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Abstract

In biological applications, the tandem mass spectrometry is a widely used method for determining protein
and peptide sequences from an ”in vitro” sample. The sequences are not determined directly, but they must
be interpreted from the mass spectra, which is the output of the mass spectrometer. This work is focused
on a similarity-search approach to mass spectra interpretation, where the parameterized Hausdorff distance
(dmp) is used as the similarity. In order to provide an efficient similarity search under dgp, the metric access
methods and the TriGen algorithm (controlling the metricity of dyp) are employed. Moreover, the search
model based on the dgp supports posttranslational modifications (PTMs) in the query mass spectra, what
is typically a problem when an indexing approach is used. Our approach can be utilized as a coarse filter

by any other database approach for mass spectra interpretation.
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1. Introduction

Proteins, organic molecules made of amino acids,
are the basis of all living organisms. They are es-
sential for construction of cells and for their proper
function [1]. For bioinformatics purposes, a protein
can be understood as a linear sequence over 20-
letter subset of the English alphabet!, where each
letter corresponds to an amino acid. A protein
sequence must be determined from an ”in vitro”
protein sample, while tandem mass spectrometry
is a very fast and popular method for this task.
The proteins in the sample are split by enzymes
into shorter pieces called peptides, and these are
subsequently analyzed by the tandem mass spec-
trometer [2]. However, instead of direct production
of the desired peptide sequences, the spectrometer
outputs a set of experimental mass spectra2 that
have to be interpreted in order to obtain the pep-
tide sequences. In particular, the interpretation of

IThe letters B,J,0,U,X and Z are omitted.
2Each spectrum in the set corresponds to one peptide.
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an experimental spectrum may be accomplished by
means of similarity search.

In order to interpret an experimental spectrum,
a database Dp of known protein sequences (e.g.,
MSDB [3]) can be employed. The peptide sequences
and their hypothetical spectra are generated from
the database Dp, forming a virtual database Dg
of mass spectra. Then, the experimental spectrum
is used as a query object and the database Dg
is searched for its nearest neighbor spectrum (the
most similar spectrum from Dg). The experimental
spectrum is then interpreted as a peptide sequence
corresponding to the spectrum found as the nearest
neighbor.

The interpretation of spectra is often compli-
cated by posttranslational modifications (PTMs)
occurring in the query. The PTMs are usually not
supported in existing similarity approaches among
which using of cosine distance is popular.

1.1. Paper Contribution
We present the non-metric parameterized Haus-
dorff distance dyp, which exhibits better correct-
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ness of mass spectra interpretation than the cosine
similarity does. Moreover, we propose a technique
for efficient similarity search in a database of mass
spectra indexed under dgp, where for indexing we
employ metric access methods (MAMs). In order
to use MAMs efficiently, prior to indexing we uti-
lize the TriGen algorithm to control the metricity
of dgp. The MAM, which we have chosen in our
study, is the M-tree.

Due to the complexity of similarity search of mass
spectra with PTMs, this problem is usually ne-
glected in existing indexing approaches. Here, we
extend the approach based on dgp to support pro-
cessing of spectra including PTMs. This extension
can be also used in the approaches for mass spectra
interpretation based on the cosine similarity.

2. Related Work

We briefly describe the structure of data cap-
tured by the mass spectrometer and the common
techniques employed for mass spectra interpreta-
tion using the database search approach.

2.1. Mass Spectrometry Fundamentals

The mass spectrum is a histogram of peaks corre-
sponding to fragment ions (Fig. 1). A peak is repre-
sented by a pair (%, I)7 where “* is the ratio of mass
and charge, and [ is the intensity of a fragment ion
occurrence. For our purposes it is sufficient to con-
sider z = 1 only, thus the ratios Z* are equal to the
mass m of fragment ions in Daltons®. The precur-
sor mass m,, (the mass of a peptide before splitting)
and charge z, are also provided as an additional in-
formation for each peptide spectrum captured by
the spectrometer.
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Figure 1: An example of a mass spectrum.

In a mass spectrum, there are several types of
fragment ions that are highly important for correct

3Dalton (Da) is a unit of the relative atom mass.

peptide sequence identification. The most frequent
types of fragment ions with well predictable struc-
ture are y-ions and b-ions*. Each type of fragment
ions forms a ion series, e.g., y-ions series or b-ions se-
ries (Fig.1). The completeness of y-ions and b-ions
series is crucial for correct spectra interpretation,
because the mass difference between two neighbor-
ing peaks in one series, e.g., y; and y;41 corresponds
to a mass of one amino acid.

Often, many of the y-ions or b-ions may never
arise in the spectrometer and thus the number of
missing y-ions and b-ions is too high to correct mass
spectra interpretation. In fact, more than 85% of
spectra captured by the spectrometer cannot be in-
terpreted neither by an algorithm nor manually be-
cause the split process generates non-standard frag-
ments. However, there are more factors making the
interpretation complex. Up to 80% of peaks in each
experimental spectrum may correspond to fragment
ions with very complicated or unpredictable chem-
ical structure and they make the recognition of y-
ions and b-ions difficult. Such peaks are regarded
as noise.

2.1.1. Posttranslational Modifications

The interpretation of spectra is often complicated
due to chemical modifications of amino acids, be-
cause masses of amino acids are changed in that
case and thus peaks are shifted. This may happen
during a sample preparation for the mass analy-
sis, during the mass analysis in the spectrometer
or after the translation of proteins in organisms.
The last are so-called posttranslational modifica-
tions (PTMs; Fig.2). Since it is not necessary to
distinguish the modifications in our study, we use
the term PTMs for all the modification types. The
database UNIMOD [4] gathers discovered protein
modifications for the mass spectrometry. At the
time of writing this paper, there were about 660
known modifications.

2.2. Similarity Search

The best way how the mass spectra may be in-
terpreted is to search a database of already known
or predicted peptide (protein, respectively) se-
quences [2, 5]. There are hypothetical mass spec-
tra generated from peptide sequences, and an algo-
rithm (mostly sequential) is used for similarity com-
parison of an experimental (query) spectrum with

4In fact, more types of fragment ions with predictable
structure may arise in the spectrometer, but many of them
occur very rarely.
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Figure 2: A peptide with a PTM a (black peptide fragments
are affected by the PTM — their masses are modified and
corresponding peaks are shifted).

the hypothetical (database) spectra. The only dif-
ference is that fragment ions intensities cannot be
generated from peptide sequences®. The basic sim-
ilarity functions for comparison of an experimen-
tal spectrum with the hypothetical spectra gener-
ated from the database of protein sequences are,
e.g., SPC [6] (shared peak count; in fact, the Ham-
ming distance on boolean vectors, see Fig.4), spec-
tral alignment [7] (kind of dynamic programming
distance on boolean vectors), SEQUEST-like scor-
ing [8]. The most common tools for mass spec-
tra interpretation based on the similarity search in
a database are SEQUEST [8], MASCOT [9], Pro-
teinProspector [10], OMSSA [11], etc. A few ap-
proaches for interpretation of spectra with PTMs
were proposed [7, 12, 13, 14, 15].

2.2.1. Metric Indexing

Since protein sequence databases grow rapidly
and a sequential scan of the whole database be-
comes slow and inefficient, there is a need for uti-
lization of index structures. A few methods for
mass spectra interpretation based on metric access
methods were proposed. Metric space approaches
are usually based on variants of the cosine similarity
(Sec.4.1). One of them uses local sensitive hashing
to preprocess the database [16], another uses the
MVP-tree [17]. The latter approach defines two al-
ternatives of the cosine similarity. The first is called
fuzzy cosine distance, while the other is called tan-
dem cosine distance.

In general, a disadvantage of indexing approaches
is that they usually do not support the search of
spectra with PTMs.

5But it does not cause any problems, because intensities
are only a secondary information used for a noise filtering
from the experimental spectra.

3. Metric Access Methods

Since our approach to mass spectra interpreta-
tion is based on metric similarity search, we need
to briefly summarize the main points concerning
metric access methods (MAMs) [18] and their ap-
plicability. The MAMs were designed for efficient
search in databases where a metric distance d(z,y)
is employed as the similarity function. The met-
ric distance is a function that satisfies postulates
of identity, symmetry, non-negativity and triangle
inequality [18]. The metric postulates (especially
the triangle inequality) are crucial for MAMs, in
order to correctly organize database objects within
metric regions and to prune irrelevant regions while
searching. The MAMSs usually support range and
k-NN (k-nearest neighbor) queries. Among the vast
number of MAMs developed so far, in our approach
we have utilized the M-tree.

3.1. M-tree

The M-tree [19] is a dynamic (updatable) index
structure that provides good performance in sec-
ondary memory, i.e., in database environments.
The M-tree index is a hierarchical structure, where
some of the data objects are selected as centers (also
called local pivots) of ball-shaped regions, while
the remaining objects are partitioned among the
regions in order to build up a balanced and com-
pact hierarchy of data regions. While inner nodes
contain routing entries associated with metric re-
gions, leaf nodes are represented by ground entries
containing data objects or identifiers uniquely iden-
tifying the data (Fig. 3). When performing a query,
the M-tree is traversed from the root, while the sub-
trees the regions of which overlap the query region
must be searched as well, recursively.

grnd(Op,) 53 m;j(ok)wmd(ol)

grnd(O,;)) grnd%oi grnd Oj)

Figure 3: M-tree



3.2. Intrinsic Dimensionality

The requirement on metric postulates is crucial
for MAMSs to index the database, however, the pos-
tulates alone do not guarantee an efficient query
processing. The efficiency limits of any MAM also
heavily depend on the distance distribution in the
database S, and can be formalized by the concept
of intrinsic dimensionality p(S,d) = 4=, where
p is the mean and the o2 is the variance of the
distance distribution [20]. In other words, the in-
trinsic dimensionality is low if the data form tight
clusters. Hence, the database can be efficiently
searched by a MAM, because a query overlaps only
a small number of clusters. On the other hand, a
high intrinsic dimensionality (say, p > 10) indicates
most of the data objects are more or less equally
far from each other. Hence, in intrinsically high-
dimensional database there do not exist clusters,
while the search deteriorates to sequential search.

3.8. Non-metric and Approzimate Search

The applicability of MAMs can be extended be-
yond the metric space model, so that MAMs could
be used also for non-metric and/or approximate
similarity search. In particular, given a semi-metric
distance d(z,y) (a metric distance violating the tri-
angle inequality) and a database, the triangle in-
equality can be added to the semi-metric, so that we
obtain a metric modification f(d(x,y)) that could
be used for similarity search instead. Hence, the
MAMs can be correctly used to index and search
the database using the metric modification. More-
over, the enforcement of the triangle inequality
could be only partial, where the ”partial” metric
distance could be used for approximate search by
MAMs.

3.8.1. TriGen Algorithm

The TriGen algorithm [21] was proposed to keep
a user-controlled amount of triangle inequality in
a semi-metric distance. The idea is based on uti-
lization of a T-modifier, which is either a con-
cave or a convex increasing function f, such that
f(0)=0. A concave function f, when applied on
a semi-metric, increases the number of triplets
(F(d(x,9)). F(d(y, ). f(d(z, 2))) that form a trian-
gle (so-called triangle triplets), and so improves the
triangle inequality fulfillment of f(d). On the other
hand, a convex T-modifier f does the opposite — it
decreases the number of triangle triplets. Simulta-
neously, a concave modification f(d) increases the

intrinsic dimensionality, as it inhibits the differences
between distances. Conversely, a convex modifica-
tion f(d) decreases the intrinsic dimensionality, as
it magnifies the differences between distances. For-
mally, the proportion of triplets that are NOT tri-
angular in a sample of examined triplets is called
the T-error. Given a user-defined T-error toler-
ance, the TriGen algorithm was designed to find
a T-modifier for which the intrinsic dimensionality
p(S, f(d)) is minimized, while the T-error does not
exceed the tolerance.

In order to automate the search for the opti-
mal T-modifier, the TriGen works with so-called
T-bases f(v,w). A T-base is a T-modifier with an
additional parameter w, that aims to control to con-
vexity or concavity of f. For w > 0, the f gets
more concave, for w < 0 it gets more convex, and
for w = 0 we get the identity f(v,0) = v. A simple
T-base used by TriGen is the Fractional-Power base
(FP-base) (Eq.1).

1

vFw  for w > 0
FP (v, w) = { oI for w <0 (1)

The modified distance f(d) determined by Tri-
Gen can be then employed by any MAM for an ex-
act but slower (T-error tolerance is zero, so p gets
higher) or only an approximate but fast (T-error
tolerance is positive, so p gets smaller) similarity
search (metric or non-metric).

4. Similarity Functions Employed in Mass
Spectra Identification

Although the TriGen algorithm (Sec.3.3.1) al-
lows to use MAMSs also with non-metric distances,
it does not guarantee that a particular non-metric
distance modified into metric will be suitable for
indexing by MAMs. In particular, a highly non-
metric distance (exhibiting high T-error) is modi-
fied by TriGen very aggressively to achieve zero T-
error, which means the resulting metric will imply
high intrinsic dimensionality of the database, thus
making it not indexable. Hence, when designing a
new similarity that should be indexable by MAMs,
the attention must be given not only to the seman-
tics of the similarity/effectiveness, but also to its
indexability /efficiency (low both, the T-error and
intrinsic dimensionality).
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Figure 4: A high-dimensional boolean representation of
a mass spectrum.

4.1. Cosine Similarity
The cosine similarity and its metric form, the an-
gle distance, are commonly mentioned in mass spec-
trometry literature for peptide mass spectra inter-
pretation [12, 22, 23, 17, 16]. The cosine similarity
requires a representation of mass spectra as high-
dimensional boolean vectors (Fig.4). For example,
let the range of * values in a mass spectrum be
0-2,000 Da and let it be divided in subintervals of
0.1 Da. The mass spectrum is then represented by
a 20,000-dimensional boolean feature vector hav-
ing ones at places corresponding to intervals for
which the 7 value is nonzero in the spectrum. In-
stead of storing the high-dimensional sparse vec-
tor x, there is usually a compact representation
Z used, where the positions of ones in z (i.e., di-
mensions in which the values of  are nonzero) are
substituted with values of the compact vector .
The compact representation of vector x in Fig.4
is & = (7,13,18,23,27,34). We use a semi-metric
variant d4 of the angle distance (Eq.4) based on
the compact representation, where dim(Z) is the
length/dimension of & (the number of peaks/ones)
and £ is a mass error tolerance.
) ={ G @)
Emiej‘ maXy; ey {da (fiv ?7])}
dim(Z)dim(y)

dA (fa 37) = arccos (a(fa ?7)) (4)

a(Z, ) = (3)

4.2. Parameterized Hausdorff Distance

The parameterized Hausdorff distance dgp
(Eq. 7), suitable for the similarity search in protein
sequence-derived databases of theoretical peptide
mass spectra, was proposed in [24]. # and ¥ repre-
sent vectors of Z ratios and dim(Z) is the length
of the vector #. The internal distance d;, measures
the difference between two values, while only dis-
tances exceeding threshold ¢ (mass error tolerance)
are taken into account.

dn (%, y;) = max(0, |7; — ;] — &) (5)

Eiief {/ (ming, ey {dn (%, ¥;)}
e = D i A ) )

dHP(f7 g) = maX(h(f7 g)ah(ga f)) (7)

dgp is a semi-metric and it reduces the impact
of noise peaks using n-th root (Fig.5). The dyp
works as follows. First, the value/peak in the min-
imal distance in the vector/spectrum % is found for
each peak in ©. The n-th root is applied on each
of the minimal distances and the sum is computed.
The n-th root causes that pairs of noise peaks in
small distances (exceeding a small error tolerance
¢) have big contributions in the sum and vice versa
pairs of noise peaks in big distances have small con-
tributions in the sum (in order to decrease their
impact on the sum). Since the number of peaks in
compared spectra may be different, an average is
computed. The process is repeated with £ and ¥
vectors switched and maximum value is selected to
obtain a symmetric measure.

Since the values in Z and ¥ are ordered, the dyp
computation is of linear complexity [24] (unlike the
general Hausdorff distance [18]). Moreover, using
of the time expensive n-th root function does not
cause any problem, because the range of mass corre-
sponding to generated peptide sequences is limited
and thus a table of the roots can be precomputed.
It was shown that interpretation using dyp exhibits
better efficiency and effectiveness than cosine sim-
ilarity commonly mentioned in mass spectrometry

literature [24].
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Figure 5: The fundamentals of dyp (the dashed arrows in-
dicates the closest peaks in % to the peaks in Z).

4.8. TriGen-based Modification

dgp and d4 are semi-metric distances, the T-
error for each of them is very low (below 0.001)



but the intrinsic dimensionality is very high (above
88 for dyp and above 158 for d4). Thus, we used
TriGen to improve the intrinsic dimensionality, set-
ting the T-error tolerances to be 0 — 0.1. Note that
dgp and d4 must be normalized to (0,1) in order
to employ the TriGen. The dgyp is normalized by
{/die®, where dj*®* is the maximal possible value
in a compact vector (i.e., the dimension of the high-
dimensional representation). The d4 is normalized
by 5.

For all the T-error tolerances, the TriGen found
convex T-modifiers (w < 0), so the intrinsic di-
mensionality was reduced (down to 2 for T-error
tolerance 0.1). The resulting modifiers determined
by TriGen for dgp (n = 30) and d4 are shown in
Tab. 1.

dup da
l T-error [ p [ A4 p w

0 88.5 | -0.17 || 158.1 | -0.84
0.01 5.2 | -4.44 11.1 -7.43
0.02 4.0 | -5.23 8.5 -8.94
0.03 3.5 | -5.71 7.1 -10.01
0.04 3.2 | -6.08 6.3 -10.92
0.05 2.9 | -6.40 5.7 -11.65
0.06 2.8 | -6.64 5.2 -12.34
0.07 2.6 | -6.87 4.8 -13.00
0.08 2.5 | -7.06 4.5 -13.63
0.09 2.4 | -7.25 4.2 -14.28
0.1 2.3 | -7.42 3.9 -14.92

Table 1: Intrinsic dimensionality p and empirically deter-
mined FP(v,w) modifiers for dgp (n = 30) and d4.

5. Interpretation using Similarity Search

The entire process of peptide mass spectra inter-
pretation we propose, incorporating the previously
defined measures, can be summarized as follows:

Indexing

1. Each protein sequence in the database is split
to shorter peptide sequences. The rules for the
splitting are determined by an enzyme. The
most common enzyme is trypsin, which splits
the protein chains after each amino acid K (ly-
sine) and R (arginine) if they are not followed
by P (proline) [25]. However, even if the split-
ting sites are well predictable, the process is
not perfect in practice and some missed cleav-
age sites can occur. The maximum number of

missed cleavage sites max.s is adjusted as a
parameter.

2. The “* values of y- and b-ions are gener-
ated in ascending order for each peptide se-
quence, while each sequence corresponds to
one indexed vector. The vector for the pep-
tide sequence of the length [ has the dimension
2(1 —1), see Fig. 1.

3. The vectors are indexed by a MAM (e.g., by
the M-tree) under dyp or d4 modified by the
TriGen (Sec. 3.3.1).

Querying/Interpretation

4. The experimental spectrum is preprocessed be-
fore the interpretation. The p peaks with high-
est intensity I from the experimental spectrum
are selected and they form a query correspond-

ing to a vector of their 7+ values.

5. A kNN query is processed by the MAM, while
the correct peptide sequence corresponding to
the spectrum is obtained as the first neighbor
in many cases. However, in real-world applica-
tions we need to provide more nearest neigh-
bors, because an additional scoring algorithm
could select a different peptide as the correct
one from the kNN set. Such refining algo-
rithm could be, e.g., SPC, spectral alignment,
SEQUEST-like scoring (Sec. 2.2).

In the experimental section we assume that a
mass spectrum is successfully interpreted if the cor-
rect peptide sequence is among the k nearest neigh-
bors (regardless of its position in the kNN result).
Such an approach is often employed and the scoring
is then handled separately. Hence, the overall setup
of our method can be utilized as a coarse filter by
any other database approach for mass spectra in-
terpretation.

5.1. Dealing with PTMs

If an experimental spectrum contains PTMs,
some peaks in the spectrum are shifted. The shifts
depend on the positions of PTMs in the peptide,
i.e., which amino acids in the sequence have mod-
ified mass (Fig.2). There are two basic ways to
support identification of the spectra with PTMs.
First, all peaks in the database-generated spectra
can be shifted for any PTM (or any combination of
PTMs) and indexed by a MAM, while the query is
unchanged. Since the number of known PTMs is



high [4], we use the other way — the modification of
the query, while the database remains unchanged.
The entire process of the query construction for one
random PTM « can be summarized as follows:

1. Let S,; be the database-generated spectrum
of a peptide sequence (Fig.6a). Let Sy =
(m1,...,mp) (Fig.6b) be an experimentally
taken (i.e., captured by the mass spectrometer)
peptide mass spectrum with p peaks (mass-to-
charge ratios with z=1).

2. When a PTM « (e.g., @ = 57) happens at an
unknown position ¢ in the peptide, only m;
and some of the following peaks are shifted.
Since we cannot predict this position, the en-
tire spectrum is shifted by —«a. A shift of
the spectrum Sy for the PTM « is a vector
So = (m1—a,...,my—a) (Fig. 6¢). Thus peaks
shifted by « in Sy have their ”unshifted” coun-
terparts in S,.

3. Sp and S, are joined (Fig. 6d), where the union
of spectra SoUS,, is a sorted vector of all peaks
in the spectra Sy and S,.

4. While Sy forms the query for an unmodified
spectrum, the query for the spectrum with
PTM « is S[ = S() USa.

A disadvantage is that two other types of noise
peaks occur in queries. First, the peaks shifted by
PTM ”in vitro” in Sy, which are superfluous in the
union Sp U S,. Second, the artificial noise peaks
computed in S, which were not modified by PTM
and they should not have been shifted in S,. These
two types of noise peaks cannot be removed, be-
cause we are not able to recognize them. Since mass
spectra contain up to 80% of noise peaks and dyp
is able to reduce them, the other noise peaks are
reduced as well.

In case of two PTMs « and [, the query is rep-
resented by spectrum S;r = Sp U S, U Sg U Saqys,
where « + (8 are peaks shifted by both modifica-
tions at once. In case of three PTMs «, 8 and
v, the query is represented by spectrum Sy;; =
SoUSaUSUS,US,48USatyUSg4yUSays4+, ete.
Since the length of peptide sequences is limited, the
number of PTMs per spectrum usually does not ex-
ceed 2 or 3 (Tab. 2). Therefore the maximum num-
ber of spectra unified in the query, which might be
up to 29 for ¢ PTMs, is not reached in practice.

A way, how to simplify the query, is to limit
the maximum number of simultaneously occur-
ring PTMs n, per spectrum. For example, if
ns = 1 the query spectrum Sy;; is reduced to
S = SoUSaUSsUS,. Another example, if
ns = 2 and each of PTMs « and 8 can be re-
peated up to 2x, we obtain the query spectrum
Srv =SoU S, U SB U Sa-i—B U Soxa U ngg, etc.
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Figure 6: Dealing with PTMs (Spg corresponds to Sy with
PTM o« happened at position 3 in the respective peptide
sequence).

6. Experiments

In the experiments, we used a union of the collec-
tions Amethyst and Opal [26] of experimental tan-
dem mass spectra. The collections are formed from
the mass spectra of peptides founded in the human
genome and they contain mass spectra with PTMs
(Tab. 2). The database used in our experiments is
an extension of the list of correct protein sequences
assigned to the experimental mass spectra. The
database was extended with protein sequences from
MSDB (release 08-31-2006) [3], it contained 100,000
protein sequences (5,612,211 peptide sequences).

[ Num. of PTMs H 0 [ 1 [ 2 [ 3 [ 4 [ 5 [ 6 ]
[ Amethyst [[1095 T 371 [ 85 [ 13 [ 2 2] 1]
[ Opal [[ 239 [ 237 [ 51 8 [ 1[0]0]

Table 2: The number of PTMs per spectrum and the number
of spectra in the collections Amethyst and Opal.

In the experiments, we measured two quantities.
First, we computed the correctness of mass spectra
interpretation (or correctness of peptide sequence
identification) as a ratio of correctly assigned pep-
tide sequences to all spectra from a query set.



As mentioned in Sec.5, we assume that a query
spectrum is correctly assigned to the peptide se-
quence if the correct peptide sequence is among the
k nearest neighbors to the query spectrum. Second,
we measured the average query time per one mass
spectrum interpretation.

All experiments were carried out on a machine
with 2 processors Intel Xeon E5450 (8 cores X
3GHz) with 8 GB RAM and 64-bit OS Windows
Server 2008 R2.

The following settings were used unless otherwise
specified — the dgp was computed with n = 30, the
splitting enzyme was trypsin, the maximum missed
cleavage sites (max.s) was set to 1, the mass error
tolerance (£) was 0.4 Da, 50 peaks with the highest
intensity were selected from experimental spectra,
y- and b-ions were generated to the hypothetical
mass spectra.

6.1. Sequential Scan
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Figure 7: Correctness of interpretation of dyp - sequential
scan (a) and distance distributions (b).

First, dgp was employed with the sequential scan
of the whole database of hypothetical mass spec-
tra, while the correctness of interpretation and av-
erage query time were measured on the experimen-
tal spectra lacking PTMs. The correctness of inter-
pretation was higher with increasing index of the
root n (Fig.7a). The correctness of interpretation
was up to 98.3% (n = 30; 10NN queries). The av-
erage query time was 14.4s. The correctness of in-
terpretation for d4 was 95.7% (10NN queries) and
the average query time was 9.8s.

6.2. Improving the Indexability

A disadvantage of the n-th root function in dgyp
is that intrinsic dimensionality p increases with the
increasing n, hence the difference between MAMs
and sequential scan decreases with increasing n.
In Fig. 7b see the distance distributions under dgp

(not modified by TriGen) for various n. The x-axis
represents normalized distances in the database.
The more the distribution is pushed to the right,
the higher the intrinsic dimensionality.

In Fig. 8 observe the impact of T-error tolerance
on the distance distributions obtained using the
TriGen-modified dyp and d4 considering the FP-
base. Obviously, higher T-error tolerance leads to
more convex T-modifier, hence to lower intrinsic di-
mensionality (distance distributions pushed to the
left).
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Figure 8: dyp (a) and d4 (b) - distance distributions (mod-
ified by TriGen).

6.3. Speed-up using M-tree

In order to verify the behavior of dgp and d 4 pre-
dicted in Sec. 6.2, we employed 1,000 NN queries for
various T-error tolerances on the M-tree. The cor-
rectness of interpretation was higher for dyp than
for d4 with increasing T-error tolerance. On av-
erage, it was 1.3x higher than for d4. The dgp
was 4.9x faster than sequential scan, while the cor-
rectness of interpretation was more than 90% (T-
error = 0.03). The d4 was 5.4X faster at the same
T-error tolerance, but correctness was only 73.9%.
The average query time was 14.4 s for dyp and 9.8 s
for d4 on the sequential scan (Sec.6.1).
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Figure 9: dgp and d4 - correctness of interpretation (a) and
average query time (b) on M-tree.



6.4. Searching with PTMs

In this section we show that our proposed mea-
sures are also capable of interpretation of mass
spectra containing PTMs.

6.4.1. Utilization of dgyp

The correctness of interpretation was taken us-
ing KNN queries without/with (Tab.3) the sup-
port of the search of PTMs using the sequen-
tial scan. We tested 467 spectra containing one
PTM, 77 spectra containing two PTMs and 10 spec-
tra containing three PTMs. The following PTMs
ae{-28, —17, —14, 1, 14, 16, 28, 57}, pairs of
PTMs {«a, 5} € {{-17,57}, {57,57}} and triplets
of PTMs {«,8,~v}e{{-17,57,57}, {57,57,57}}
were searched. The queries S; were performed for
spectra with one PTM, Sy for spectra with pairs of
PTMs and Syy; for spectra with triplets of PTMs
(Sec.5.1).

PTMs Correctness of interpretation [%)]
per spectrum | TNN [ 10NN [ 100NN [ T,000NN |

without the support of PTMs
1 20.0 41.0 61.7 75.0
2 9.3 18.6 28.7 65.8
3 0 0 0 0
with the support of PTMs
1 69.9 84.0 94.3 98.9
2 24.8 55.1 76.8 90.8
3 31.0 54.8 61.9 100.0

Table 3: Correctness of interpretation without/with the sup-
port of PTMs in the query mass spectra.

Since modifications might not affect all peaks in
the experimental spectrum, the dgyp is still par-
tially able to determine the correct peptide se-
quence without PTMs support. The correctness of
interpretation was more than 90% in all cases when
PTMs were supported (1,000 NN queries). It de-
creases with increasing number of PTMs per spec-
trum when smaller KNN queries are used.

The number of peaks in the query increases with
increasing number of PTMs to be supported and
the average query time increases too. The average
query time for the spectra with one PTM was 18.9 s,
for the spectra with two PTMs was 24.2s and for
the spectra with three PTMs was 35.6s.

6.4.2. Queries on M-tree

We performed a set of 1,000 NN queries for dif-
ferent T-error tolerances, while the M-tree and dgp
were employed. The results for spectra with one
and two PTMs are shown in Fig.10. The M-tree

was 3.3 X faster for spectra with one PTM and 2.5x
faster for spectra with two PTMs than the sequen-
tial scan (T-error = 0.06), while the correctness of
interpretation was still about 90%.
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Figure 10: PTMs - correctness of interpretation (a) and av-
erage query time (b) on the M-tree.

6.4.3. Impact of PTMs Setup

The user of a real-life application, who wants to
interpret the mass spectra, is usually able to pre-
dict some of the PTMs, which may occur in the
data-set captured by the spectrometer. Thus the
PTMs, which are taken into account during the
search, are commonly selected by the user before
the search. We are interested in the impact of the
query construction (i.e., in the user’s well/badly
formed choice of PTMs) on the correctness of in-
terpretation.

The correctness of interpretation was taken for
the mixture of experimental spectra with modifi-
cations {0,57,—17,16} (none or one modification
per spectrum is assumed, i.e., ng = 1). The results
were taken for dgp (Tab.4) and d4 (Tab.5), while
the sequential scan was employed for different & in
kNN queries. The queries were gradually expanded
to cover all the PTMs in the mixture. The PTM
supported by the current query extension is indi-
cated by | (e.g., if the query is changed from Sy
to Sp U S57, the PTM +57 Da is indicated) and the
results for the distance with higher correctness are
highlighted.

dgp had better correctness of interpretation in
comparison to d4 when smaller kNN queries (1 NN
to 100 NN) were used. When 1,000 NN queries were
employed, d 4 had a little bit better correctness than
dgp in half the cases. The dgp would be better
than d 4, if a bigger protein sequence database and
1,000 NN query were used, because false hits in the
kNN query worse the correctness of d 4.

Some spectra with PTMs were correctly assigned
to the peptide sequences even if the queries were not



modified to support them, while the results were no-
ticeably better for dyp than for d4. The query ex-
pansion to cover more PTMs considerably increases
the correctness for the spectra with these PTMs and
slightly decreases the correctness for the spectra
with PTMs, which were covered before the query
expansion. In another words, if the user’s selection
of PTMs to be searched is too vigorous (i.e., many
unnecessary PTMs are selected), the correctness of
interpretation might dramatically decrease. On the
other hand, if the user omits some of the PTMs,
which are presented in the experimental mass spec-
tra, the spectra can be still successfully interpreted.

[ PTM[Da] [ 0 [ 57 [ -7 [ 16 [ Total |
[ Num. of spectra || 1334 | 280 | 29 | 34 || 1677 |
So 4
1NN 91.4 30.7 27.6 50.0 79.3
10NN 98.3 46.1 62.1 79.4 88.6
100 NN 98.8 61.4 93.1 97.1 92.4
1,000 NN 99.1 76.8 93.1 100.0 95.3
So U Ss7 1
1NN 70.5 68.9 13.8 8.8 70.0
10NN 93.1 90.0 31.3 41.2 90.5
100 NN 97.4 97.9 58.6 64.7 96.1
1,000 NN 98.4 98.9 82.8 85.3 97.9
So U Ss7US_17 4
1NN 63.9 57.1 51.8 8.8 61.5
10NN 84.3 80.7 62.1 26.5 82.1
100NN 93.4 93.2 65.5 52.9 92.1
1,000 NN 95.7 98.6 72.4 79.4 95.5
So USs7US_17U S16 4
1NN 46.5 38.2 48.3 26.5 44.7
10NN 71.1 65.4 58.6 61.2 69.7
100 NN 84.6 83.6 65.5 91.2 84.2
1,000 NN 92.0 92.9 72.4 100.0 91.9

Table 4: dyp - correctness of interpretation [%)].

6.4.4. Search of Spectra with more PTMs

The spectra with at most two PTMs (ns = 2) per
spectrum were interpreted with dgp, while more
complex queries Sy (Sec.5.1) with @ = 57 and
B = —17 were performed using the sequential scan
(100 and 1,000 NN queries were used). Otherwise
stated, we were trying to simulate a more real-life
search situation, where two PTMs were given on
the input of an application and the query spectra
could contain up to both PTMs or did not have to
contain any PTM. The results are summarized in
Tab. 6. The correctness of interpretation was more
than 82% for spectra without PTMs, more than
85% for spectra with up to two PTMs +57 Da and
almost 70% for spectra containing one PTM -17 Da
or the combination of PTMs -17Da and +57Da
(1,000 NN queries are assumed). We employed the

10

[ PTM[Da] [[ 0 [ 57 -17 [ 16 ][ Total |
Num. of spectra H 1334 [ 280 [ 29 [ 34 H 1677 ]
So 4

1NN 84.8 21.8 13.8 17.6 717
10NN 95.7 35.7 37.9 38.2 83.5
100 NN 99.0 46.1 58.6 64.7 88.7
1,000 NN 99.6 63.6 82.3 97.1 93.3
So U Ss7 4
1NN 59.4 60.7 3.4 8.8 57.7
10NN 79.4 79.3 10.3 14.7 76.9
100 NN 92.7 91.8 37.9 38.2 91.0
1,000 NN 99.0 99.3 65.5 55.9 97.6
So U Ss7US_17 4
1NN 50.7 54.3 44.8 8.8 50.3
10NN 70.9 71.4 72.4 17.6 69.9
100 NN 88.0 88.6 89.7 32.4 87.0
1,000 NN 97.2 97.1 100.0 55.9 96.4
So U Ss7US_17US16 4
1NN 38.6 43.2 17.2 23.5 38.7
10NN 57.4 62.1 58.6 58.8 58.3
100 NN 77.5 81.1 79.3 73.5 78.1
1,000 NN 93.5 96.1 100.0 88.2 93.9

Table 5: d4 - correctness of interpretation [%)].

sequential scan with the average query time 32.8s.

For a comparison, we performed queries Sy (i.e.,
PTMs were not supported) and also queries S, Syr
(i.e., it was known what PTMs should be found).
For the spectra with PTMs, the correctness was in
many cases better for Sy than for Sy but a little
bit lower than for S; and Sy;.

’ PTMs in Num. of [] Query |
spectra [Da] spectra || So | Sr [ Sit [ Siv |
100 NN
none 1334 98.8 — — 65.1
+57 280 61.4 97.9 — 66.8
-17 29 93.1 86.2 — 58.6
+574+57 64 34.4 — 84.4 65.6
-17457 13 23.1 — 69.2 53.8
1,000 NN
none 1334 99.1 — — 82.5
+57 280 76.8 98.9 — 86.4
-17 29 93.1 93.1 — 68.7
+57457 64 46.9 — 96.9 85.9
-174+57 13 84.6 — 84.6 69.2

Table 6: Search of spectra with more PTMs - correctness of
interpretation [%].

7. Conclusions

The best way how to interpret the tandem mass
spectra of peptides is to search a database of al-
ready known or predicted protein sequences. We
have shown that M-tree and parameterized Haus-
dorff distance (dgp) is a powerful combination for



this task. The dyp models the similarity among the
spectra very well and it can be utilized by MAMs
when TriGen algorithm is employed. In general, if
the T-error is higher, the indexability of the dgp
by MAMSs is better, the search is faster and the
correctness of interpretation is a little bit lower.
Moreover, we have proposed an extension of the
dyp approach for the spectra containing posttrans-
lational modifications (PTMs), which are in prac-
tice a relatively frequent phenomenon but often ne-
glected in the existing indexing approaches. Since
the extension is independent of dygp and MAMs,
it can be implemented by other approaches to in-
crease the effectiveness for spectra contaminated by
PTMs, e.g., that one based on the cosine similarity.
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