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Abstract

Since its introduction in 1997, the M-tree became a respected metric access method
(MAM), while remaining, together with its descendants, still the only database-
friendly MAM, that is, a dynamic structure persisted in paged index. Although there
have been many other MAMs developed over the last decade, most of them require
either static or expensive indexing. By contrast, the dynamic M-tree construction
allows us to index very large databases in subquadratic time, and simultaneously the
index can be maintained up-to-date (i.e., supports arbitrary insertions/deletions). In
this article we propose two new techniques improving dynamic insertions in M-tree –
the forced reinsertion strategies and so-called hybrid-way leaf selection. Both of the
techniques preserve logarithmic asymptotic complexity of a single insertion, while
they aim to produce more compact M-tree hierarchies (which leads to faster query
processing). In particular, the former technique reuses the well-known principle of
forced reinsertions, where the new insertion algorithm tries to re-insert the content of
an M-tree leaf that is about to split in order to avoid that split. The latter technique
constitutes an efficiency-scalable selection of suitable leaf node wherein a new object
has to be inserted. In the experiments we show that the proposed techniques bring
a clear improvement (speeding up both indexing and query processing) and also
provide a tuning tool for indexing vs. querying efficiency trade-off. Moreover, a
combination of the new techniques exhibits a synergic effect resulting in the best
strategy for dynamic M-tree construction proposed so far.
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1 Introduction

The methods of similarity search are becoming a standard tool in various
data-oriented research areas, like multimedia databases, data mining, bioin-
formatics, biometric databases, text retrieval, etc. Basically, the task of sim-
ilarity search is expressed as follows: Given a universe U of database object
descriptors Oi ∈ U (e.g., MPEG7 features in case of images), a database of ob-
jects S ⊂ U, and a similarity measure δ(Oi, Oj) computing the similarity score
between any two objects of the universe, then we want to query the database
in order to retrieve the most similar objects to our query object Q ∈ U. At
the same time, since a single computation of the similarity score δ(·, ·) is con-
sidered as CPU-intensive (often quadratic in object size, or worse), we would
like to avoid the sequential search over the entire database. Unfortunately, an
efficient processing of a similarity query cannot be accomplished by conven-
tional access/indexing methods (like B-trees), because there does not exist a
meaningful canonical ordering on the database objects.

Here come the metric access methods (MAMs) into play, a class of indexing
methods aimed at similarity search of various kinds. The similarity measure δ
(dissimilarity or distance, actually) is required to be a metric function, that is,
it must satisfy the reflexivity, non-negativity, symmetry and triangle inequal-
ity. Based on these properties, the MAMs partition (or index) the database
S into classes, so that only some classes have to be sequentially searched
when querying. This results in less distances δ(·, ·) computed at query time,
and thus in more efficient retrieval. The number of distance computations
spent during index construction is referred to as the construction costs, while
query costs represent the computations spent by processing a query. The al-
ready developed MAMs address various aspects – main-memory/database-
friendly methods, static/dynamic indexing, exact/approximate search, cen-
tralized/distributed indexing, etc. (see monographs [19,10] and survey [3]).
The M-tree [6] represents a centralized, dynamic, and database-friendly MAM.
Although there exist MAMs more efficient in querying performance, the M-tree
(and its descendants) is still the only solution applicable to very large databases,
due to its cheap B-tree-like construction. The M-tree is also dynamic, so it is
easily updatable by arbitrary insertions or deletions of individual objects.

In this article we propose two new techniques improving dynamic insertion in
M-tree – the forced reinsertions and so-called hybrid-way leaf selection. The
former one applies the well-known principle of forced reinsertions into M-tree,
the latter represents a scalable selection of leaf wherein a new object has to be
inserted. The rest of the paper is structured as follows – in Section 2 we review
the M-tree, in Section 3 we discuss alternative ways of M-tree construction. In
Sections 4 and 5 we describe the newly proposed techniques. The experimental
evaluation is included in Section 6, while Section 7 concludes the paper.
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2 M-tree

Based on properties well-tried in B+-tree and R∗-tree, the M-tree [6] is a dy-
namic metric access method suitable for indexing of large metric databases.
The structure of M-tree represents a hierarchy of nested ball regions, where
data is stored in leaves, see Figure 1a. Every node has a capacity of m en-
tries and a minimal occupation mmin; only the root node is allowed to be
underflowed below mmin. The inner nodes consist of routing entries rout(R):

rout(R) = [R, ptr(T (R)), rR, δ(R,Par(R))],

where R ∈ U is a routing object, ptr(T (R)) is a pointer to the subtree T (R), rR

is a covering radius, and the last component is a distance to the parent routing
object Par(R) (so-called to-parent distance 1 ) denoted as δ(R,Par(R)). In
order to correctly bound the data in T (R)’s leaves, the routing entry must
satisfy the nesting condition: ∀Oi ∈ T (R), rR ≥ δ(R,Oi). The routing entry
can be viewed as a ball region in the metric space, having its center in the
routing object R and radius rR. A leaf (ground) entry has a format:

grnd(D) = [D, oid(D), δ(D, Par(D))],

where D ∈ S and δ(D, Par(D)) are similar as in the routing entry, and oid(D)
is an external identifier of the original object (D is just an object descriptor).

Fig. 1. (a) An M-tree hierarchy (b) Basic filtering (c) Parent filtering

2.1 Similarity Queries in M-tree

Similarly like the data regions described by routing entries, also the two most
common similarity queries are described by ball-shaped regions. The range

1 The to-parent distance is not defined for entries in the root.
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query is defined as a ball centered in a query object Q with fixed query radius
rQ, hence, we search for objects similar to a query object more than a user-
defined threshold. The k nearest neighbor (kNN) queries retrieve the k most
similar objects to Q. The kNN query region is also ball-shaped, however, the
query radius, being the distance to the kth closest object, is not known in
advance, so it must be iteratively refined during kNN query processing.

The queries are implemented by traversing the tree, starting from the root 2 .
Those nodes are accessed, the parent regions of which are overlapped by the
query ball. The check for region-and-query overlap requires an explicit distance
computation δ(R,Q) (called basic filtering), see Figure 1b. In particular, if
δ(R, Q) ≤ rQ + rR, the data ball (R, rR) overlaps the query ball (Q, rQ), thus
the child node has to be accessed. If not, the respective subtree is filtered from
further processing. Moreover, each node in the tree contains the distances from
the routing/ground entries to the center of its parent routing entry (the to-
parent distances). Hence, some of the non-relevant M-tree branches can be
filtered without the need of a distance computation (called parent filtering,
see Figure 1c), thus avoiding the “more expensive” basic overlap check. In
particular, if |δ(P, Q)− δ(P, R)| > rQ + rR, the data ball R cannot overlap the
query ball, thus the child node has not to be re-checked by basic filtering. Note
δ(P, Q) was computed in the previous (unsuccessful) parent’s basic filtering.

2.2 Compactness of M-tree Hierarchy

Since the ball metric regions described by routing entries are restricted just by
the nesting condition, the M-tree hierarchy is very loosely defined, while for a
single database we can obtain many correct M-tree hierarchies. However, not
every M-tree hierarchy built on a database is compact enough. In more detail,
when the ball regions are either too large and/or highly overlap “sibling”
regions, the query processing is not efficient because routing entries of many
nodes overlap the query ball. In consequence, large portion of the M-tree
hierarchy must be traversed, and so many query-to-object distances have to
be computed (resulting in high query costs).

Even if we use always the same construction method, the resulting M-tree hi-
erarchy will still heavily depend on the order in which data objects are inserted
(in case of dynamic insertions). A maximally compact M-tree hierarchy(ies)
surely exist(s), however, such a construction would require static indexing,
and, above all, an exponential construction time. Hence, we would rather pre-
fer an efficient sub-optimal dynamic construction, yet producing sufficiently
compact hierarchies.

2 We outline just the principles, for details see the original M-tree algorithms [6,15].
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During the last decade, many methods have been developed to challenge the
problem of compact M-tree hierarchies. Besides the original M-tree construc-
tion (see Section 2.3), we overview some recent M-tree enhancements in Sec-
tion 3 and present our contributing methods in Sections 4 and 5.

2.3 Building the M-tree

An M-tree is built in the bottom-up fashion (like B-tree or R-tree), so the
data objects are inserted into the leaf nodes. When a leaf overflows, a split
is performed – a new leaf is created and some objects are moved from the
original leaf into the new one. Two new routing entries are created, one for
the original updated leaf and one for the new leaf, and inserted into the parent
node (entry for the original leaf is just replaced). All to-parent distances to
the new routing objects are computed and replaced in the new leaves’ entries.
Because of inserting new routing entries, the parent node might overflow as
well. In such case a split is performed in a similar way, recursively. If the root
node is split, the M-tree grows by one level.

When building an M-tree by dynamic insertions, two main problems have to
be solved – the leaf selection and the node splitting.

2.3.1 Leaf Selection

In the original M-tree, a process similar to a point query is performed, in
order to find an appropriate leaf for object placement. However, in contrast
to a point query, only one vertical path of the tree is passed. This approach is
also referred to as the single-way (or deterministic) insertion, see Figure 2a.
When navigating the tree, the next node in the path is chosen such that the
inserted object fits the appropriate region best (for details see [6,15]).

Fig. 2. (a) Single-way leaf selection (b) Multi-way leaf selection

2.3.2 Node Splitting

The node splitting policy is a significant factor of the M-tree building process.
When a node is split, two new routing entries have to be created, represent-
ing new ball regions. To guarantee a compact M-tree hierarchy, the splitting
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process must ensure the new regions are separated as much as possible, they
overlap as least as possible, and they are of minimum volumes (radii).

To best fit these requirements, all the objects in the node are candidates to
the routing objects. For each pair of candidate routing objects, the resulting
nodes are temporarily created and radius of the greater region is determined.
Such pair of candidate routing objects is finally chosen, which has the small-
est radius of the greater region (so-called mM Rad choice). This CLASSIC
approach exhibits O(m2) complexity, where m is the capacity of the node. To
avoid the quadratic complexity, there were alternative heuristics developed:

– The RANDOM approach directly selects two new routing objects at ran-
dom, which cuts the complexity down to O(m).
– Instead of considering all objects in the node as candidate routing objects,
the SAMPLING approach selects randomly just s candidates (s < m). Then
the complexity of node splitting is O(ms).

In Figure 3 see the result of leaf splitting, comparing the CLASSIC and SAM-
PLING heuristics. A splitting of non-leaf nodes is similar, though it must take
also the radii of the redistributed routing entries into account.

Fig. 3. Leaf split using (a) CLASSIC and (b) SAMPLING heuristics

3 Related Work

The success of M-tree can be supported by the existence of its many descen-
dants that have appeared during the past decade. We could chronologically
name the Slim-tree [17] (discussed in Section 3.1), and the M+-tree [20] which
exploits further partitioning of the node by a hyper-plane (i.e., an approach
limited to Euclidean spaces). Furthermore, let us mention the PM-tree [12,16]
which combines the M-tree with pivot-based techniques, the M2-tree [5] and
M3-tree [2] which exploit an aggregation of multiple metrics. As the most
recent ones we point out to M∗-tree [13], where each node is additionally
equipped by a nearest-neighbor graph, and the NM-tree [14] which allows also
nonmetric distances. In the rest of the paper we consider the original structural
properties of M-tree [6] (i.e., modified algorithms, not the structure).
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The effectiveness of query processing in M-tree heavily depends on the M-tree
compactness, hence, on the construction algorithm used. Intuitively, to im-
prove the search performance, the construction should be more expensive,
and vice versa. For example, if we use the RANDOM node split heuristic, we
obtain low construction costs, but the region volumes/overlaps will increase,
and so the query costs will rapidly increase as well. In the following we present
three approaches of compact M-tree construction.

3.1 Slim-down Algorithm

The authors of Slim-tree [17] proposed two new M-tree construction tech-
niques. First, a node splitting policy was introduced, based on minimum span-
ning tree. Instead of choosing many candidate pairs to new routing entries and
then temporarily partitioning the node entries for each candidate pair, in Slim-
tree the complete distance graph between node entries is used to construct the
minimum spanning tree (MST). Then, the longest edge in MST is removed
in order to obtain two separate sets of entries – these sets directly constitute
the two new nodes. Although the MST splitting still needs O(m2) distance
computations due to the complete distance graph, there are O(m) external
CPU costs saved, otherwise used for the temporary partitioning. Second, the
slim-down algorithm was presented, a post-processing method trying to redis-
tribute ground entries into more suitable leaves. This technique produces very
compact M-tree/Slim-tree hierarchies, however, it is also very expensive – up
to linear with database size for a single ground entry redistribution.

The slim-down algorithm was later generalized in order to redistribute also
routing entries at higher M-tree levels [15], which leads to even more compact
hierarchies (see Figure 4).

Fig. 4. An M-tree before (a) and after (b) generalized slim-down algorithm run
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3.2 Multi-way Leaf Selection

Another way of improving M-tree compactness is an employment of more
sophisticated selection of target leaf wherein a new object will be inserted. In
[15] the multi-way (non-deterministic) leaf selection was proposed. The target
leaf is found such that a point query (i.e., range query with rQ = 0) is issued
having the new inserted object in the role of Q. All the “touched” and non-full
leaves serve as candidates to the target leaf. Among the touched non-full leaves
the one is chosen which has its parent routing object closest to the inserted
object (see Figure 2b).

The multi-way leaf selection has positive impact on the M-tree compactness,
though not as large as the generalized slim-down algorithm. On the other
hand, the insertion employing multi-way leaf selection is by far less expensive
than the generalized slim-down algorithm, though still up to linearly expensive
with database size for a single insertion.

3.3 Bulk Loading

The basic idea of bulk loading is to statically create the index from scratch
but knowing beforehand the database. Then some optimizations may be per-
formed to obtain a “good” index for that database. Usually, the proposed bulk
loading techniques are designed for specific index structures, but there have
been proposals for more general algorithms. For example, in [7] the authors
propose two generic algorithms for bulk loading, which were tested with differ-
ent index structures like the R-tree and the Slim-tree. Note that the efficiency
of the index may degrade if new objects are inserted after its construction.
Specific bulk loading techniques for M-tree were introduced in [4,11], the lat-
ter one furthermore introduces, for the first time, dynamic deletions on M-tree
(renamed to SM-tree here). Another bulk loading algorithm for Slim-tree was
recently proposed in [18].

Sometimes the bulk loading is viewed as a technique for fast index construc-
tion, rather than a tool for building a compact index hierarchy.

4 Forced Reinsertions

The first contribution we propose in this article is an adaptation of forced
reinsertion into the process of dynamic insertions in M-tree. The forced rein-
sertions is a well-known technique from the R*-tree [1]. The idea is based on
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an easy principle. Some objects are removed from a leaf to avoid a split op-
eration and then inserted in a common way under a hope that the reinserted
objects will arrive into more “suitable” leaf(s). There are two basic motiva-
tions to consider forced reinsertion as beneficial, considering any B-tree-based
spatial/metric index structure. The straightforward (but also weaker) motiva-
tion is better node occupancy, hence, forced reinsertions lead to fuller nodes.
Second, due to unavoidable node splitting over the time, the compactness of
spatial/metric region hierarchy deteriorates – the region volumes and over-
laps grow because of spatial aggregations mixing old and new objects/regions.
Here the forced reinsertions could serve as an opportunity to move some “bad”
(volume- or overlap-inflating) objects from the leaf.

In M-tree, we have to face some specific issues when implementing forced rein-
sertions. Basically, when a new object is inserted into a leaf that is now about
to split, some suitable objects from the leaf must be selected and reinserted.
The crucial goal is to propose a method aiming to decrease the covering radius
of the reinserted leaf as much as possible, while simultaneously aiming to grow
the radii of leaves accepting the reinserted objects as little as possible. Here
we have to take also the induced leaf splits/reinsertions into account, that is,
a forced reinsertion attempt could raise a chain of reinsertions terminated by
regular splits “after a while”.

Fig. 5. (a) Before reinsertions (b) Decreased overlaps/volumes after 3 reinsertions

As a fundamental assumption, we expect objects located close to the region’s
“border” have higher probability to be suitably reinserted than the more “cen-
tered” ones. Since in an M-tree node the entries are ordered according to their
distances to the parent routing object (region’s center), we can select the fur-
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thest ones (close to the border) easily. 3 In Figure 5 see a motivation example
– situation just before a leaf split, and how the split is avoided after a series
of induced reinsertions, denoted as FR#1, FR#2, FR#3. We can see that not
only the split was prevented, but the M-tree compactness was improved, too.

We propose two variants using forced reinsertions for M-tree – the full rein-
sertions and conservative reinsertions.

4.1 Full Reinsertions

As mentioned before, we assume the most suitable entries for reinserting are
the furthest ones from the parent routing object. To avoid an overfull leaf
split, some of its furthest entries are removed from the leaf and pushed onto
a temporary main memory stack S. The covering radius of the leaf’s parent
routing entry is then immediately reduced to the distance of the routing object
to the new furthest entry in the leaf (and so the covering radii of all ancestors).
Then, the current entry on the top of S is reinserted in a standard way as it
would be a regular new object to be inserted. Naturally, a forced reinsertion
could possibly induce further reinsertion attempts (i.e., the top of the stack
grows). The reinsertions are repeated until the stack becomes empty.

4.1.1 Recursion Depth

Since a single reinsertion attempt could generally raise a long chain of subse-
quent reinsertions (the stack is inflating instead of emptying), we would like to
limit the number of forced reinsertion attempts to keep the construction costs
reasonable and scalable. We denote the limit as a user-defined recursion depth
parameter. When the limit of reinsertion attempts is reached, the remaining
entries on the stack are popped and reinserted such that only regular splits
are allowed from now on (i.e., the stack does not grow anymore).

4.1.2 Entries Removing

As to the entries removing mentioned before, we remove at most k furthest
entries from the leaf in the direction from closer to further ones (where k is
user-defined). However, if the newly inserted object is within the k entries,
we remove just the more distant of the k entries (i.e., we do not remove the
new one and all closer). We called such a removing of entries as the reverse
pessimistic entries removing, see Figure 6.

3 Remember the precomputed distances to the routing entry (the to-parent dis-
tances) are stored in all entries except those in the root node.
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Fig. 6. Reverse pessimistic entries removing

As a motivation for the reverse pessimistic removing, we suppose that the
reinsertion of an object being just newly inserted (and all closer ones) would
cause insertion back to the same leaf (the pessimistic assumption). As to the
direction of entries removing, being “reverse” due to starting from the leaf’s
“middle”, we assume the furthest entries (being the outlying “losers”) should
be reinserted first. This heuristics aims to increase the likelihood of finding a
suitable non-full leaf, being otherwise possibly occupied by the other removed
“sibling” entries on the stack. Although we tried also other variants of entries
removing than the reverse pessimistic (as described and evaluated in [9]), they
performed worse, so we do not consider them anymore in this article.

Algorithm 1 (insertion with full forced reinsertions)

let maxRemoved be maximal number of removed entries (user-defined) // denoted k in Section 4.1.2
let recursionDepth be the maximal depth of recursion (user-defined)

method Insert(Onew) {
find leaf L for Onew // “either-way” leaf selection
insert Onew into L

if L is not overfull then return
let E be the portion of L with maxRemoved furthest entries (sorted ASC)
exclude grnd(Onew,...) and all closer entries from E

if |E| > 0 and recursionDepth > 0 then {
for (j = 0; j < |E|; j++) { // remove furthest entries from leaf
S.Push(E.GetEntry(1))
E.DeleteEntry(1)

}
decrease radius of L (and possibly of its ancestors)

while (S is not empty) { // reinsert removed entries
recursionDepth = recursionDepth − 1
Insert(S.Pop())

}
} else {

perform regular split of L (and possibly of its ancestors)
}

}

To provide a comprehensive description, in Algorithm 1 see the pseudocode
of dynamic insertion enhanced by full forced reinsertions.
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4.2 Conservative Reinsertions

As observed in [9] and as shown in experiments, the full forced reinsertion
variant is effective in producing compact M-tree hierarchy, though it is still
quite expensive in terms of M-tree construction costs. The reverse pessimistic
strategy ensures the newly inserted entry and all closer entries will not be
reinserted (probably back to the same leaf). However, there can still occur
reinsertions of more distant entries into the same leaf, being thus ineffective.
In this section, therefore, we introduce an improvement of full forced reinser-
tions, called the conservative forced reinsertions, better avoiding reinsertions
of entries back into the same leaf (see also Algorithm 2 for pseudocode).

The improvement requires a slight extension of the M-tree’s ground entry for-
mat, as grnd(D) = [D, oid(D), δ(D, Par(D)), SplitNumber]. The SplitNumber
is the number of node splits occurred before (re)inserting this entry into the
current leaf. In fact, the SplitNumber represents a logical time related to the
amount of structural changes in M-tree during its construction.

The way of removing of entries onto the stack S is the same as used in the
full forced reinsertion variant (i.e., using the reverse pessimistic strategy).
The difference is in the processing of popped entries from stack, and in the
structure of a stack entry. Instead of storing pure objects Oi ∈ S on the stack,
now we store the entire ground entry grnd(Oi) and, additionally, a pair of
co-identifiers determining wherefrom the entry came. The first identifier is an
id of the source leaf, while the second one is the id of the source leaf’s routing
entry (see an example in Figure 7 right). The reason for two identifiers of a
leaf is that we want to distinguish leaves whose node id remained the same
but they obtained a different parent routing entry (caused by a possible split).

4.2.1 The Stack Processing

After the entries are removed onto the stack, the top entry is popped and
reinserted in the usual way. We check whether it falls back to the leaf it
came from, that is, whether the leaf+parent entry co-identifiers are equal to
that of the entry popped from stack. If so, the top of stack is checked for a
contiguous block of entries. In such a contiguous block all entries must become
also from the same leaf as the first reinserted entry, and all must be “younger”
(their SplitNumber is higher). If such a block exists, its entries are popped
and directly moved to the respective leaf, following the first reinserted entry.
Actually, they are returned to their original leaf for free; no regular insertion
is performed for them (no distance has to be computed). Otherwise, if such a
contiguous block of entries does not exist (or its processing was finished), the
entries on the top of stack are reinserted in the usual way.
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Fig. 7. Conservative forced reinsertions

Algorithm 2 (insertion with conservative forced reinsertions)

let maxRemoved be maximal number of removed entries (user-defined) // denoted k in Section 4.1.2
let recursionDepth be the maximal depth of recursion (user-defined)

method Insert(Onew, SplitCount) {
find leaf L for Onew // “either-way” leaf selection
insert Onew into L
let rout(Op) be L’s parent routing entry

while (S is not empty and S.TopEntry.NodeId = L.NodeId and
S.TopEntry.GroundEntry.RoutId = L.RoutId and S.TopEntry.GroundEntry.SplitCount ≥ SplitCount) {

L.Insert(S.Pop().GroundEntry) // move the entries back to the original leaf
if (L is overfull) then {

perform regular split of L (and possibly of its ancestors)
return

}
}
if L is not overfull then return
let E be the portion of L with maxRemoved furthest entries (sorted ASC)
exclude grnd(Onew,...) and all closer entries from E

if |E| > 0 and recursionDepth > 0 then {
for (j = 0; j < |E|; j++) { // remove furthest entries from leaf
S.Push(〈E.GetEntry(1), L.id, rout(Op).id〉)
E.DeleteEntry(1)

}
decrease radius of L (and possibly of its ancestors)

while (S is not empty) { // reinsert removed entries
recursionDepth = recursionDepth − 1
let entry = S.Pop().GroundEntry
Insert(entry.object, entry.SplitCount)

}
} else {

perform regular split of L (and possibly of its ancestors)
}

}

For an example, in Figure 7 the top entry on the stack was reinserted into a
leaf 34, however, the next one arrived into the same leaf 23 as it came from.
Therefore, a single-entry block on the stack was identified, fulfilling the block
conditions (i.e., originating also from leaf 23 and being younger by 3 splits),
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and moved back to the leaf. The next entry on the stack also came from leaf
23 but was older, so for this entry there is a greater probability that during
its longer “sitting” in leaf 23 there appeared better leaves in the M-tree, so
this one is properly reinserted to the leaf 16.

The motivation for the above described optimization is a conservative assump-
tion, that if a set of entries was removed onto the stack from the same node at
the same time, and one of them was reinserted back into the same leaf, then
also some other entries in this set would be probably reinserted into the same
leaf as well. Hence, instead of ineffective costly reinsertions we rather “give
up” and move the entries directly back.

Additional notes:
– The to-parent distance stored in a moved ground entry is still valid. Actu-
ally, this is another reason why we use additionally the parent routing entry
identifier to co-identify the source leaf.
– When a ground entry is reinserted, its SplitNumber is updated only in case
it has not been reinserted/moved back into the same leaf.
– Due to the reverse pessimistic strategy, the moved entries are always closer
to the parent routing entry than the entry reinserted to the same leaf as first.
Hence, the leaf’s covering radius cannot be inflated due to entries moving.

4.3 Construction vs. Query Efficiency

The rationale for forced reinsertions is two-fold. First, reinsertions could clearly
improve the compactness of M-tree (thus the query performance) at the cost
of (a bit) more expensive construction. The second reason considers the trade-
off between indexing and querying performance. In contrast to the first reason
(speeding up querying), sometimes we would like to decrease construction
costs but simultaneously keep the query costs as low as if used more expen-
sive construction. With forced reinsertions this goal could be carried out. For
example, the CLASSIC splitting of M-tree node is expensive but brings faster
queries, while the SAMPLING splitting is cheaper but also leads to slower
queries. Since the CLASSIC splitting could produce M-tree which is compact
enough, at some scenarios the employment of forced reinsertions could not
bring any further improvement – so only the construction costs grow, but the
retrieval performance is not improved. In such case we might rather employ
the forced reinsertions together with the SAMPLING splitting. This way we
could achieve retrieval costs similar to that of CLASSIC splitting, however,
for cheaper construction – somewhere between SAMPLING and CLASSIC
without forced reinsertions. In other words, forced reinsertions might cheaply
fix the bad data partitioning caused by SAMPLING splitting.

Finally, we have to emphasize that when combined with the single-way leaf
selection (or the hybrid-way leaf selection, see next section), the asymptotic
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complexity of a single insertion is still logarithmic with database size. In more
detail, the number of reinsertion attempts is limited by a constant (recur-
sion depth), the maximal number of entries in a leaf is constant, while the
single/hybrid-way leaf selection is of logarithmic complexity.

5 Hybrid-way Leaf Selection

As the second contribution, we introduce so-called hybrid-way leaf selection.
The rationale for this effort was the performance gap between single-way and
multi-way leaf selection (see Sections 2.3.1 and 3.2). On the first hand, the
single-way selection is very cheap (logarithmic with database size) but often
selects a leaf that is not optimal, thus the resulting M-tree compactness is not
very good. On the other hand, the multi-way technique selects an optimal leaf
(though only a non-full one), but it is expensive, up to linear with DB size.

Fig. 8. Hybrid-way leaf selection

Instead of the multi-way’s expensive traversal to all leaves whose regions could
cover the new object, the hybrid-way technique selects only a limited number
of the “best” candidate nodes at each level. Such nodes become the candidates,
the parent routing regions of which cover the newly inserted object and their
routing objects are as close to the new object as possible. All covering child
nodes of the selected candidate nodes are then followed down to the next M-
tree level, while, again, only a limited number of the best ones are selected
as the candidate nodes, and so on. After the pre-leaf level is reached, the
candidate pre-leaves are checked for the best routing entry and the respective
leaf is returned as the finally selected leaf. In the rather unlikely situation when
no candidate nodes are selected at a level (i.e., the new object is not covered
by any node’s ball), the hybrid-way technique gives up and selects the leaf
by single-way selection. The limits of candidates at all levels are described by
so-called branching vector. The branching vector determines how many paths
in M-tree the hybrid-way selection traverses, see an example in Figure 8.

The hybrid-way solution represents a scalable technique, actually generalizing
both the single- and multi-way selections. If the branching vector contains only
1s, we obtain a single-way-like behavior, though not the same – the single-way
always selects a node at any level, the hybrid-way does not need. If the branch-
ing vector contains only ∞s, we obtain a multi-way-like behavior (though the
original multi-way selects only non-full leaves). If all the numbers in the vector
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are equal, we can talk just about a branching factor f ∈ 〈1,∞〉. In Algorithm 3
see the hybrid-way leaf selection. Note the algorithm uses the parent filter-
ing (Section 2.1) to efficiently filter out the non-covering nodes. Because the
number of traversed paths is limited by the branching vector (consisting of
constants), the hybrid-way selection is still of logarithmic complexity, though
more expensive than the single-way selection by a constant factor.

Algorithm 3 (hybrid-way leaf selection)

method FindLeafHybridWay(Onew, branching vector v) {
let nodeCandidates = {〈root; 0〉} // the 1st value in 〈·, ·〉 is denoted .Node, the 2nd .ObjectToParentDistance
let targetLeaf = ∅
let minDistance = ∞

for (level = 0; level < treeHeight; level++) {
let levelCandidates = ∅
for each can in nodeCandidates {
for each entry in can.Node {
if |can.ObjectToParentDistance − entry.RoutingToParentDistance| ≤ entry.radius then { // parent filt.

compute δ(entry.object, Onew)
if δ(entry.object, Onew) < entry.radius then { // basic filtering
if level = treeHeight − 1 then { // at pre-leaf level select the winning leaf
if δ(entry.object, Onew) < minDistance then {

minDistance = δ(entry.object, Onew)
targetLeaf = entry.childNode

}
} else { // at higher levels follow the child nodes
read entry.childNode
add 〈entry.childNode; δ(entry.object, Onew)〉 to levelCandidates

} /* end if level */
}

}
} /* for each entry */

} /* for each can */
if level = treeHeight − 1 {
if targetLeaf is ∅ then return FindLeafSingleWay(Onew) else return targetLeaf

}
sort levelCandidates by .ObjectToParentDistance ASC
let nodeCandidates = levelCandidates[0..v[level]−1] // pick the best node candidates

} /* for each level */
}

6 Experimental Evaluation

We performed an extensive experimentation with the two new techniques and
their combination. We compared them against the original M-tree dynamic
construction and also against the previously proposed techniques including
multi-way leaf selection and generalized slim-down algorithm. Only the dis-
tance computation costs are included in the experiments. Since the I/O costs
correlate with the computation costs, their inclusion would be redundant.

6.1 The Testbed

We have used two databases, a subset of the CoPhIR database [8] of MPEG7
image features extracted from images downloaded from flickr.com, and a
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synthetic database of polygons. The CoPhIR subset consisted of 1,000,000 fea-
ture vectors formed by two MPEG7 features (12-dimensional color layout and
64-dimensional color structure, i.e., total 76 dimensions). As a distance func-
tion the Euclidean (L2) distance has been employed. The Polygons database
was a synthetic randomly generated set of 250,000 2D polygons, each poly-
gon consisting of 5–15 vertices. The Polygons should serve as a non-vectorial
analogy to uniformly distributed points. The first vertex of a polygon was
generated at random. The next one was generated randomly, but the distance
from the preceding vertex was limited to 10% of max. distance. We used the
Hausdorff distance for measuring two polygons (where the order of vertices
does not matter), so here a polygon could be interpreted as a cloud of points.

6.2 Experiment Settings

The query costs were always averaged for 200 query objects, while the queries
followed the distribution of database objects. We did not perform an inter-
MAM comparison; we focused just on various configurations of M-tree – with
or without forced reinsertions under single-, multi-, or hybrid-way leaf selec-
tion. As the parameters we observed various data dimensionalities, database
sizes, M-tree node capacities, hybrid-way branching factor, as well as various
forced reinsertion settings. The M-tree node capacities ranged from 20 to 80,
the index sizes took 1–138 MB, the M-tree heights were 2–5 (3–6 levels). The
minimal M-tree node utilization was set to 20% of node capacity. On average,
the methods utilizing forced reinsertions achieved 80% leaf utilization (87%
in case of multi-way leaf selection), while the “non-reinserting” ones got to
70% (75% for multi-way selection). The index size is connected with the leaf
utilization, so the forced reinsertions produced indexes smaller by 15%. Unless
otherwise stated, the database size in experiments was set to 250,000 objects.

stage of insertion label description

Single single-way leaf selection (default)

Multi multi-way LS

leaf selection Hybrid(b) hybrid-way LS, b stands for the branching factor

Hybrid(b).Nonfull hybrid-way LS, restricted to select only non-full leaves,

i.e., Hybrid(∞).Nonfull = Multi

Classic classic mM Rad node splitting (default)

node splitting Sampling sampling mM Rad (10% of node’s entries in sample)

Full RI full FR, recursion depth = 10, removed entries = 4

Cons RI(x,y) conservative FR, x is recursion depth, y is number

forced reinsertions of removed entries – if not specified, x = 10, y = 4

Cons RI(x,y).NoHistory moving of entries is not affected by SplitCount

(nothing specified) FR not used (default)

generalized GeneralizedSlimDown generalized slim-down algorithm used on M-tree

slim-down algorithm built using Single.Classic

Table 1. Description of labels in the figures’ legends
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Because of the many tested M-tree construction variants, we have formed
a set of labels denoting certain alternatives within each stage of the inser-
tion process (leaf selection, node splitting, forced reinsertions), see Table 1.
A combination of labels belonging to each stage of construction constitutes a
complete variant of insertion, these composed labels are used in the follow-
ing figure legends. Within each stage a default value is marked, which applies
in case that no of the respective stage’s possibilities is specified in the com-
posed label. Hence, the very original M-tree dynamic insertion methods [6]
are denoted as Single.Classic and Single.Sampling.

6.3 The Results

In the first experiment (see Figure 9) we have observed varying branching
factor b applied to hybrid-way leaf selection. The greater the b, the better the
query performance of Hybrid(b) variants but also the slower construction. For
example, Hybrid(∞).Cons RI is 35% faster in querying than Multi, but slower
in construction in a similar proportion. Nevertheless, Hybrid(50).Cons RI beats
Multi and Multi.Cons RI in both construction and query performance. The
results for Multi.Cons RI and Hybrid(∞).Cons RI differ because the multi-way
selects only non-full leaves, while hybrid-way selects also the full ones.
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Fig. 9. Hybrid-way branching factor: (a) Construction costs (b) 10NN query costs

In the second experiment we have examined varying database dimensionali-
ties, ranging from 8 to 64 (see Figure 10). We can observe that with increasing
dimensionality the queries become less efficient – almost exponentially with
the dimension. Hence, we experience the effects of dimensionality curse. How-
ever, note the construction costs of all methods except GeneralizedSlimDown
and Hybrid(∞).Cons RI are almost constant. This observation is a nice evi-
dence of the logarithmic construction complexity of hybrid-way leaf selection
and forced reinsertions, which is further supported by the worse results of Gen-
eralizedSlimDown and Hybrid(∞).Cons RI (being super-logarithmic methods).
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Fig. 10. Varying dimensionality: (a) Construction costs (b) Range query costs

Moreover, note that for dimension 64 the method Hybrid(10).Cons RI is 1.3×
slower in query processing than GeneralizedSlimDown and Hybrid(∞).Cons RI,
but 20× (10×, respectively) faster in construction.
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Fig. 11. Varying query selectivity: (a) kNN queries (b) range queries

COPHIR constructions costs, size 500,000, dim 12, node 40

Generalized Hybrid(∞) Hybrid(10) Classic Classic Sampling Sampling

SlimDown .Cons RI .Cons RI .Cons RI .Cons RI

3,981,370,880 2,182,645,760 371,376,416 52,274,784 66,667,772 55,477,300 36,678,464

POLYGONS constructions costs, size 250,000, dim 30, node 40

Generalized Hybrid(10) Hybrid(10) Classic Classic Sampling Sampling

SlimDown .Cons RI .Cons RI .Cons RI

103,621,584 59,779,960 87,028,288 22,256,964 28,538,876 22,451,152 15,371,245

Table 2. Construction costs for Figure 11

The third experiment was focused on varying query selectivity – in Figure 11
see the results for kNN and range queries (for the construction costs see Ta-
ble 2). Note that for Hybrid(∞).Cons RI in case of COPHIR database the
achieved query costs are exactly the same as for GeneralizedSlimDown, but
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the construction is almost 50% cheaper. Also note that in case of COPHIR
the Single.Sampling.Cons RI is significantly faster in query processing than Sin-
gle.Classic, while having almost the same construction costs.
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Fig. 12. Varying database size: (a) Construction costs (b) 10NN query costs

In the fourth experiment we have observed the impact of database size on in-
dexing (see Figure 12). In the upper part the construction/query costs for the
Single.* variants are presented relatively to the baseline Classic method. We can
see that the improvement over the baseline is quite stable with increasing DB
size in terms of construction costs, however, the query performance improves
a bit faster with increasing DB size. Also note the Single.Cons RI(10,4) pro-
posed in this article clearly beats the Single.Full RI (already proposed in [9])
in both construction and query costs. In the bottom part of Figure 12 the
construction/query costs are presented in absolute numbers but now for the
Hybrid.*, *.Sampling.* and GeneralizedSlimDown variants.

The fifth experiment (Figure 13) inspected the impact of the maximal number
of reinserted entries (ground entries removed onto the stack, respectively)
on the conservative forced reinsertion strategy. We considered various node
capacities (20–60), while the results show that a reasonable value is around
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3 or 4 – higher values slightly increase construction costs but do not bring a
clear improvement in querying (there is cca 0.5% variance in query costs).

costs Hybrid(∞) Multi Classic Sampling Classic Sampling

.Cons RI .Cons RI .Cons RI

construction 3,535,264,768 2,990,771,968 106,378,144 93,059,856 74,684,496 57,775,288

10NN query 31,132 39,540 81,019 80,749 94,081 102,898

Table 3. Results for COPHIR, one million objects, dim 12, node size 20

In Table 3 see the results of the sixth experiment, considering the largest
COPHIR database in the testbed – one million objects, indexed within 6-level
M-trees, node capacity 20. We can observe the queries on Hybrid(∞).Cons RI
performed 3× faster than those on Classic, however, for 47× higher construc-
tion costs. Nevertheless, the Sampling.Cons RI achieved 15% reduction in query
costs with respect to Classic for just 125% of Classic’s construction costs.
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Fig. 14. Varying node capacity (a) Construction costs (b) 10NN query costs

In the last experiment we have tested the impact of various M-tree node
capacities, see Figure 14. An interesting observation is that the expensive
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techniques improve the construction costs with growing node capacity, while,
on the other hand, the less expensive techniques slightly improve the query
performance with growing node capacity.

The Figure 15 is maybe the most important outcome of the experimental re-
sults. Here the graphs from Figure 14 are aggregated into one, in order to show
the construction vs. query performance trade-off. The closer to the bottom-left
origin a technique is, the better the overall performance trade-off is. Hence,
we can see the Single.Sampling.Cons RI is clearly better than Single.Classic,
and that Hybrid(∞).Classic.Cons RI is much better than the GeneralizedSlim-
Down. All the other techniques lie on a sort of skyline, hence, they represent
meaningful trade-off choices applicable to various scenarios.

Fig. 15. Construction vs. query costs – aggregate results

6.4 Summary

The conservative forced reinsertions proved their usability when combined
with “either-way” leaf selection. The query performance is always higher than
that of techniques without forced reinsertions, while the construction is usu-
ally a few tens of percent more expensive. The conservative forced reinsertions
also showed better results in both querying and construction when compared
to the full forced reinsertions (as proposed in [9]). When used with single-way
leaf selection, the conservative reinsertions are suitable also for indexing large
and high-dimensional databases, where the feasibility of index construction is
the crucial task. The hybrid-way leaf selection is beneficial for its scalability,
while when used with unlimited branching factor and conservative forced rein-
sertions, it becomes a clear winner over the generalized slim-down algorithm,
being much cheaper in construction and comparable or better in query costs.
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7 Conclusions

In this article we have proposed two new techniques improving dynamic in-
sertions in M-tree – the forced reinsertions and the hybrid-way leaf selection.
Both of the techniques preserve logarithmic complexity of a single insertion,
while they aim to produce more compact M-tree hierarchies. The proposed
techniques experimentally proved their benefits. The experiments have also
shown the problem of constructing compact M-trees cannot be solved by a sim-
ple solution or by a brute force. The increasing complexity of M-tree-related
techniques developed over the last decade indicates it is worth to continue in
designing even more complex algorithms within the realm of M-tree.
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