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ABSTRACT
The efficient similarity search in metric spaces is usually
based on several low-level partitioning principles, which al-
low filtering of non-relevant objects during the search. In
this paper, we propose a parameterizable partitioning method
based on the generalized hyperplane partitioning (GHP),
which utilizes a parameter to adjust “borders” of the par-
titions. The new partitioning method could be employed
in the existing metric indexes that are based on GHP (e.g.,
GNAT, M-index). Moreover, we could employ the param-
eterizable GHP in the role of a new multi-example query
type, defined as a partition determined by an available query
object and several “anti-example” objects. We believe that
both applications of parameterizable GHP can soon take
place in metric access methods and new query models.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: [Retrieval
models]

1. INTRODUCTION
The similarity search using the metric space model proved

to be a general approach applicable in various domains. A
database S is supposed to consist of unstructured raw data,
while the only available information is a metric distance δ
defined for each pair of objects from S. From the database
management point of view, the search performance is cru-
cial, hence indexes allowing efficient filtering are necessary.
During the last two decades, there emerged many metric ac-
cess methods (MAMs) [1], [3] that utilize metric postulates
to filter non-relevant (sets of) objects during query process-
ing. One of the most fundamental rules used in the design
of efficient MAMs is metric partitioning, which divides the
database into separate classes of similar objects. The gen-
eral metric space model offers two basic types of partitioning
– the ball partitioning and the generalized hyperplane par-
titioning (GHP). The ball partitioning employs a selected
object (so-called pivot) and a radius, dividing the space in
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two partitions (e.g., in M-tree) or more, when a combination
of balls is used (e.g., in MVP-tree or PM-tree). The GHP
uses up to n pivots to divide the space into n voronoi-like
partitions, where the ith partition consists of objects that
are closer to the ith pivot than to any other pivot (e.g., in
GNAT or M-index). In this paper, we propose a parame-
terized extension of the GHP, which employs a parameter
to adjust “borders” of the partitions. We also prove several
lemmas necessary for correct filtering rules.

2. PARAMETERIZED GENERALIZED HY-
PERPLANE PARTITIONING

For the lack of the space, we will define partitioning just
for two pivots, but the definition and all the presented lem-
mas can be simply extended for an arbitrary number of piv-
ots.

Definition 1. The parameterized generalized hyperplane
partitioning (pGHP) using two pivots a, b and a parameter
c divides a database S into two subsets A,B as follows:

A = {x|x ∈ S ∧ δ(a, x) < δ(b, x) + c}
B = {x|x ∈ S ∧ δ(a, x) ≥ δ(b, x) + c}
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Figure 1: Parameterized generalized hyperplane
partitioning.

Since the ball-region is the most frequent shape of a query,
we also propose a lemma giving the relation between pGHP
and the ball region (see also Figure 1).

Lemma 1. Let (q, r) be a range query and a, b be pivots
used for the pGHP with parameter c, then (a) if δ(a, q)−r ≥
δ(b, q) + r + c then ∀x where δ(x, q) ≤ r holds δ(a, x) ≥
δ(b, x) + c and (b) if δ(a, q) + r < δ(b, q) − r + c then ∀x
where δ(x, q) ≤ r holds δ(a, x) < δ(b, x) + c.



Proof. Let us start with variant (a). By combination
of assumptions δ(x, q) ≤ r and δ(a, q) − r ≥ δ(b, q) + r + c
we obtain δ(a, q) − δ(x, q) ≥ δ(b, q) + δ(x, q) + c. From the
triangle inequality we also have δ(a, x) ≥ δ(a, q)−δ(x, q) and
δ(b, q) + δ(x, q) + c ≥ δ(b, x) + c. Thus, by combination of
these formulas we obtain δ(a, x) ≥ δ(a, q)−δ(x, q) ≥ δ(b, q)+
δ(x, q) + c ≥ δ(b, x) + c which implies δ(a, x) ≥ δ(b, x) + c.
The proof of the variant (b) is similar.

As a direct consequence of Lemma 1, we obtain a filter-
ing rule for searching by ball-shaped queries. The filtering
behavior of pGHP is similar as for the original GHP. In Fig-
ure 2, the two dotted curves depict the centers of query balls
with fixed radius that have to visit both partitions (two such
query balls are depicted). Note that pruning near the line
connecting a and b is more effective (the border thickness
is here close to 2r), however this property is not specific to
pGHP. Even in the original GHP the pruning near to the
”connecting line” is more effective due to tighter lower- and
upper-bound distances to the points in the query ball.
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Figure 2: Filtering ability of pGHP
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Figure 3: pGHP using multiple pivots

a b

c1 c2 c3 c4 c5

q

Figure 4: pGHP using multiple parameters

Unlike the original GHP, the pGHP utilization could be
used for more flexible data partitioning.

1. We can dynamically adjust the parameter c in order
to establish a balanced partitioning of data. The bal-
ancing is even more important if more than two pivots
are used, e.g., in a future variant of GNAT based on
pGHP. In Figure 3, the pGHP partitioning using piv-
ots a, b, c was two-step, first the space was partitioned
between a and b, while the partition b was further di-
vided into partitions b and c.

2. We can employ more parameters ci to define more par-
titions (as depicted in Figure 4). By the use of multiple
parameters we can define multiple partitions, however,
the interval of useful values c is bounded, as shown in
the following lemma.

Lemma 2. Let a, b be pivots used for the pGHP with pa-
rameter c, then (a) if c ≤ −δ(a, b) then partition A is always
empty and (b) if c > δ(a, b) then partition B is always empty.

Proof. We just substitute a border value for c in the par-
titioning rule and we immediately obtain the statement.

Besides indexing, a completely new family of multi-example
query types based on pGHP could be defined within the
framework proposed in [2]. An example of such a query is
depicted, again, in Figure 3. The query region/partition c
could be interpreted such that we search for objects simi-
lar to c (the example) and not very similar to a, b (anti-
examples). Note that efficient processing of the new query
is easy when using MAMs based on ball-partitioning (e.g.,
M-tree). Instead of having a query ball and a pGHP-defined
partition in index (e.g., a sort of pGHP-based GNAT), we
just interchange the roles of query and index regions, using
the same pGHP filtering.
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3. CONCLUSIONS
We have introduced pGHP, a parameterized version of

GHP that can be utilized for definition of flexible hyperplane-
based metric regions. The pGHP can be used to modify the
existing MAMs based on the GHP. We can also define spe-
cific query regions using more pivots in the role of examples
and anti-examples. All the presented ideas concerning in-
dexing and querying are the topic of our future work.
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