Processing the Signature Quadratic Form Distance
on Many-Core GPU Architectures

Martin Krulis® Jakub Loko¢ °

Christian Beecks *

Tomas Skopal°®° Thomas Seidl ®

°SIRET Research Group, Faculty of Mathematics and Physics, Charles University in Prague, Czech Republic
°{krulis,lokoc,skopal}@ksi.mff.cuni.cz
*Data Management and Data Exploration Group, RWTH Aachen University, Germany
*{beecks,seidl}@cs.rwth-aachen.de

ABSTRACT

The Signature Quadratic Form Distance on feature signa-
tures represents a flexible distance-based similarity model
for effective content-based multimedia retrieval. Although
metric indexing approaches are able to speed up query pro-
cessing by two orders of magnitude, their applicability to
large-scale multimedia databases containing billions of im-
ages is still a challenging issue. In this paper, we propose the
utilization of GPUs for efficient query processing with the
Signature Quadratic Form Distance. We show how to pro-
cess multiple distance computations in parallel and demon-
strate efficient query processing by comparing many-core
GPU with multi-core CPU implementations.

Categoriesand Subject Descriptors

H.3.1 [Content Analysis and Indexing]: Indexing Meth-
ods; C.1.4 [Processor Architectures|: Parallel Architec-
tures

General Terms

Performance, Design, Algorithm

Keywords

GPU, many-core, quadratic form distance, similarity search

1. INTRODUCTION

Multimedia retrieval systems frequently store billions of
images and provide users with different ways of searching
and browsing (e.g., catalog-based or keyword-based search).
However, effective yet efficient techniques for content-based
similarity search are still a big issue. To this end, multime-
dia retrieval systems are designed based on advanced sim-
ilarity models consisting of image representations and sim-
ilarity /distance measures. A flexible way to represent the
content of an image is by means of feature signatures [7].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercia advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

CIKM'11, October 24-28, 2011, Glasgow, Scotland, UK.

Copyright 2011 ACM 978-1-4503-0717-8/11/10 ...$10.00.

In general, a feature signature of an image is a set con-
sisting of multiple local image features, where the length
of a feature signature is not fixed (to distinguish more or
less complex images). However, the comparison of feature
signatures requires more sophisticated and computationally
expensive adaptive distance measures [2], such as the Earth
Mover’s Distance (EMD) [7] or the Signature Quadratic
Form Distance (SQFD) [3]. In this paper, we focus on the
latter, as the SQFD shows high retrieval quality and lower
time complexity compared to the EMD (O(n?) vs. O(n?)).

In order to reduce the computational effort, metric indez-
ing [8] approaches have been applied to the SQFD. It has
been shown, that pivot tables [1] and ptolemaic indexing
[5] reach a speed-up of over two orders of magnitude with
respect to the sequential scan. Nevertheless, by using met-
ric indexing approaches, this speed-up is generally limited
due to the intrinsic dimensionality [8]. Thus, in order to
use the SQFD for large-scale image retrieval, we propose to
parallelize the SQFD query processing.

In this paper, we consider many-core GPU devices for
parallel SQFD query processing. While parallel multi-core
CPU processing is straightforward and supported by many
development tools, designing efficient algorithms for GPUs
is a challenging task for content-based retrieval purposes.
Although GPUs generally contain more cores than CPUs,
they suffer from slow data transfer rates and code execution
restrictions. We discuss GPU processing limitations and in-
troduce a new schema for efficient SQFD query processing
utilizing the combination of metric indexing approaches and
the computational power of GPUs.

The paper is organized as follows. Section 2 describes the
SQFD. Section 3 discusses the most important aspects of
GPU architectures, while Section 4 describes our SQFD im-
plementation for GPUs. Section 5 presents the experimental
results, and Section 6 concludes this paper.

2. SIGNATURE QUADRATIC FORM DIST.

The Signature Quadratic Form Distance (SQFD) [3] is
an adaptive distance-based similarity measure for feature
signatures. It is defined as follows.

DEFINITION 1 (SQFD). Given two feature signatures
S ={(rl,wh}ie, and S° = {(r{,w?)}iX1 and a similarity
function fs : F X F — R over a feature space F, the signa-
ture quadratic form distance SQFDy_ between S* and S° is
defined as:

SQFD, (5%,8°) = \/(wq | —w,) - Aj, - (wq | —wo)T,

where Ay, € ROTMXHm) s the similarity matriz arising
from applying the similarity function fs to the corresponding
feature representatives, i.e., aij = fo(ri,75). Furthermore,
wg = (Wi, ..., wl) and wo = (WY, ..., wp,) form weight vec-
tors, and (wq | —wo) = (wi,...,wi, —wi,...,—wy,) de-
notes the concatenation of weights wy and —w,.

The similarity function fs is used to determine similar-
ity values between all pairs of representatives from the fea-
ture signatures. In our implementation we use the similar-
ity function fo(rs,r;) = e_o‘]”(”’rj)z, where o is a constant
for controlling the precision-indexability tradeoff, as inves-
tigated in our previous works [1, 5], and Lo denotes the
Euclidean distance.

3. GPU FUNDAMENTALS

In general, GPU architectures [6] differ from CPU archi-
tectures in multiple ways. In the remainder of this section,
we describe two major differences, the thread execution and
memory organization, which have direct impact on the de-
sign of our SQFD implementation.

3.1 Thread Execution

The first difference is the specific program execution. Por-
tions of code, which are executed on the GPU, are called
kernels. A kernel is a function that is invoked multiple
times simultaneously, so that all spawned threads execute
the same code. Each spawned thread gets the same set of
calling arguments and a unique identifier, which is used to
select proper parts of the parallel work.

The thread managing and context switching capabilities
of the GPU are very advanced. Thus, it is usually better to
create a multitude of threads, even if they execute only a few
instructions each, in order to optimize the load balancing.
In addition, fast context switching capabilities of the GPU
are used to hide latency of global memory transactions.

Threads are aggregated into small bundles called groups.
A group usually contains tens to hundreds of threads which
execute the kernel in SIMT? or virtual SIMT fashion. Every
thread executes the same instruction, but it has its own set
of registers, thus working on different portions of the data.
The SIMT execution suffers from branching problems when
different threads in the group choose different branches, for
instance when executing ‘if’ statements. To execute con-
ditional code properly, all branches must be executed by
all threads and each thread masks instruction execution ac-
cording to local result of the condition. On the other hand,
the SIMT approach eases synchronization within the group
and allows threads to communicate and collaborate through
shared local memory.

3.2 Memory Organization

The second difference is the memory organization, which
is divided into the following memory address spaces:

e host memory,

e global memory,

e local memory,

e and private memory.

In fact, the host memory is the operational memory of the
computer. It is directly accessible by the CPU, but it can-
not be accessed by any peripheral device such as the GPU.

!Single Instruction Multiple Threads

Input data needs to be transferred from the host memory
to the graphic device memory (global memory), and the re-
sults need to be transferred back when the kernel execution
finishes. This transfer uses the PCI-Express bus, which is
rather slow in comparison with the internal memory bus.

The global memory is directly accessible from GPU cores.
Input data and computed results of a kernel are stored here.
The global memory bus shows both high latency and high
bandwidth. In order to access the global memory optimally,
threads in one group are encouraged to use coalesced loads.
A coalesced load is performed when all threads of a group
load or store a contiguous memory area, so that each thread
transfers a single 4-byte word of this block.

The local memory is shared among threads within one
group. It is very small (tens of kB) but almost as fast as
GPU registers. The local memory can play role of program-
managed cache for global memory, or the threads may share
intermediate results in here while they cooperate on a task.

Finally, the private memory exclusively belongs to a single
thread and corresponds to the GPU core registers. Private
memory size is very limited (tens to hundreds of words),
therefore it is suitable just for a few local variables.

4. QUERYING BY SQFD ON A GPU

In our approach, we consider both the parallel execution
of multiple SQFD computations during the query evaluation
as well as the parallel computation of a single SQFD between
two feature signatures.

4.1 Multiple SQFD Computations

Since the SQFD is computed between the query signa-
ture and each database signature, it would be ineffective to
execute each computation separately on the GPU due to
the latencies caused by data transfer and kernel executions.
Therefore, we perform a block-wise computation of multiple
SQFDs in parallel. Each block contains N + 1 feature sig-
natures. The first feature signature is the query signature
and remaining N feature signatures are database signatures,
thus each block yields a vector of N distances as a result.
The choice of N is essential for good performance. In gen-
eral, a large number of N performs better. However, at least
two blocks of feature signatures must fit each GPU device
in order to process the first block and transfer the data of
the other one.

Each SQFD is computed by a group of 256 threads, thus
256 x N threads are spawned for one block. The constant
256 was selected based on current hardware capabilities. We
have assigned one thread group to compute a single SQFD
in a block, because these threads benefit from shared lo-
cal memory, as the group does cache the input data from
global memory and keeps intermediate results. Using multi-
ple groups to compute one SQFD would be problematic as
the groups do not have any effective means of communica-
tion. The opposite approach (using one group to compute
multiple SQFDs) is feasible. However, the parallelism would
not be exploited any further and many technical complica-
tions would arise due to the limited size of local memory.

4.2 Computing The Distancein Parallel

The SQFD between two feature signatures has been de-
fined in Definition 1. For the sake of parallelism, we compute
the items of the similarity matrix A , and multiply them
directly with the corresponding weights of (wq | —w,). Fi-

nally, we compute a sum of every item in the matrix and we
find its square root. Our algorithm has the following phases:

1. Load feature signatures into local memory

2. Compute the similarity matrix Ay, and multiply its
entries by corresponding entries in the weight vectors

3. Sum up items in the matrix and yield the square root

Data are loaded into local memory, since they are required
multiple times and it would be ineffective to load them from
global memory each time. Furthermore, the loading is more
efficient when all threads cooperate in coalesced loads.

The similarity matrix has (m+n) x (m+n) entries, where
m and n are the numbers of feature representatives in S? and
S¢, respectively. Since m + n is usually smaller than 256
and varies for each feature signature, we use an irregular
mapping of similarity matrix items to threads.

D_ll[]i (] Items computed by
2 the first thread

Figure 1: Matrix work decomposition

Figure 1 depicts the mapping scheme, where each area
represents items being computed simultaneously. The num-
bers indicate in which step the items will be processed. In
the last step, the remaining part of the similarity matrix
may be smaller than total number of threads. In such case,
some threads will remain idle in this step.

The entire similarity matrix is not stored in memory since
only a sum of its items is required. When a thread computes
a new item in the similarity matrix, its value is added to a
partial sum and the item itself is discarded. Even though
this method requires significantly less memory, it creates
a synchronization problem as multiple items are computed
and added to the partial sum concurrently. To avoid ex-
plicit synchronization, every thread is provided with its own
instance of partial sum.

When the second phase terminates, the total sum of the
partial sums of each thread is computed. This total sum is
only computed by the first thread, which is also responsible
for finding the square root and for writing the computed
distance into the global memory. The total sum can also be
computed cooperatively by all threads in logarithmic time;
however, such improvement has no measurable impact on
the performance as the time required by the second phase
dominates significantly over the time required by the final
summation.

4.3 Integration to Query Evaluation System

We have described how to compute distances between a
query signature and a block of database signatures on the
GPU. How to integrate this functionality into a system that
computes range and kNN queries is explained in the remain-
der of this section.

The rest of the query processor treats our SQFD imple-
mentation as an asynchronous operation that does not block
the CPU when started, and the system can wait for its ter-
mination. The system may start as many operations as re-
quired, and the operations are queued and distributed over

available GPU devices equally. The architecture is flexible,
thus it can be easily used with any type of distance-based
index.

4.3.1 RangeQuery

The sequential range query algorithm is easy to imple-
ment. The database is divided into blocks of appropriate
size? and all blocks are enqueued for GPU processing. The
system waits for all SQFD computations to complete, and
the computed distances are filtered on the CPU to exclude
objects outside of the query range from the result.

This method can be improved easily with pivot table in-
dexing (either metric or ptolemaic variant). First, distances
from the query to all pivot objects are computed on the
GPU. Afterwards, the CPU prefilters database objects us-
ing the pivot table. The objects which are not excluded
in the prefiltering step are formed into blocks. A block is
passed to the GPU as soon as it has a sufficient number of
objects (we use 8,000, observed empirically as optimal).

4.3.2 kNN Query

The kNN query evaluation is slightly more complicated.
When no indexing is used, it works very much like sequential
range query. When the pivot table indexing is employed,
some additional modifications are required. The problem is
that the kNN query has no fixed query range for the pivot
table prefiltering, as this range is dynamically refined during
the kNN query processing using heuristics.

In order to adapt to the heuristics, we have limited the
block size to a value of 64. Also, there are at most 2g blocks
pending where g is the number of GPU devices available.
These constants have been chosen empirically®. When the
limit of pending blocks is reached, the system waits for the
first enqueued block to finish, its results are taken, and the
query range is refined. This way a pipeline effect is achieved,
so that the CPU prefilters the database objects and refines
the kNN set while the GPU computes the SQFD.

5. EXPERIMENTS

We conduct GPU and CPU tests with up to 12 cores on
a desktop PC based on six-core Intel Core i7 870 CPU with
hyper-threading clocked at 2.93 GHz. The machine was
equipped with 16 GB of RAM and two NVIDIA GTX 580
GPU cards with 512 CUDA cores and 1.5 GB of RAM each.
More extensive multi-core CPU tests for 48 cores were ex-
ecuted on a Dell M910 server with four six-core Intel Xeon
E7540 processors with hyper-threading (i.e., 48 logical cores)
clocked at 2.0 GHz. The server was equipped with 128 GB
of RAM organized as 4-node NUMA. A RedHat Enterprise
Linux 6 was used as operating system on both machines.

Our approach was tested on the ALOI database [4] which
consists of 72,000 images. Although the selected database
was not very large, its size was sufficient to demonstrate the
speed-up of our method. To perform test using Pivot ta-
bles, we have randomly selected 32 pivots from the database.
The queries were selected as 100 random objects from the
database (and excluded from indexing). All tests were per-
formed for « € {3,0.2,0.01}, where oo = 3 exhibits the best

2We use as large blocks as possible that fit the GPU memory.
3 Actually, these constants are suitable only for o = 0.2 and
a = 0.01. The value @ = 3 requires the largest possible
blocks since it does not benefit much from indexing.

precision, o = 0.01 offers the best indexability, and o = 0.2
is the best compromise between precision and indexability.

5.1 Simple Sequential Scan

The first test demonstrates the behavior of the sequential
scan, i.e. either range or kNN query, without pivot table in-
dexing. The measured values represent real times required
for computing a vector of distances between the query ob-
ject and all database objects. Each test was performed for
32 randomly chosen objects and the presented values are
arithmetic averages of the measured times. Each test is de-
noted as follows. The n CPU stands for SQFD running on
n processor cores and m GPU means that the test was using
m GPU devices (512 cores each). The data type in brackets
indicates the floating point precision used for intermediate
results.

25000 23925

20000

15000
Ha=3

ma=0.2
10000

a=0.01

5000

1CPU 12CPU 48CPU 1GPU 2GPU 1CPU 12CPU 48CPU 1GPU 2GPU
(float) (float) (float) (float) (float) (double) (double) (double) (double) (double)

Figure 2: Times[ms] of sequential scan

Figure 7?7 clearly indicates that the GPU approach is
faster by two orders of magnitude than sequential version
of the algorithm running on CPU. Furthermore, the GPU is
significantly faster (5.6x in float and 3.4x in double) than
4-CPU NUMA server with 48 logical cores (which is finan-
cially an order of magnitude more expensive than a desktop
PC with GPU cards). We have also observed that different
values of a have no effect on the evaluation speed.

5.2 SQFD with Ptolemaic Indexing

In the second experiment, we have tested the GPU accel-
eration for kNN queries, where objects are prefiltered using
Ptolemaic indexing on CPU [5]. The results are denoted as
in the previous test, except for only float precision was used
for intermediate results.

5000

4473
4500

4000

3500

3000

ma=3
2500

a=0.2
2000 45 «=0.01

1500

1000 836

500

66
. 65 46 -24 14 -29 16

1CPU 12CpPU 48 CPU 1GPU 2GPU

Figure 3: Times[ms] of 10NN with ptolemaic index

Figure ?7? verifies that 10NN queries with indexing can
be accelerated by computing SQFD on GPU, although the
speed-up is slightly less significant than in the previous test.
The average speed-up of a GPU w.r.t. 48 CPU cores (2.98x%)
proves that GPU can accelerate also indexing methods sig-
nificantly. Despite our efforts, the 2-GPU version was slower
than one-GPU for a € {0.2,0.01}. We belive that this was
the result of fragile balance between CPU and GPU work-
load at the moment the CPU prefilters the database objects.
We are planning to study this phenomenon further and im-
prove our method by moving the index prefiltering to GPU
as well.

6. CONCLUSIONS

In this paper, we have shown how to exploit the com-
putational power of GPUs for an efficient similarity query
processing for multimedia retrieval models utilizing the Sig-
nature Quadratic Form Distance. We have experimentally
proved that the speedup is considerable even in comparison
with expensive NUMA server.

In the future, we plan to employ GPUs in other operations
(such as index filtering) and to create a sophisticated large-
scale multimedia retrieval system utilizing SQFD on feature
signatures as similarity model.

7. ACKNOWLEDGMENTS

This research has been supported by Czech Science Foun-
dation (GACR) projects 201/09/0683 and 202/11/0968, by
the grant agency of Charles University (GAUK) project no.
277911, and by the Deutsche Forschungsgemeinschaft within
the Collaborative Research Center SFB 686.

8. REFERENCES

[1] C. Beecks, J. Loko¢, T. Seidl, and T. Skopal. Indexing
the signature quadratic form distance for efficient
content-based multimedia retrieval. In Proc. ACM Int.
Conf. on Multimedia Retrieval, pages 24:1-24:8, 2011.

[2] C. Beecks, M. S. Uysal, and T. Seidl. A comparative
study of similarity measures for content-based
multimedia retrieval. In Proc. IEEE ICME, pages
1552-1557, 2010.

[3] C. Beecks, M. S. Uysal, and T. Seidl. Signature
quadratic form distance. In Proc. ACM CIVR, pages
438-445, 2010.

[4] J.-M. Geusebroek, G. J. Burghouts, and A. W. M.
Smeulders. The Amsterdam Library of Object Images.
1JCV, 61(1):103-112, 2005.

[5] J. Loko¢, M. Hetland, T. Skopal, and C. Beecks.
Ptolemaic indexing of the signature quadratic form
distance. In Proceedings of the Fourth International
Conference on SImilarity Search and APplications,
pages 9-16. ACM, 2011.

[6] NVIDIA. Fermi GPU Architecture.
http://www.nvidia.com/object /fermi architecture.html.

[7] Y. Rubner, C. Tomasi, and L. J. Guibas. The Earth
Mover’s Distance as a Metric for Image Retrieval.
1JCV, 40(2):99-121, 2000.

[8] P. Zezula, G. Amato, V. Dohnal, and M. Batko.
Similarity Search: The Metric Space Approach
(Advances in Database Systems). Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 2005.

