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ABSTRACT

The Signature Quadratic Form Distance has been intro-
duced as an adaptive similarity measure coping with flex-
ible content representations of various multimedia data. Al-
though the Signature Quadratic Form Distance has shown
good retrieval performance with respect to their qualities of
effectiveness and efficiency, its applicability to index struc-
tures remains a challenging issue due to its dynamic nature.
In this paper, we investigate the indezxability of the Signature
Quadratic Form Distance regarding metric access methods.
We show how the distance’s inherent parameters determine
the indexability and analyze the relationship between effec-
tiveness and efficiency on numerous image databases.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Retrieval
Models, Search Process; H.3.1 [Content Analysis and In-
dexing]: Indexing Methods

General Terms

Theory, Experimentation, Performance

Keywords

Signature Quadratic Form Distance, content-based retrieval,
metric access method, multimedia database

1. INTRODUCTION

The ever-increasing amount of complex multimedia data
including images, videos, and music challenges the effec-
tiveness and efficiency of today’s content-based analysis and
retrieval techniques and systems [6, 14, 24, 26] which sup-
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port users in searching and browsing voluminous multimedia
databases in an interactive and efficient manner.

Supported by such content-based retrieval systems, users
frequently issue content-based similarity queries by select-
ing already displayed multimedia objects or by sketching
the intended object contents. Given an example multime-
dia object or sketch, the retrieval system then searches for
the most related database objects with respect to the query
object. In case of content-based retrieval purpose this rela-
tionship is frequently obtained by measuring the similarity
between the query and each database object by means of
distance functions which finally determine the most similar
multimedia objects returned to the user.

The effectiveness as well as efficiency of this content-based
retrieval process depends on the applied retrieval model,
comprising feature representation and similarity measure,
and the query processing method. It has been shown that
the combination of adaptive similarity measures, such as
the Hausdorff Distances [12, 19], the Earth Mover’s Dis-
tance [22], and the Signature Quadratic Form Distance [1,
3], and flexible feature representations, such as feature sig-
natures [21], provides good retrieval performance and ex-
tensive applicability to nearly all kinds of multimedia data
which can be expressed by the corresponding feature rep-
resentation. Thus, the problem of retrieval performance in
terms of effectiveness is attributed to the retrieval model,
while the problem of efficiency is related to the way of pro-
cessing content-based similarity queries.

In this paper, we aim at improving the efficiency of the
content-based retrieval process by making use of metric ac-
cess methods [5, 23, 29]. For this purpose, we focus on
the recently introduced Signature Quadratic Form Distance
showing good retrieval performance for various multimedia
databases [2]. We investigate the distance’s inherent simi-
larity function, so far only examined to adapt the distance
to specific domains, and show how this similarity function
affects the indexability of the Signature Quadratic Form Dis-
tance. We include the following contributions:

e A brief overview of the metric space approach as a
fundamental prerequisite for metric access methods.

e An investigation of the Signature Quadratic Form Dis-
tance’s inherent similarity function and their relation-
ship to indexability.



e A simple approach to process content-based similarity
queries efficiently.

e An evaluation on numerous benchmark image databases
showing the benefit of our findings.

The structure of this paper is as follows: in Section 2 we
describe the content-based similarity model including fea-
ture representation and similarity measure. In Section 3
we review basic principles of metric space approaches. In
Section 4 we investigate the indexability of the Signature
Quadratic Form Distance before we outline a simple query
processing approach in Section 5. The experimental results
are reported in Section 6 before we conclude our paper with
an outlook on future research directions in Section 7.

2. CONTENT-BASED SIMILARITY MODEL

In this section, we present the used content-based simi-
larity model involving feature representation and similarity
measure.

Representing multimedia objects by features in some fea-
ture space is a challenging task of nearly all content-based
analysis and retrieval techniques. Whereas specific object
recognition tasks, such as copy, duplicate, or near-duplicate
detection, require the features to be accessible in an unag-
gregated way, content-based retrieval approaches frequently
require some degree of generalization in order to cope with
different similarity notions. As a consequence, extracted fea-
tures are aggregated and approximated by so-called feature
representations.

While numerous approaches aim at aggregating extracted
features into an equi-length feature vector [15], namely fea-
ture histogram, which can be compared by using adaptable
distance functions [10, 20], recent approaches tend to ap-
proximate the object’s contents via more flexible feature
representations, so-called feature signatures [21]. This type
of feature representation reasonably adjusts to the contents
of individual multimedia objects and can be compared by
making use of adaptive similarity measures [2], such as the
Hausdorff Distances [12, 19], the Earth Mover’s Distance
[22], and the Signature Quadratic Form Distance [1, 3].

In general, feature signatures exhibit high applicability
to any kind of local features [7, 17, 27] by aggregating the
object’s features according to a partitioning of the feature
space FS for each multimedia object individually. Conse-
quently, the contents of each multimedia object is reflected
by a single feature signature. For this purpose, the features
are frequently partitioned via a clustering algorithm, e.g. k-
means, and each partition is stored by a representative with
the corresponding weight reflecting the number of features
belonging to the current partition. Frequently, centroids of
the clustering algorithm are chosen as representatives. In
general, a feature signature is defined as follows.

DEFINITION 1. Feature Signature
Given a feature space FS C R", the feature signature S° of
object o is defined as a set of tuples from FS X R comprising
representatives r° € FS and weights w® € R :

SO = {(r°,w)| r’ € FS A w® € RT}.

We depict an example of feature signatures according to
a feature space comprising position and color information in

Figure 1: Three example images with their corre-
sponding feature signature visualizations.

Figure 1 where we visualize three images and their corre-
sponding feature signatures. The feature signatures’ repre-
sentatives are depicted via circles in the corresponding color.
The weights are reflected via the diameter of the circles.

So far, we have defined feature signatures as a common
feature representation form of multimedia data. In the re-
mainder of this section we focus on the Signature Quadratic
Form Distance. As mentioned above, this distance is an
adaptive similarity measure introduced for the comparison
of any kind of multimedia data which can be represented by
feature signatures. For this purpose, the distance makes use
of a similarity function that determines a similarity value
between any two feature signatures’ representatives. In gen-
eral, this similarity function behaves inversely proportional
to a distance function between two representatives, i.e. the
lower the representatives’ distance, the higher the corre-
sponding similarity value and vice versa. In [3] three ex-
ample similarity functions were proposed:

e Minus function: f—(ri,r;) = —d(r:,r;)

e Heuristic function: fn(ri,rj) = m
Ny

o Gaussian function: fq(ri,rj) = e—od(rirj)

It turns out that the Gaussian function with the param-
eter a € RT adapted to the current multimedia database
exhibits the highest retrieval performance in terms of ef-
fectiveness, while the minus function results in the lowest
computation time [2]. In Section 4, we will show that these
parameters strongly affect the indexability of the Signature
Quadratic Form Distance which is defined as follows.

DEFINITION 2. Signature Quadratic Form Distance
Given two feature signatures ST = {{(rf,wi),i = 1,...,n}
and S? = {(rP,wl),i = 1,...,m} and a similarity func-
tion fs over some feature space FS, the Signature Quadratic
Form Distance SQF Dy, between S? and S? is defined as:

SQF Dy, (59,8") = \/(wq| —wp) - Ag, - (wq| —wp)T,

where Ay, € RmIx(4m) ys the similarity matriz arising
from applying the similarity function fs to the corresponding
representatives, i.e. ai; = fs(ri,r;). Furthermore, wqy =
(wi,...,wd) and wp, = (wh,...,wh,) form weight vectors,
and (wq| — wp) = (wi,...,wl, —wl, ..., —wh,) denotes the
concatenation of weights wq and —wp.

As can be seen in Definition 2, the Signature Quadratic
Form Distance takes into account the similarity values be-
tween any two representatives according to the similarity



function fs. This similarity relationship is reflected within
the similarity matrix Ay, which has to be determined for
each distance computation individually. Thus, the complex-
ity of a single distance computation is in O ((n +m)?- O(fs))
where n and m denote the size of feature signatures S? and
SP, respectively, and O(fs) denotes the complexity of the
similarity function f,.

In order to process content-based similarity queries, the
computation of the Signature Quadratic Form Distance has
to be carried out for each database object individually. Al-
though this process can be parallelized, query response times
can grow from seconds to minutes when increasing the num-
ber of objects contained in the multimedia database. One
promising approach to tackle this scalability issue is metric
access methods which organize the data in some metric space
implied by the similarity measure. We briefly outline the ba-
sic principles of the metric space approach in the following
section.

3. METRIC SPACE APPROACH

In this section, we outline the basic principles of metric
spaces and their ability to answer content-based similarity
queries efficiently.

A metric space [5, 23, 29] consists of a feature represen-
tation domain, in the scope of this paper the feature repre-
sentation domain denotes the set of all possible feature sig-
natures, and a distance function § which has to satisfy the
metric postulates': non-negativity, identity of indiscernibles,
symmetry, and triangle inequality. In this way, metric spaces
allow domain experts to model their notion of content-based
similarity by an appropriate feature representation and dis-
tance function serving as similarity measure. At the same
time, this approach allows database experts to design metric
index structures, the so-called metric access methods, for ef-
ficient query processing of content-based similarity queries,
which rely on the distance function § only, i.e. these meth-
ods do not necessarily know the structure of the objects’
feature representation.

According to the metric postulates mentioned above, met-
ric access methods organize database objects by grouping
them based on their distances with the aim of minimizing
not only traditional database costs like I/O but also the
number of costly distance function evaluations. For this
purpose, nearly all metric access methods apply a simple
filtering rule which can be directly derived from the triangle
inequality: the lower-bounding principle.

We illustrate this fundamental principle in Figure 2 where
we depict the query object g, some pivot element p, and a
database object o over some metric space. Note that pivot
elements are used to group database objects and to improve
the efficiency of the search process by pruning whole parts
of the metric index structure. Given a range query (q,r),
we alm at estimating the distance §(g, 0) by making use of
0(q,p) and 6(o,p), the latter is already stored within the
metric access method. Due to the triangle inequality, we
can safely filter object o and also all objects o’ contained in
the same group for which holds that (o', p) < §(o, p) if the
lower-bound LB(d(q,0)) = |6(q,p) — 6(o,p)| > r.

So far, we have only considered the distance functions’
metric properties in order to apply the lower-bounding prin-

'Note that even non-metric distance functions can be turned
into metric ones as shown in [25].

T T

Figure 2: The lower-bounding principle.

ciple and to obtain exact search results. However, the effi-
ciency of metric access methods relies mainly on the data
distribution. If the data objects are not naturally well clus-
tered, then it might be impossible for metric access methods
to process content-based similarity queries efficiently. This
corresponds to the similar problem in high-dimensional vec-
tor spaces, the curse of dimensionality [4].

In the following, we denote the probability of creating
metric access methods which might improve the efficiency
of content-based similarity queries as indexability. Metric
spaces exhibit poor indexability if all distance values are
nearly the same. In this case any filtering based on the
triangle inequality cannot be successful, because the deter-
mined lower-bounds are always smaller than any meaning-
ful range query radius and consequently processing content-
based similarity queries with metric access methods deteri-
orates to the sequential scan.

One measure indicating the indexability of a given database
S and a distance function 0 is the intrinsic dimensionality
[5] which is defined as follows:

_E@)8)?
p(S,0) = m;

where E(§]S) is the expected distance value and Var(§[S) is
the variance of distance values within the database S. In-
tuitively, the intrinsic dimensionality p reflects the distance
distribution in a single compressed value. The lower this
value the better the indexability, and vice versa. We de-
pict three example distance distributions of the Corel Wang
database [28] and their intrinsic dimensionality p in Figure
3. As can be seen in the figure, shifting the distance distri-
bution to smaller distance values will result in a lower value
of the intrinsic dimensionality.

In the following section, we will investigate the indexabil-
ity of the Signature Quadratic Form Distance and examine
the relationship between the similarity functions’ inherent
parameters and the intrinsic dimensionality.

4. INDEXABILITY OF THE SIGNATURE
QUADRATIC FORM DISTANCE

In this section, we investigate the indexability of the Sig-
nature Quadratic Form distance by focusing on the dis-
tance’s inherent similarity function.

So far, the similarity function was only examined for the
purpose of adapting the Signature Quadratic Form Distance
to specific multimedia databases in order to maximize their
qualities of effectiveness. In particular it turns out the Gaus-

sian function fq(ri,r;) = e~ 413 Jeads to the highest
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Figure 3: Distance distributions of the Corel Wang database for the Signature Quadratic Form Distance
using Gaussian similarity function with varying parameter a. The intrinsic dimensionality is denoted as p.
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i) by varying the parameter the

retrieval results in terms of mean average precision values
[15] when adjusting the parameter & € R to the multimedia
database accordingly.

Let us now take a closer look at this Gaussian function
fg for which we depict the function values regarding differ-
ent choices of a in Figure 4. It can be seen in the figure,
that the increase of a is accompanied by the increase of
the similarity function’s slope. Consequently, distance val-
ues among representatives can result in more different sim-
ilarity values, depending on the value of o and the differ-
ence of the distance values. For instance, given two dis-
tance values di = 0.2 and d2 = 0.8 between some fea-
ture signatures’ representatives, then it holds for the Gaus-
sian functions fg,« and f; 3 with parameters a < 8 that
faa(di) = fo.a(d2) < fg.8(d1) — fg,8(d2). In other words,
decreasing the value of a will result in more indistinguish-
able similarity values. In general, adjusting the parameter
of the Gaussian function fy to the database leads to smaller
distance values of the Signature Quadratic Form Distance
and thus reduces the expected distance value of the distance
distribution which might result in a lower intrinsic dimen-
sionality.

In order to elucidate our understanding of indexability,
we depict three distance distributions of the Corel Wang
database [28] in Figure 3, where we gathered 100,000 ran-
dom Signature Quadratic Form Distance values using the
Gaussian function fg. It can be seen in the figure that the

parameter « changes the distance distribution and thus the
intrinsic dimensionality. While the intrinsic dimensionality
stays above a value of 11 for = 1.0 and a = 10.0, it
improves to a value of 2.5 for @« = 0.01. As mentioned in
the previous section, small values of intrinsic dimensionality
will probably allow better metric indexing, while large values
are difficult to index with metric access methods. We can
see from this example that the indexability of the Signature
Quadratic Form Distance is determined by the choice of the
similarity function or rather the parameter o of a specific
similarity function.

Before we continue with an in-depth empirical investi-
gation of the relationship between intrinsic dimensionality
and retrieval performance regarding the qualities of effec-
tiveness and efficiency on different image databases, we de-
scribe the pivot table approach for efficient query processing
of content-based similarity queries as an easy to understand
example of a metric access method in the following section.

S. PIVOT TABLE FOR EFFICIENT QUERY
PROCESSING

In this section, we describe how content-based similarity
queries can be processed efficiently by making use of pivot
tables.

The basic idea of a pivot table, which was originally intro-
duced as LAESA [16], is to precompute distances §(o0i, p;)
between all database objects o; € S and a selected static set
of pivots elements p; € S and to represent each database ob-
ject by means of its distances to the pivot elements. Given m
pivot elements, the database objects are then represented by
an m-dimensional vector in the m-dimensional pivot space,
as illustrated in Figure 5.

Suppose a content-based similarity query ¢ with range r is
issued. This query will be processed in the following steps:
first it is mapped to the point ¢' = (6(q,p1),...,0(q, Pm))
in the pivot space. Second the corresponding mazimum dis-
tance Lmae with the same range r centered at ¢’ is issued in
the pivot space and potential database objects are gathered.
Finally the remaining non-filtered database objects are re-
fined using the original distance function §. By processing
content-based similarity queries in this way, the retrieval re-
sults are guaranteed to be complete, i.e. non-approximate.

The performance of a pivot table in terms of efficiency de-
pends on the number of pivot elements, the pivot selection
strategy, the organization of the pivot table, and also the
processing method for finding and refining database objects.
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Figure 5: The basic idea of a pivot table: mapping
the objects from the original space (a) to the pivot
space (b).

However, tuning pivot tables in order to achieve the highest
possible speed-up is meaningless, as long as the underly-
ing multimedia database with the current distance function
exhibits high intrinsic dimensionality. In order to evaluate
the indexability of the Signature Quadratic Form Distance
regarding the parameter modification of different similarity
functions, we thus take the basic approach of pivot tables:
finding and refining the database objects according to a se-
quential scan. The experimental evaluation is described in
the following section.

6. EXPERIMENTAL EVALUATION

In this section, we evaluate the indexability of the Sig-
nature Quadratic Form Distance with respect to different
benchmark image databases. For this purpose, we make use
of the Corel Wang database [28] comprising 1,000 images
from ten different topics, the Coil 100 database [18] com-
prising 7,200 images of 100 different objects, the 101 objects
database [8] consisting of 9,196 images from 101 categories,
the MIR Flickr database [11] including 25,000 web-images
with textual annotations, and the ALOI database [9] which
is similar to the Coil 100 database but comprising 72,000
images. We depict some example images of the aforemen-
tioned databases in Figure 6.

We extracted feature signatures based on seven-dimen-
sional features (L,a,b,z,y,x,n) € FS including color in-
formation (L, a,b), position information (z,y), contrast in-
formation x, and coarseness information 7. These features
were randomly extracted for each image and then aggregated
by applying an adaptive variant of the k-means clustering
algorithm described in [13]. Thus, we obtain one feature
signature for each single image, which vary in size between
5 and 115 representatives. On average a feature signature
consists of 54 representatives.

We perform all experiments on an Intel(R) Core(TM)2
Quad CPU Q9550 2.83GHz machine with 8 GB main mem-
ory based on a C++4 implementation.

In order to evaluate the indexability of the Signature Quad-
ratic Form Distance regarding the heuristic and Gaussian
similarity function, we first measure the distance’s metric
behavior. We empirically evaluated the distance’s metric
behavior by taking 100,000 random triplets of feature sig-
natures for each combination of image database, similar-
ity function and their parameter a and checked whether all
possible triangle inequalities are satisfied, i.e. if it holds

Figure 6: Example images of the Corel Wang, Coil
100, 101 objects, MIR Flickr, and ALOI databases
(from left to right).

that SQF Dy, (S%,57) < SQFDy, (5%, 8")+SQF Dy, (5!, S%)
for all feature signatures S*,S7,S'. We observed that all
triplets satisfy the triangle inequality and that the Signa-
ture Quadratic Form Distance completely shows metric be-
havior. Consequently, we state that metric access methods
will not affect the retrieval performance in terms of effective-
ness and that the retrieval results obtained by such methods
are non-approximate, i.e. exact.

In the remainder of this section, we first analyze the index-
ability in terms of intrinsic dimensionality and mean average
precision values [15] as they indicate whether the Signature
Quadratic Form Distance allows for efficient and effective
metric indexing. Then, we study the increase in efficiency
in terms of query response times and number of distance
computations.

In order to measure the intrinsic dimensionality, we eval-
uated 100,000 random distance computations for each of the
aforementioned databases. The results are shown in Figure
7. As can be seen in Figure 7(a), all databases show a similar
behavior: the intrinsic dimensionality decreases by decreas-
ing the value of parameter « of the Gaussian function. In
case of the heuristic function, c.f. Figure 7(b), the intrinsic
dimensionality decreases with an increasing value of param-
eter . Both figures indicate a significant improvement of
the intrinsic dimensionality when decreasing or increasing
the value of parameter a.

Let us now link these results regarding the intrinsic di-
mensionality to the retrieval quality in terms of effectiveness.
For this purpose, we evaluated mean average precision val-
ues for 100 random queries for the same databases. We took
the provided class/category/annotation information of each
image database as ground truth. The results are depicted
in Figure 8 for the Signature Quadratic Form Distance ap-
plying the Gaussian function f; and the heuristic function
fn, respectively. Both similarity functions show a very sim-
ilar behavior: the mean average precision values decrease
when the intrinsic dimensionality improves. Thus it seems
that indexability of the Signature Quadratic Form Distance
comes at costs of low retrieval quality. In general this is
true, because lower intrinsic dimensionality is accompanied
by lower mean average precision values. However, it can be
recognized that this trade-off is well-natured. For instance,
consider the use of the Signature Quadratic Form Distance
with the Gaussian function f; on the Corel Wang database.
For a value of parameter a@ = 1.0 we observe a mean aver-
age precision value of approximately 0.5 while the intrinsic
dimensionality is approximately 11.1. Decreasing the pa-
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rameter « to a value of 0.1 reduces the intrinsic dimension-
ality to a value of 3.2 while the mean average precision value
only decreases to 0.46. Thus we improve the indexability by
a factor of approximately 3.4 while the retrieval quality is
only reduced by a factor of 1.1. This behavior is also ob-
servable for other combinations of databases and similarity
functions.

As a first result, we claim that the indexability strongly
depends on the parameters of the similarity function of the
Signature Quadratic Form Distance. In the following, we
report query response times for the two largest databases,
MIR Flickr and ALOI, in order to see how the intrinsic
dimensionality affects the query processing behavior. For
this purpose we organize the databases via a pivot table
comprising 100 pivot elements (c.f. Section 5).

The computation time values in seconds and the corre-
sponding number of distance computations are depicted in
Figure 9(a) and Figure 9(b), respectively. The measured
values are averaged over 100 randomly chosen 10-nearest-
neighbor queries. Corresponding to the intrinsic dimen-
sionality evaluated above, the computation time values for

1
atd(r;,ry) "

the Signature Quadratic Form Distance applying a Gaussian
function decrease when the value of parameter o becomes
smaller. The heuristic function behaves inversely: increasing
the value of a decreases the computation time values. Thus,
choosing the value of parameter a smaller than 0.2 and 0.09
for the ALOI and MIR Flickr database, respectively, re-
sults in query response times below one second when carry-
ing out the Signature Quadratic Form Distance computation
with the Gaussian function. As can be seen in the figures,
the number of distance computations is proportional to the
computation time values.

Based on the computation time values needed to answer
10-nearest-neighbor queries, we depict the speed-up factor
in Figure 10. We evaluated the absolute speed-up factor by
comparing the pivot table approach with a naive sequential
scan in Figure 10(a) and the relative speed-up factor by
comparing the computation time values of the pivot table
approach needed for the best mean average precision values
with the computation time values needed for the current
value of parameter « in Figure 10(b). Both speed-up factors
increase significantly for the Gaussian function by decreasing
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the value of parameter a. The maximum absolute speed-up
factor of 170 is reached for the ALOI database which is
approximately twice as high as the corresponding relative
speed-up factor. At the same time, the retrieval quality
in terms of mean average precision value does not fall below
68%. This mean average precision value might be acceptable
depending on the current application. Similar results can
be observed for the MIR Flickr database where a maximum
absolute speed-up factor of 74 is reached while maintaining
a high retrieval quality of more than 97%.

To sum up, we have shown that the Signature Quadratic
Form Distance is well indexable via metric access methods
by varying the similarity function’s parameter. By adjust-
ing the Signature Quadratic Form Distance’s parameters ac-
cording to individual user’s needs, the trade-off between ef-
ficiency and effectiveness can be balanced.

7. CONCLUSIONS AND FUTURE WORK

In this paper, we have investigated the indexability of
the Signature Quadratic Form Distance for efficient content-

based multimedia retrieval. By making use of a simple met-
ric access method, we have shown that the indexability of
the Signature Quadratic Form Distance depends on its in-
herent similarity function which, so far, was only examined
for the purpose of adapting the distance to specific domains.
As a result, we have reached a promising trade-off between
indexability and retrieval quality: we have shown how to
improve the efficiency of the content-based retrieval process
by a factor of more than 170 while maintaining a retrieval
quality of more than 68%.

As future work, we plan to investigate other metric access
methods in order to improve the efficiency of the Signature
Quadratic Form Distance even further. Additionally, we also
plan to study the indexability of the other state-of-the-art
similarity measures.
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