcessing
on D-cache). At that moment, new runtime object r is an-
nounced to be processed, which also includes the computation
of distances from 7 to the k actual dynamic pivots dp;.
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3.3.1

The main D-cache functionality is operated by methods Get-
Distance and GetLowerBoundDistance', see Algorithm 1.

Distance Retrieval

Algorithm 1: (GetDistance, GetLowerBoundDistance)

double GetDistance(r, o;) {
let minld = min(id(r), id(0;)), maxld = max(id(r), id(o;))
let Cl = size of collision interval
let h = GetHash(minld, maxId) // hashing function f, see Sec. 3.2.1
fori=1toCl // every + is modulo hash table size
if hashTable[h + i].id1 = minld and hashTable[h + i].id2 = maxId then
return hashTable[h + i].distance
return nil }

double GetLowerBoundDistance(r, o;) {

let k& be the number of pivots to use
let D P be the set of & dynamic pivots and their distances to r
if GetDistance(r, o;) # nil then

return GetDistance(r, o;)
let value = 0
for each p in DP do

if GetDistance(p, o;) # nil then

value = max(value, |GetDistance(p, 0;) —d(r, p)|)

return value }

The number of dynamic pivots (k¢ = |DP]|) used to
evaluate GetLowerBoundDistance is set by the user, while
this parameter is an exact analogy to the number of pivots
used by Pivot tables, e.g., LAESA. There exists no general
rule for the automatic determination of the number of pivots
[19], [20], especially when minimizing the realtime cost rather
than just the number of distance computations. In general, the
effective number of pivots depends on the (expected) size of
the database, its intrinsic dimensionality (see Section 6.1.1),
the computational complexity of the used metric, the pivot set
quality itself, etc. The same reasons apply also for D-cache.

3.3.2 Distance Insertion

Every time a distance §(r, 0;) is computed by the MAM, the
triplet [id(r),id(0;),d(r, 0;)] is inserted into the D-cache (the
MAM calls method InsertDistance on D-cache). Since the
storage capacity of D-cache is limited, at some moment the
collision interval in the hash table for a newly inserted distance
entry is full. Then, some older entry within the collision
interval has to be replaced by the new entry. Or, alternatively,
if it turns out the newly inserted distance is less useful than
all the distances in the collision interval, the insertion of the
new distance is canceled.

Note that we should prioritize replacing of such entries
[id1,id2,6(0iq1, 0iq2)] Where none of the objects 0;41, 0;42
belongs to the current set of k dynamic pivots anymore.
Naturally, the distances of such obsolete entries cannot be
effectively utilized to determine a lower- or upper bound
distance, because for a current runtime r only the distances
to the k£ most recent runtimes are useful. In particular, we
consider two policies for replacement by a new entry:

Obsolete. The first obsolete entry (i.e., not containing id of
a current dynamic pivot) in the collision interval is replaced.
In case none of the entries in the collision interval is obsolete,
the first entry is replaced by the new entry.

1. GetUpperBoundDistance is similar, but the value is initialized to co
and updated as value = min(value,GetDistance(p, 0;) + 6(r, p)).

ObsoletePercentile. This policy includes two steps. First,
we try to replace the first obsolete entry as in the Obsolete
policy. If none of the entries is obsolete, we replace an entry
with the least useful distance. As we have mentioned in
Section 3.1, a good pivot is either very close to or very far from
the database objects. Because the entries in D-cache consist of
distances from dynamic pivots to database objects, we should
preserve entries with large and small distances and get rid of
those close to a “middle” distance. Hence, among all entries in
the collision interval the entry that is closest to the “middle”
distance is the least useful, thus it is replaced. Of course, it
might turn out the least useful distance (closest to the “middle”
distance) is that of the newly inserted entry. In such case the
D-cache is not updated by the new entry at all.

Ideally, the “middle” distance should be represented by
the median distance among objects in the database, that is,
a distance value d,, where 50% of the computed distances
are greater and the other 50% distances are smaller than d,,,.
However, it might turn out that an optimal value for D-cache
is not the median distance but a distance belonging to another
percentile. Hence, we relax the term “middle” distance to
allow not only the fixed median distance (i.e., 50% percentile)
but also a distance belonging to a user-defined percentile?.

The method InsertDistance, including entry replacement,
is precisely described in Algorithm 2. The method IsObsolete
checks if either of the two ids appears in the actual set of &
dynamic pivots’ ids (if not, it is an obsolete entry).

Algorithm 2: (InsertDistance)

InsertDistance(r, 0;, dnew) {
let minld = min(id(r), id(o;)), maxld = max(id(r), id(o;))
let Cl = size of collision interval
let d,,, be the distance belonging to a user-defined percentile
let h = GetHash(minld, maxId)
let finalH = h
if entry replacement heuristics is Obsolete then {
fori=1toCl /I every + is modulo hash table size
if IsObsolete(hashTable[h+i]) then
finalH=h +i
break for
} else if entry replacement heuristics is ObsoletePercentile then {
let fitness = 0
let dNew = |d,, — dpew|
fori=1toCl
if not IsObsolete(hashTable[h + i]) then
dOld = |d,,, — hashTable[h + i].distance|
if dNew > dOId and fitness < dNew — dOId then

// every + is modulo hash table size

finalH = h +i
fitness = dNew — dOId /I the greater fitness, the better
else // obsolete entry found
finalH = h + i, fitness = 1
break for

if fitness = 0 then return } // do not replace (new distance is bad)
set hashTable[finalH] = [minld, maxld, d,,cw] } // finally, replace the entry

3.4 Filtering by D-cache

The D-cache can be widely used with any metric access
method. In particular, MAMs index data either in ball-shaped
metric regions (e.g., (m)vp-tree, (P)M-tree, D-index) or in
Voronoi-based regions (e.g., gh-tree, GNAT). Hence, there are
basically three low-level filtering predicates used by MAMs

2. The calculation of percentile distances d, is obtained for free during
the indexing phase of a MAM, using the distance distribution histogram.
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to answer a query (or to insert new database object) — two
predicates for ball-shaped and one for Voronoi-based regions.
The most common queries (range and kNN) have also the
shape of a ball.

When employing D-cache, the MAMs’ filtering predicates
can be weakened to be used with lower/upper bound distances
inferred from D-cache, instead of computing an exact §
distance. Generally, the predicates can be weakened such that
any form d(-,-) +... < is turned into dyp(-,-) + ... < and any
d(-y-)—...>into d(-, ) —... >. This adjustment is correct,
since it underestimates the filtering hits, that is, weakened form
implies the original one, but not vice versa (see Figure 3).

3.4.1 Filtering of Ball-shaped Regions

The ball-shaped regions are generally of two kinds — a simple
ball and/or a ring.

(A) Ball data regions

Querying: Having a query ball (¢, 7ad,) and a ball-shaped
data region (o;,rad,,), the data region can be excluded
(filtered) from the search if the two balls do not overlap, that
is, in case that predicate

5(q7 Oi) >

is true (see Figure 3a). Note that this simple predicate applies
also on filtering database objects themselves (rather than
regions), considering just DB object o;, i.e. rad,, = 0.

radg + rad,, (D

Indexing: Let us now consider ¢ as a new object to be
inserted and rad, = 0. Then the predicate (1) can be used to
filter a data region which cannot cover the new object (without
enlarging the radius rad,, ).

D-cache usage: Prior to an application of predicate (1), a
MAM could use its weakened form

0rB(q,05) > rady+rad,, (2)

Since D-cache provides the lower bound 61,5 (g, 0;) for free,
the index region (o;, rad,,) could be filtered out by predicate
(2) without the need of computing (g, 0;) otherwise required
to apply predicate (1).

(B) Ring data regions

Some MAMs ((m)vp-tree, (P)M-tree, D-index) combine two
balls to form a ring, which is a pair of two concentric balls —
the smaller one is regarded as a hole in the bigger. In order to
determine an overlap with query ball (or inserted object), the
predicate (1) alone cannot be used to determine that a query
ball is entirely inside the hole. Hence, we use predicate

0(g,0i) < rad,, —rad, 3)

to determine whether the query ball is entirely inside the hole
(see Figure 3b). A query ball is not overlapped by a ring
region in case (1) is true for the bigger ball or (3) is true for
the smaller ball (hole). For insertion of a new database object
the predicates (1) and (3) are used in a similar way.

D-cache usage: Prior to an application of predicate (3), a
MAM could use its weakened form

dup(g,0i) < rady, —rad, €]

8.5(0,0) > radq * radg; 8,6(q,0)) < radg;- rady 8.5(q,p) - rady > 8,5(0; q) + rad,
= = =
8(q,0) > radg +radg;  3(q,0) < radg;- rad,  8(q.p) - rad, > 3(0, q) * rad,

(a) (b) (©)

Fig. 3. (a) Ball-ball overlap (b) Hole-ball containment
(c) Halfspace-ball overlap.

3.4.2 Filtering of Voronoi-based Regions

Several MAMs (gh-tree, GNAT, M-index) partition the metric
space by use of a border composed of “Voronoi hyperplanes”.
Given m pivot objects, the border is formed by all such points
of the universe, which are equally distant to two of the pivot
objects and farther from the rest of objects.

A region assigned to pivot object p does not overlap a query
region (g, rad,) if the following predicate is true

Yoj: 0(¢q,p) —rad, > 6(q,05) + rad, %)

where Vo, are the remaining pivot objects (see Figure 3c).

D-cache usage: Prior to an application of predicate (5), a
MAM could use its weakened form

Yo;: dOrp(q,p) —rad, > dup(q,o0;)+rad, (6)

3.5 Use of D-cache in Approximate Similarity Search

In addition to exact search by MAMs, the D-cache may also be
used to improve the efficiency of approximate similarity search
techniques [22]. In these techniques, the search algorithm
saves search cost at the cost of possibly not retrieving the
exact answer (i.e., all relevant objects for the given query).
That is, they provide a trade-off between the efficiency and
the effectiveness of the similarity search.

Similarly to search algorithms in MAMs, approximate al-
gorithms can take advantage of lower or upper bound distance
estimations to avoid distance computations. For example, the
probabilistic incremental search approach [23] fixes a number
of distance computations to be performed by the search
algorithm. Once a distance is computed, the algorithm decides
if it must continue searching or not in a particular branch of
the search hierarchy. By using D-cache, the discarding process
could be done without actually computing that distance (using
the returned lower bound distance), thus saving it for further
searching in the hierarchy. This will improve the effectiveness
of the search, as more branches of the hierarchy will be visited.

3.6 Analysis of D-cache Performance

A fast implementation of D-cache functionality is crucial
for its efficient employment by MAMs. Specifically, this re-
quirement applies to the function GetLowerBoundDistance
and method InsertDistance due to their frequent use dur-
ing querying/indexing. A D-cache-enhanced MAM would be
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faster in realtime only in case the D-cache overhead would not
be dominant. In particular, employing computationally expen-
sive distance functions ¢ promises the speed-up in realtime will
approach the reduction in distance computations (which is the
theoretical speed-up maximum). Although the mentioned func-
tions do not compute even a single distance §, for an improper
parameterization their realtime overhead might be significant.
First of all, the overall cost of GetLowerBoundDistance
and InsertDistance is proportional to the number of dynamic
pivots k. Thus, to obtain effective usage of D-cache, k£ must
be reasonably small. Second, the size of collision interval can
heavily affect the D-cache performance, because sequential
processing of the collision interval affects the realtime cost
linearly. Although a large collision interval usually leads to
better replacement of distances, the resulting heavy slowdown
may not be a good trade-off. Third, the hashing function is
called frequently in GetLowerBoundDistance, so it should
be as fast as possible but, at the same time, providing good
enough distribution of keys.

In the experimental evaluation, we present different settings
affecting the discussed performance issues. Basically, for
smaller D-cache the collision interval of size 1 and simple
hashing is the best, while for larger D-cache the interval of
size 5 and universal hashing is slightly better. Regarding the
dynamic pivots, their optimal number is heavily dependent on
the database settings, while in our experiments it turns out that
several tens to a few hundred pivots perform the best.

4 ENHANCING MAMSs BY D-CACHE

In this section, we discuss the modifications of three MAMs
that take advantage of D-cache for both querying and indexing.

4.1

Although not a proper MAM, the sequential search over the
database can be enhanced by D-cache to speed the search. In
Algorithms 3, 4 see the adjusted range and kNN query.

Enhancing Sequential Search — the D-file

Algorithm 3: (D-file range query)

set ScanRangeQuery(q, rady) {
Dcache.StartRuntimeProcessing(q)
for each o; in database do
if Dcache.GetLowerBoundDistance(q, 0;) < rad, then
compute 6(q, o;); Dcache.InsertDistance(q, 0;, 6(q, 0;))
if (¢, 0;) < rad, then add o; to the query result }

/I D-cache filt.

// basic filtering

We have to emphasize that the D-cache together with
sequential search could be used as a standalone metric access
method that requires no indexing at all. We call the enhanced
sequential search as the D-file, introduced recently in its
preliminary version as a tool for index-free similarity search
[10]. Hence, it could be used in situations where indexing
is not possible or too expensive. Generally, any form of
indexing requires at least linear time to construct an index for
a database (but typically more, e.g., O(n log n) or O(n?)).
Thus, indexing is beneficial just in case we assume many
queries, so the indexing cost will be amortized by the overall
decreased query cost.

Algorithm 4: (D-file KNN query)

set kNNQuery(q, k) {
Dcache.StartRuntimeProcessing(q)
let NN be array of k pairs [0;, (g, 0;)] sorted asc. wrt §(gq, 0;),
initialized to NN = [[—, o], ...
let radg denotes the actual distance component in NN (k]
for each o; in database do
if Dcache.GetLowerBoundDistance(q, 0;) < rad, then // D-cache filtering
compute 6(q, o;); Dcache.InsertDistance(q, 0;, 6(q, 0))
if 6(q,0;) < rad, theninsert [0;,6(q, 0;)] into NN
return NN as result }

3[_700]]

/I basic filtering

4.1.1 Motivation for Index-free Similarity Search

In some scenarios, the indexing (and even dynamic updates)
represents an obstacle. In the following, we briefly discuss
three such scenarios.

“Changeable’ databases. In many applications we encounter
databases intensively changing over time, like streaming
databases, archives, logs, temporal databases, where new data
arrives and old data is discarded frequently. Alternatively, we
can view any database as ‘“changeable” if the proportion of
changes to the database exceeds the number of query requests.
In highly changeable databases the indexing efforts lose their
impact, since the expensive indexing is compensated by just
a few efficient queries. In the extreme case (e.g., sensory-
generated data), the database could have to be massively
updated in real time, so that any indexing is unpractical.
Isolated searches. In complex tasks, e.g., in data mining, a
similarity query over a single-purpose database is used just as
an isolated operation in the chain of all required operations to
be performed. In such case the database might be established
for a single or several queries and then discarded. Hence,
index-based methods cannot be used, because, in terms of the
overall costs (indexing+querying), the simple sequential search
would perform better.

Arbitrary similarity function. Sometimes the similarity mea-
sure is not defined a priori and/or can change over the
time. This includes learning, user-defined or query-defined
similarity. In such case, any indexing would lead to many
different indexes, or is not possible at all.

To address the three scenarios, the D-file, as the “founding
father” of index-free MAMs, could be the solution. We also
emphasize that D-file should not be viewed as an index-
based MAM that just maintains its temporary index in main
memory. We see the difference between index-based and
index-free methods not only in the main-memory organization,
but mainly in the fragmentation of “indexing”. While index-
based MAMs cannot search the database before the indexing
is finished, the index-free MAMs are allowed to search the
database instantly. Moreover, as the “indexing step” (updating
the D-cache) is performed during the query, the indexing vs.
query efficiency trade-off remains balanced at any time.

4.2 Enhancing Pivot Tables

When considering range queries in Pivot tables, like LAESA,
we have to discuss two steps (for details see Section 2.2). First,
there is filtering by pivots® performed, where a query vector

3. Here we consider regular (static) pivots of Pivots tables. Please, do not
confuse pivot tables’ (static) pivots with D-cache’s dynamic pivots.
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is computed, a query box is established, and all the distance
matrix rows are checked if they fall inside the query box.
If not, these objects are filtered out from further processing,
while the non-filtered objects are processed in the second
(refinement) step by usual sequential search.

In the first step (filtering by pivots) the only moment of
computing § is the construction of query vector. Then, the
pivot table is checked against the query box which does not
require any distance computation. Hence, the D-cache is not
needed in the first step. On the other hand, it could be utilized
in the second (refinement) step when sequentially searching
the non-filtered candidate objects. In fact, we can view the set
of non-filtered objects as a (small) sequential file, where the
D-cache could be utilized the same way as in the D-file.

Since the distance matrix consists of exact distance values
that are not repeating, the D-cache cannot be used for indexing.
We implemented the D-cache-enhanced querying into Pivot
tables and called the new MAM as D-Pivot Tables (or D-PT).

4.3 Enhancing M-tree

In M-tree, the cheap filtering step based on D-cache is placed
between the parent filtering (also cheap) and the basic filtering
(expensive), see Algorithm 5.

Algorithm 5: (D-M-tree range query)

D-MtreeRangeQuery(Node N, RQuery (¢, radg)) {
let rout(p) be the parent routing entry of NV
/I'if N is root then let 5 (o;, p)=d(p, q)=0
if NV is root then Dcache.StartRuntimeProcessing(q)
if V is not a leaf then {
for each rout(o;) in N do
if [6(p, q) — 0(0i,p)| < rady + rad,, then /I parent filtering
/I D-cache filtering
if Dcache.GetLowerBoundDistance(q, 0;) < radq + rado, then
compute 6(q, o;); Dcache.InsertDistance(q, 0;, 6(q, 0;))
if §(0i, q) < rady + rad,, then // basic filtering
D-MtreeRangeQuery(ptr (T (0;)), (g, rady))
} else {
for each grnd(o;) in N do
if |6(p,q) — 6(0i,p)| < radg then /I parent filtering
/I D-cache filtering
if Dcache.GetLowerBoundDistance(q, 0;) < rad, then
compute é(q, 0;); Dcache.InsertDistance(q, 0;, 6(q, 0;))
if 6(0i,q) < radg then // basic filtering
add o; to the query result } }

Furthermore, the D-cache can be used also to speed up the
construction of M-tree, where we use both the exact retrieval of
distances (method GetDistance) and also the lower-bounding
functionality. The node splitting in M-tree often uses the
expensive mM_RAD heuristics, where a distance matrix is com-
puted for all pairs of node entries. The values of this matrix can
be stored in D-cache and some of them reused later, when node
splitting is performed on the child nodes of the previously split
node. Similarly, when using forced reinsertions, the distances
related to the inserted objects reside in the D-cache and could
be used when reinserting some of the objects in the future.
Moreover, when employing the expensive multi-way insertion,
the D-cache could be used also in the “non-exact” way (using
lower bounds similarly as by querying). We implemented the
D-cache-enhanced indexing+querying into M-tree and called
the new MAM as D-M-tree.

5 RELATED WORK

To the best of our knowledge, there are no other approaches
to distance caching for general MAMs. The most similar
proposed approaches are in the line of bulk loading for batch
insertion or processing multiple queries at once. However, in
this case the data/queries need to be available beforehand, i.e.,
we cannot consider a continuous stream of queries or inser-
tions. While in the literature it has been proposed the use of
different kinds of “caching” in the context of multidimensional
databases (e.g., caching in distributed systems [24], or a “L2
cache conscious” main-memory multidimensional index [25]),
they do not take advantage of the computed distances at query
time to speed up (future) similarity queries.

5.1

One idea that actually uses cached distances for range queries
with an M-tree was proposed by Kailing et al. [26]. For each
query, the distances computed from each routing object to the
query are cached. In this way, if there are duplicated routing
objects at different levels of the M-tree, their distance to the
query object will be computed only once. As the memory cost
of saving these distances is proportional to the height of the
tree, the extra space needed is “tolerable” [26]. However, the
computed distances at each node are deleted from the cache
once the recursive search function leaves a node. Therefore, no
distances are saved for future queries, and they are only useful
if the cached distance between the same two objects needs
to be computed again. Moreover, as duplicate routing objects
are rare in M-tree (with respect to all examined objects), the
savings in distance computations are rather negligible.

Caching Distances in M-tree

5.2 Batch indexing and querying

The basic idea of bulk loading is to create the index from
scratch but knowing beforehand the database, thus some
optimizations may be performed to obtain a “good” index for
that database. Usually, the proposed bulk loading techniques
are designed for specific index structures, but there have been
proposals for more general algorithms. For example, in [27]
the authors propose two generic algorithms for bulk loading,
which were tested with different index structures, like the
R-tree and the Slim-tree. Note that the efficiency of the index
may degrade if new objects are inserted after its construction.
Recently, a parallel approach to insertion of a batch of objects
was proposed for the M-tree [28].

Another approach for improving the efficiency of MAMs is
the simultaneous processing of multiple queries [29]. Instead
of issuing many single queries, the idea is to process a
batch of similarity queries aiming at reducing I/O cost and
computation cost. The proposed technique reduces the 1/0 cost
by reading each disk page only once per batch of similarity
queries, and it reduces the CPU cost by avoiding distance
computations. An avoidable distance computation is detected
by computing the distances between query objects and then
using these distances, together with the triangle inequality,
to compute lower bounds of the distances between queries
and database objects. If the lower bound distance is greater
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than a given tolerance radius for the similarity search, then
the distance calculation is avoidable. The proposed technique
is general, and it can be implemented based on a MAM or
using a sequential file. However, besides the requirement to
know all the queries beforehand, it also requires computing
the distances between each pair of query objects to reduce
the CPU cost, and it does not take advantage of distance
computations between queries and database objects.

In [30] an approach to compute the % nearest neighbor graph
in metric spaces was proposed, which is equivalent to compute
n kNN queries, in (empirical) subquadratic time. However,
the set of query objects was restricted to the database objects,
which is only marginally meaningful in our framework.

5.3 Query Result Caching

In order to speed up the similarity searches, a recent approach
provides a mechanism of caching query results [31], [32].
Basically, the metric cache stores a history of similarity queries
and their answers (ids and descriptors of database objects
returned by the query). When a next query is to be processed,
the metric cache either returns the exact answer in case the
same query was processed in the past and its result still sits
in the cache. Or, in case of a new query, such old queries are
determined from the metric cache, that spatially contain the
new query object inside their query balls. If the new query
is entirely bounded by a cached query ball, a subset of the
cached query result is returned as an exact answer of the
new query. If not, the metric cache is used to combine the
query results of spatially close cached queries to form an
approximate answer. In case the approximate answer is likely
to exhibit a large retrieval error, the metric cache gives up
and forwards the query processing to the underlying retrieval
system/MAM (updating the metric cache by the query answer
afterwards). We emphasize that metric cache is a higher-level
concept that can be combined with any MAM employed in a
search engine. Hence, metric cache is just a standalone front-
end part in the whole retrieval system, while the underlying
MAM alone is not aware of the metric cache at all. On the
other hand, the following proposal of D-cache is a low-level
concept that plays the role of integral part of a metric access
method (that has to be adjusted to use D-cache functionality).
Nevertheless, both approaches could be combined in the future
(i.e., the metric cache in front of D-cache-enhanced MAMs).

6 EXPERIMENTAL EVALUATION

We have extensively tested the D-cache-enhanced MAMs (D-
file, D-M-tree, and D-Pivot tables) and their non-cached coun-
terparts (sequential search, M-tree, Pivot tables) to examine
the expected performance gain in indexing and querying. A
substantial attention in the experiments was given to the D-file,
which in some cases outperformed the index-based MAMs.
We have observed both the number of distance computations
as well as the real time spent by indexing/querying.

6.1 The Testbed

In order to examine the D-cache in very different conditions,
we used four databases (two vector spaces, one string space,

and one set space) and four metric distances (three expensive
and one cheap), as follows:

(1) A part of the CoPhIR [33] database (descriptors of
selected images from Flickr.com), namely, one million 282-
dimensional vectors (representing five MPEG7 features), and
the Euclidean distance as the similarity function (i.e., time
complexity O(n)).

(2) A database of Histograms (descriptors of images down-
loaded from Flickr.com, but different to CoPhIR), namely,
one million 512-dimensional histograms, and the quadratic
form distance [34] as the similarity function (i.e., complexity
O(n?)). As the image representation we used the standard
RGB histogram of dimensionality 512, where the R,G,B
components were divided in 8 bins each, thus 8*8*8 = 512
bins. Each histogram was normalized to have the sum equal
to 1, while the value of each bin was stored in a float. The
similarity matrix used for the quadratic form distance was
computed as described in [34], using similarity of colors in
the CIE Lab color space [35].

(3) The Listeria [36] database, namely 20,000 DNA sequences
of Listeria monocytogenes of lengths 200-7,000, and the edit
distance [37] as the similarity (i.e., complexity O(n?)).

(4) A synthetic Clouds database [38], namely 100,000 clouds
(sets) of 60 6-dimensional points (embedded in a unitary 6D
cube). For each cloud, its center was generated at random,
while the 59 remaining points were generated under normal
distribution around the center (the mean and variance in each
dimension were adjusted to not generate points outside the
unitary cube). Usually, clouds of points are used for simplified
representations of complex objects or objects consisting of
multiple observations [39]. As an appropriate distance metric,
we used the symmetric Hausdorff distance [40] for measuring
similarity between sets (maximum distance between a point
in one cloud to the nearest point in the other cloud). We used
the Euclidean distance as the internal point-to-point distance
within the Hausdorff distance (hence, leading to overall com-
plexity O(n?)). The Clouds database was included into the
experiments in order to examine a non-vectorial alternative to
the usual synthetic database of normally distributed vectors.

In experiments where the growing database size was con-
sidered, the particular database subsets were sampled from
the respective largest database at random. In the other experi-
ments, we used the entire databases in the case of Clouds and
Listeria, and random subsets of size 100,000 in the case of
CoPhIR and Histograms. Unless otherwise stated, each query
cost was an average over 500 queries using query objects not
included in the database.

6.1.1 Database Indexability

As the fundamental assumption on metric access methods
is their universal applicability on various kinds of data, the
experimental databases were chosen to represent very different
metric spaces. In addition to employing cheap (Euclidean) and
expensive (quadratic form, edit, Hausdorff) distance functions,
the databases also exhibited different intrinsic dimensionali-
ties. The intrinsic dimensionality [7] is a concept generalizing
the phenomenon of the curse of dimensionality into metric



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XX, NO.XX, JANUARY 201X 10

spaces, and is defined as p(S,d) = %, where 1 and o2 are

the mean and the variance of the distance distribution in the
database. Informally, a database where most of the objects are
far away from each other exhibits high intrinsic dimensionality
and so it is hard to index by any MAM. Conversely, a database
where some of the objects are close and some are distant
exhibits a low intrinsic dimensionality (i.e., there exist distinct
clusters). In this case, the MAMs are able to better separate
the data, thus performing similarity queries in an efficient way.

CoPhIR

,,,,,, A" ‘l ||||.

distance

Clouds

,Allilk

distance

Listeria Histograms

Fig. 4. Distance distribution in the databases.

distance probability density
distance probability density

distance probability density

distance

The Clouds, CoPhIR, and Histograms databases exhibited
high intrinsic dimensionalities (11.64, 7.5, 7.56, respectively),
and the Listeria database exhibited low intrinsic dimensionality
(1.19). Figure 4 shows the distance distribution on each partic-
ular database, where a wide and left-shifted “bell” means lower
intrinsic dimensionality, and vice versa. Since the intrinsically
low-dimensional databases were already efficiently indexed by
the MAMs not enhanced by D-cache, there was not as much
room to improve the indexing/search by the D-cache as in the
case of the high-dimensional databases.

6.1.2 MAM Settings

The M-tree, Pivot Tables, and sequential scan were tested
against their D-cache enhanced versions on all the databases.
For (D-)M-tree, the node degree was 25 in leaf nodes and
24 in inner nodes, while for its construction the mM_RAD
node splitting [17] and various object insertion policies were
employed [18]. The static pivots of (D-)Pivot Tables were
selected from the respective database at random.

6.1.3 D-cache Settings

Unless otherwise stated, the D-cache used 1,280,000 entries
(i.e., 19.5 MB of main memory) and 160 dynamic pivots
for the CoPhIR, Histograms, and Clouds databases, and it
used 64,000 entries (i.e., 1 MB of main memory) and 50
dynamic pivots for the Listeria database. When using the
ObsoletePercentile replacement policy, the percentile was set
to 36% for Clouds, 4% for Listeria, 15% for Histograms, and
50% for CoPhIR (these values were observed as optimal, as
discussed later). The D-cache was reset/initialized before every
query batch was started.

Table 1 describes the labels of particular MAM and D-cache
configurations used in the following figures.

6.2

Table 2 presents the index construction times for MAMs not
employing D-cache. As the sequential search and the D-file
are index-free methods, they were not included in the indexing
experiments.

Indexing

TABLE 1
Labels used in the figures.

Label  Description
M-tree_SW  M-tree built using single-way insertion [18]
M-tree the same as M-tree_SW
M-tree_SW_RI M-tree built using single-way insertion + forced reinsertions [18]
M-tree_MW M-tree built using multi-way insertion [18]
M-tree_MW_RI M-tree built using multi-way insertion + forced reinsertions [18]
PT_x Pivot Tables using z static pivots
D-mam  a particular MAM enhanced by D-cache (see Section 4)
Obs(cfg)  D-cache’s Obsolete replacing policy (see Section 3.3.2))
ObsPct(cfg) D-cache’s ObsoletePercentile policy (see Section 3.3.2)
cfg:
Cl=z: D-cache’s collision interval (see Section 3.2),
default is CI=5
H=Ssimple/Universal: D-cache’s hashing function (see Sec. 3.2.1),
default is H=Universal
Dc.size=x: size of D-cache in the number of distance entries
DB(z)  database containing  objects
TABLE 2
Index construction times (D-cache not used).
Database = MAM  Indexing time (seconds)
Clouds of points (100k) PT_I0 248.03
M-tree 1509.17
Histograms (100k) PT_10 307.23
M-tree 1724.84
Listeria (20k) PT_10 1277.88
M-tree 13050.98
CoPhIR (IM) PT_10 88.75
M-tree 335.89

The index construction times for M-tree and D-M-tree are
presented in Figure 5, showing the single-way leaf selection
variants (left figure) and multi-way leaf selection variants
(right figure). The results show that larger D-cache consider-
ably speeds the M-tree construction (up to 1.7x). Both of the
D-M-tree variants use the GetDistance method for indexing.
Since the multi-way leaf selection technique issues a point
query, it is reasonable to use also the GetLowerBoundDis-
tance in the D-M-tree_ MW variant. Also note that the D-M-
tree_SW_RI that uses extra forced reinsertions is even faster
than simple M-tree_SW.

Histograms

Histograms
D-M-tree construction

D-M-tree construction

65000

—+— M-tree_SW_RI
-4 M-tree_SW

—— D-M-tree_SW_RI
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Fig. 5. M-tree and D-M-tree construction, using single-
way (left figure) and multi-way (right figure) leaf selection.
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Fig. 6. 1NN queries on growing databases.

TABLE 3
Real times of sequential search.
Database  Query time (seconds)
Histograms (100k) 29.03
Clouds (100k) 21.10
Listeria (20k) 134.53
CoPhIR (1M) 4.60

6.3 Queries

The largest set of experiments was focused on kNN queries un-
der different D-cache and retrieval settings. Unless otherwise
stated, on databases that employed expensive distances we
present just the real times for queries, because the numbers of
distance computations followed exactly the same proportion.
In other words, when queried by the expensive distance met-
rics, the real time spent outside the code computing distances
was negligible. Also note that because the query objects were
outside the database (i.e., unknown to D-cache), the speed-up
achieved by D-cache was solely based on the lower-bounding
functionality (see Section 3.3).

Table 3 shows the baseline real times when searching a
database sequentially, regardless of the query selectivity. The
results confirm that the Euclidean distance (used on CoPhIR) is
very efficient, while the edit distance used on the long Listeria
sequences is very expensive.

6.3.1 Database Size

The first querying experiment was focused on the growing
database size while fixing the size of the D-cache used (see
Figure 6). We observe that for small databases there is enough
space in D-cache, so that distance replacements are not often
needed. However, for larger databases the D-cache gets filled
and the distance replacements are necessary. In such case, for

D-file the ObsPct replacement policy turns out to be more
effective for replacing “bad” distances, which results in a better
filtering and so in a faster query processing. On the other hand,
for the same D-cache size but the D-M-tree, the filling of D-
cache with distances is slower (because of more aggressive
filtering), so distance replacements are not often.
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6.3.2 Percentile Distances

In the second experiment we have investigated the percentile
distances that optimize the replacement of the least useful
distances in the D-cache, see Figure 7. Since the Clouds
database exhibits large intrinsic dimensionality, the proportion
of possibly “bad” distances that cannot be used for effective
lower-bound filtering is larger than in the Histogram database.
Hence, for Clouds database the ObsPct replacement policy that
prevents from storing the bad distances leads to faster querying
than the Obs policy. This effect is even magnified for smaller
D-cache sizes (up to 2x query speed-up).

6.3.3 D-cache Size

Next, we performed experiments with growing D-cache size
for various replacement policies, collision intervals, and hash-
ing functions (see Figure 8, where the D-cache size is the
number of distance entries allocated). Although for smaller
D-cache sizes the different settings lead to slightly different
querying performance, for larger D-cache sizes the differences
are negligible. Nevertheless, the ObsPct(CI=5, H=universal)
policy performed well under all circumstances.
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Fig. 9. Impact of the growing number of dynamic pivots.

6.3.4 Number of Dynamic Pivots

Figure 9 shows the impact of increasing number of dynamic
pivots used by D-cache. Instead of the usual 500 queries, we
present the averaged results over 1,000 queries for Clouds and
2,500 queries for Histograms, in order to justify the larger
numbers of dynamic pivots. Also note that in this experiment
we present both the real time and the number of distance
computations.

The superiority of ObsPct replacement policy is here con-
firmed. For a large number of dynamic pivots and when
replacing an entry in D-cache, the likelihood that the collision
interval contains an obsolete entry will be low because most
of the past runtime objects are still dynamic pivots. In such a

case when no obsolete entry is available, the Obs policy just
replaces the first entry found in the collision interval. On the
other hand, the ObsPct policy replaces the least “useful” entry
in the interval, based on the selected percentile distance.

To mention also the negative results, with a growing number
of dynamic pivots the time complexity of the methods Get-
LowerBoundDistance and InsertDistance increases, result-
ing in increased real time spend for querying. The overhead of
the mentioned methods is even more visible when using cheap
metric distances. To show a clear fail of D-cache, we present
results for the CoPhIR database searched under the Euclidean
distance. Observe in Figure 10 the discrepancy between the
real time and the number of distance computations spent for
query processing.
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6.3.5 kNN queries

The next experiment investigated the performance of kNN
queries on D-file, see Figure 11. Since for larger k& the number
of distance computations spent by querying increases, the D-
cache size becomes insufficient. This leads to less effective
query processing.

6.3.6 Number of Objects in the Query Batch

In the last test we examined the “warming” of D-cache, that
is, how many queries are needed to populate the D-cache to
be useful enough for filtering. Figure 12 shows the impact
of the growing query batch size, that is, the average cost of a
10NN query when running queries in differently sized batches
(each query batch runs as a single D-cache session). The trend
is obvious: the more queries, the more distances get into the
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D-cache which the subsequent queries can benefit from. The
difference is quite significant for the D-file: the average cost
of a query within a 2,500 queries batch falls down to 70% of
the average query cost within a 700 queries batch. Moreover,
in the right graph of Figure 12 see the total query cost (not
the average as usual) for differently sized batches of queries,
including also the indexing cost. This test aims to show the
overall cost when searching a database for a limited number
of queries. Obviously, when only a small number of queries is
needed, say up to 300, the D-file is the clear winner because
of its index-free concept. On the other hand, when reaching a
sufficiently large number of queries, the index-based MAMs
begin to amortize the huge initial indexing cost by the efficient
query processing (but the D-file still keeps up with them).
In case of MAMs employing D-cache, the amortization is
quicker.

Histograms

Histograms
10NN, comparison ?constr. + querying)

10NN, comparison of methods

10000
+
\
+

Pty

B —t—+ | @ —t

< ° +”+_4+ .
7% —— M-tree 8 P _ox-%
o 4 s 2o + x--% _o
g X-  D-M-tree ObsPct 22 _+ _ox o—"0
2319 —8— D-file ObsPct e _t e .
e | -+- PT_10 = P " -t
Lo —&— D-PT_10 ObsPct 3 X o et s
Sa = 2ol % [ a—
T N 284+ % o s
“;’:7 ISl et £ B LB BT SR I R D/I ,fIA/A/
z s e
2] LN
22 = /A/ —— M-tree

c

g 4 S ' -x-  D-M-tree ObsPct
Zed e Sgl 4 —8- D-file ObsPct

- L L IE R IR I R I | E3 7 L

|a ' ] N - PT

Nl s —&— D-PT ObsPct
o] A pp—A—B—A—A—A—A—A—a a

T T T T
600 00 1400 1800 2200
number of objects in the query batch

T T T T T T
600 1000 1400 1800 2200 200
number of objects in the query batch

T
200
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6.4 Summary

We have shown that the D-cache accelerates the indexing of
M-tree significantly. When querying, the D-cached-enhanced
MAMs perform up to two times faster than their non-cached
counterparts (up to 24 times in case of D-file).

A special attention should be devoted to the D-file, which
is not only the first index-free MAM, but it can compete with
efficient competitors like the Pivot tables or the M-tree.

The D-cache proved its benefits in most of the experiments.
On the other hand, when a cheap metric distance is used,
the overhead of D-cache is too large. Regarding the D-cache
tuning, we observed that the ObsoletePercentile replacement
strategy works the best in most of the cases, while the number
of dynamic pivots ranging from tens to a few hundreds is
sufficient. When considering the D-file, the size of employed
D-cache should be proportional to the database size (e.g., 10%)
in order to achieve an optimal performance.

7 CONCLUSIONS

In this paper we presented the D-cache, a main-memory data
structure which tracks computed distances while inserting
objects or performing similarity queries in the metric space
model. Since distance computations stored in the D-cache
may be re-used in further database operations, it is not
necessary to compute them again. Also, the D-cache can be
used to estimate distance functions between new objects and

objects stored in the database, which can also avoid expensive
distance computations. The D-cache aims to amortize the
number of distance computations spent by querying/updating
the database, similarly like disk page buffering in traditional
DBMSs aims to amortize the I/O cost.

The D-cache structure is based on a hash table, thus
making efficient to retrieve stored distances for further usage.
Additionally, the D-cache maintains the set of previously
processed runtime objects (i.e., inserted or query objects),
while the most recent of them are used as dynamic pivots.
The D-cache supports three functions useful for metric access
methods (MAMs) — the GetDistance (returning the exact
distance between two objects, if available), the GetLower-
BoundDistance (returning the greatest lower-bound distance
between two objects, by means of the dynamic pivots), and the
GetUpperBoundDistance (returning the lowest upper-bound
distance). With these functions, the D-cache may be used to
improve the construction of MAMs’ index structures and the
performance of similarity queries.

Our depiction of the D-cache is general, and may be used
with any metric access method or even to aid a sequential scan
of the database — forming a brand new concept of index-free
MAM, the D-file. We have presented replacement policies for
the distances stored in the cache as well as algorithms for the
computation of the lower- and upper-bound distances. We have
also described in detail how to enhance some of the existing
metric access methods (M-tree, Pivot tables) with the D-cache.

Finally, we presented the results of an experimental evalua-
tion with different databases using expensive and cheap metric
distance functions. When considering expensive enough dis-
tance functions (> O(nz)), the D-cache substantially improves
the real times needed to query/update metric databases.
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