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ABSTRACT
In this paper the impact of the metric indexing paradigm on
the real-world applications is discussed. We pose questions
whether the priorities in research of metric access methods
(MAMs) established in the past decades reflect the actual
needs of practitioners. In particular, we formulate the fol-
lowing pragmatic questions: Are the established MAM cost
measures relevant? Isn’t the metric space model too general
when the majority of real-world applications use Lp spaces?
On the other hand, isn’t the metric model too restrictive
with respect to the growing community of practitioners us-
ing non-metric distances? Are the simple similarity queries
competitive enough? Have the real-world similarity search
engines ever used a general metric access method, or do they
use specific indexing? Is there a real demand for content-
based similarity search or will the annotations and keyword
search win the game? We present justification of these ques-
tions, investigating relevant literature and search engines.
Finally, we try to transform the questions into answers and
suggestions to the future research on MAMs.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Retrieval models

General Terms
algorithms, performance, design

Keywords
metric access methods, MAM, similarity, content-based search

1. INTRODUCTION
The content-based search in multimedia and other un-

structured data becomes steadily more important nowadays,
while the similarity search concept provides a general and in-
tuitive model. Given a database of descriptors (i.e., features
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extracted from the original multimedia objects), a query de-
scriptor is submitted such that objects similar to the query
are returned as an answer. Hence, such content-based re-
trieval model separates the actual retrieval algorithm from
the semantic model (the similarity of content). In a narrow
sense, the pair-wise similarity function is often required to
fulfill the metric postulates which are the basic properties
that allow to index the database for efficient (fast) query
processing. Here we talk about a class of database methods
called metric access methods (MAMs), or metric indexes.

In this paper, we pragmatically analyze both, the experi-
mental practices in the MAM research, and also the poten-
tial ”market” for metric indexing – applications in content-
based multimedia retrieval. Unlike other survey papers, we
do not give a systematic overview of the achievements in the
research area, but we try to critically discuss the weak points
of MAM research. The aim of the constructive critique is to
prevent the research of MAM from isolating into a bubble
of theoretical and artificial achievements, and to motivate
the research to a constant and tight connection with the
real-world applications.

1.1 Questions
In particular, we ask the following six provocative ques-

tions, more or less rhetorical, but all aimed at impact of the
MAM research on practical applications:

Q1: Isn’t the metric space model too general?

Q2: Are the established MAM cost measures relevant?

Q3: Is there a real demand for general metric indexing?

Q4: Are the simple similarity queries competitive enough?

Q5: Have the real-world search engines ever used a MAM?

Q6: Isn’t the metric model too restrictive?

The set of questions was not assembled by an arbitrary
thought process of the author, but it came out as an im-
pression of the analysis we will present in the following text.
In addition to identifying the questions in Sections 2 and 3,
in Section 4 we discuss possible answers and future solutions.

1.2 Metric access methods
Before we start the survey, we need to remember the very

basic mission of the metric access methods.

MAM =
Set of algorithms and data structure(s) providing efficient

(fast) similarity search under the metric space model.



The metric space model itself is determined by its math-
ematical foundations. The database S ⊂ U to be searched
is considered as a set of unstructured (black-box) descrip-
tors, so that only a distance function δ(x, y) is defined be-
tween any two descriptors x, y from the descriptors universe
U. The distance is required to be a metric distance, i.e., δ
is non-negative, identical (δ(x, y) = 0 ⇔ x = y), symmetric
(δ(x, y) = δ(y, x)) and triangular (δ(x, y)+δ(y, z) ≥ δ(x, z)).

There were many metric access methods developed so far
(see the literature referenced in the following section), ad-
dressing various data management aspects, namely: main
vs. secondary memory index, static vs. dynamic database,
exact vs. approximate search, continuous vs. discrete metric
distances, centralized/serial vs. distributed/parallel imple-
mentation, etc.

2. EXPERIMENTAL PRACTICES IN MAM
RESEARCH

In this section we present the results of analysis within the
40 years old database-oriented research on similarity search.
In particular, we have analyzed papers cited in the major
”bibles” for the MAM community – the classic survey [6], the
classic monographs [26, 20] and a recent book chapter [13].
Among the hundreds of papers referenced in the mentioned
sources, we selected 77 for our research, that propose general
metric access methods and prove their contribution in an ex-
perimental evaluation. Hence, we did not consider distance-
specific indexing methods, and also theoretical papers. In
addition to the 77 papers, we analyzed also 18 relevant pa-
pers from the SISAP 2008 and 2009 conferences, giving us
the total number of 95 analyzed papers.

Figure 1: Analyzed experimental papers on MAMs.

The structure of the papers and their distribution in time
is shown in Figure 1. We can observe that the majority
of papers was published in renowned journals and in pro-
ceedings of international conferences, while the majority of
the contributions was published in the past ten years. It
should be also mentioned that 49.5% of the papers were co-
authored by somebody from the SISAP program committee
(12 people through the years 2008-2010). However, this fact

does not support a possible biased paper selection, it sim-
ply points out that SISAP conference gathers a significant
proportion of people interested in MAM research.

2.1 Distances & Databases
In the first part of the MAM papers analysis, we focused

on the metric space instances and testbeds used in the pa-
pers’ experiments. In particular, we aggregated the infor-
mation about the type of space, the size of databases used,
and especially the distance metric used.

Figure 2: Databases used through the years.

In Figure 2, see the evolution of database size and di-
mension (when vector space used) in time. In 1970-1990 we
can hardly speak about ”databases”, as the numbers of ob-
jects were around 1000. In the past ten years, however, the
database sizes got to volumes of almost a million objects per
database (on average). In such volumes the sequential search
already becomes a bottleneck in the retrieval process, so the
indexing efforts pay off. In case of vector spaces (equipped
by a metric distance), the dimension grows from less than
ten to more than one hundred (on average). This growth
not only increases the volumes of databases, but also indi-
cates growing complexity of descriptors (high-dimensional
vectors).

The most interesting result of this subsection is shown
in Figure 3, where the usage of different types of metric
spaces is summarized. As expected, the majority of papers
evaluate their contribution on vector spaces, which mostly
means the Euclidean space (+ several L∞, L1 spaces), fol-
lowed by a few others, like Hamming or angle space. Since
low-level descriptors represented as vectors of independent
dimensions are very popular over many domains, the em-
ployment of Euclidean distance seems natural. The second
most frequent is the string space under the edit distance.
The instances of string databases used are, however, far less
multifarious than the Euclidean ones, as they mostly include
English and Spanish vocabularies (+ several others, like bi-
ological sequences). Other types of metric spaces are quite
rare, including also several non-vectorial databases (sets of
elements, time series, geometries). The expensive metric



distances (i.e., of complexity ≥ O(n2)) mostly reduce to
the mentioned edit distance, followed by several others, like
Hausdorff distance, quadratic form distance, or variations
on the edit distance (sequence/string alignments solved by
dynamic programming)1.

An alarming fact, that denies the common assumption
that metric distances are expensive, is shown on the last line
of the figure, saying that almost 50% papers use only cheap
distances (O(n)) in their experiments!

Figure 3: Distance spaces used in experiments.

Had we interpret the observations resulting from Figures 2
and 3, we could speculate about two alternative possibilities:

• The experimental part of the papers (on general MAM)
is considered as a toy problem, while the main focus
is given to the description of the method itself, rather
than proving its properties on general metric spaces.

• The experiments in the papers are correct and reflect
the actual application needs. However, that would
mean there is actually only little demand for general
MAM, while the attention should be given to more
specific access methods, or simply indexes for L2 or
generally (combinations of) Lp distances.

Either of the two speculations indicates a problem. In the
first case, the MAM research does not stick to real-world ex-
periments in general spaces, focusing on the narrow L2 space
or edit distance stereotype. The second case is worse, as it
leads to the first question of this paper, Q1: Isn’t the metric
space model too general? In other words, isn’t the univer-
sality of the metric model just a technical simplification for
indexing much more specific spaces, e.g., Lp?

2.2 Cost measures
In the second part of the MAM papers’ analysis, we dis-

cuss the methodologies of measuring a MAM’s performance
(efficiency) in terms of cost types used in experiments. The
overall picture is shown in Figure 5, showing the proportion
of each cost type utilized in the papers’ experiments. Before
we analyze the consequences of Figure 5 in Section 2.2.5, we
discuss all of the relevant cost types in the following sections.

2.2.1 Distance computations
From the very dawn of MAM research, the number of dis-

tance computations spent during indexing/querying (DC cost)

1The variable n is the size of a descriptor.

has established as the most respected and frequently used
performance cost. To justify the employment of DC cost,
it is generally assumed that evaluation of single distance
δ(·, ·) is computationally expensive, so that other types of
cost become marginal. The advantage of DC cost is its in-
dependence on code optimization, programming language,
software and hardware platform, thus allowing to separate
the essence of the proposed MAM’s efficiency from the irrel-
evant runtime factors.

However, the assumption on expensive distance is critical,
while experiments using the DC cost alone (without showing
also other types of cost) are only appropriate when:

1. an expensive distance is used (i.e., having time com-
plexity ≥ O(n2) and/or large n),

2. rather small database is used (e.g., fits main memory),

3. contribution of other cost type to realtime is negligible,
e.g., internal time/space cost, I/Os, networking, syn-
chronization of parallel/distributed processing, etc.

Hence, the DC cost is a performance measure useful to an-
alyze the qualitative behavior of the MAM (including tuning
of internal parameters or comparing MAMs), rather than to
be presented as the objective cost to the ”end-users”.

2.2.2 I/O cost
The I/O cost, mostly interpreted as the number of ran-

dom accesses to disk pages (reads/writes), has been estab-
lished in the pioneer times of database research when the
hard disk drives (HDDs) were the biggest bottleneck of the
data management. In particular, the research field of spatial
access methods [4] – the closest relative to MAM research
– still widely uses I/Os as the major cost type. Although
the HDD technology has improved tremendously over the
years, the seek time component in an I/O operation has not
changed much, so the I/O cost is still relevant for methods
requiring random access to disk.

However, in the context of MAM research, the I/O cost
has to be used carefully. In particular, experiments using
the I/O cost alone are only appropriate when:

1. I/O time dominates the other types of cost,

2. the competing MAMs share the same I/O model

The latter condition is especially important, because im-
proper usage of I/O cost could be totally misleading. In
particular, consider sequential search (as trivial MAM) and
a hierarchical MAM, like the M-tree [8]. The sequential
search can be easily optimized such that only single seek
operation is needed to process the whole file. On the other
hand, such an optimization cannot be implemented for the
M-tree (without heavy disk prefetching leading to sequential
search), since metric data in hierarchical indexes cannot be
(natively) linearly ordered, and so random access I/Os are
necessary for them.

In the following (silly) example we illustrate the danger of
incorrect I/O cost usage. Let us have two 100 MB indexes
(sequential file and M-tree), 4 kB disk page file system (i.e.,
25,600 pages per index), seek time 8 ms and read time 50
MB/s (i.e., today low-cost HDD). Let us also suppose that
an M-tree query needs to access just 1% of pages, while
the sequential file needs to access, of course, 100% pages.



The realtime needed for M-tree is 256 I/Os, that is 0.008 ×
256 + 0.1 = 2.148 seconds. An improper (random access)
implementation of sequential search would take 204.8 + 2 =
206.8 seconds, however, optimized (one seek) variant would
take only 2.008 seconds!2

Anyways, as the HDD technology will be soon (hopefully)
defeated by the SSD technology that removes the seek time
overhead, we can expect a renaissance of random access
methods (and better performance of hierarchical MAMs).

2.2.3 Internal cost
Apart from distance computations (and I/Os), i.e., cost

measures universally applicable to every MAM (managing
secondary-memory index), the time/space requirements of
a particular MAM could be also measured by a specific in-
ternal cost measure. The internal cost is not very frequently
presented in the experiments, however, it could be crucial to
the overall MAM’s efficiency, especially when the DC cost is
not dominant (i.e., cheap metric is used). To illustrate the
impact of internal cost, let us discuss two examples:

• The methods based on Pivot tables, e.g., the classic
LAESA [18], use a matrix consisting of distances from
the database objects to a set of pivots. When a query
is evaluated, the distance matrix is sequentially pro-
cessed (either entire using single pass, or just a part
but using multiple passes), which constitutes a signif-
icant internal overhead. For instance, consider 128
dimensional vector space under L2 distance and 128
pivots. Then the one-pass LAESA query processing
of distance matrix under L∞ distance is equivalent to
the sequential search in the original L2 space. Here the
DC cost, dramatically higher for the sequential search,
is not appropriate due to the internal cost of LAESA.

• The incremental kNN algorithm [15] by Hjaltason and
Samet can be implemented in any MAM. Although
the algorithm was proved as optimal in terms of DC
cost (i.e., equivalent to range query with radius equal
to the distance to the kth neighbor), it suffers from
high internal cost. Specifically, the algorithm utilizes
a heap that contains the set of not-yet-processed re-
gions of a MAM’s index. Depending on the intrinsic
dimensionality of the space [5] and the MAM used, the
heap is usually largely inflated until the first neighbor
is found, followed by a rapid heap reduction.

2.2.4 Realtime cost
Finally, we get to the very objective type of computation

cost – the ”dirty” realtime cost (or wall-clock time), mea-
sured in seconds or processor cycles spent in the MAM’s
process. The realtime cost is not very popular in analyz-
ing the MAMs’ efficiency because it is hardware-, platform-,
language- and compiler-dependent, it requires proper opti-
mizations of the code, etc. It mixes many different costs into
a single aggregate, making hard to recognize the underlying
causes of a MAM’s (in)efficiency.

On the other hand, only the realtime cost is the moment
of truth for an end user that wants to be oriented in the jun-
gle of various MAMs. The realtime cost means ”no cheating
is allowed” – a MAM is either fast or slow (given a particular

2Note that here we consider just the I/O cost contribution
to realtime, while the overall realtime could be significantly
different (due to possibly expensive distance computations).

database context). To demonstrate a possible discrepancy
between the DC cost and realtime, see an experiment in
Figure 4, where a database of peptides (pieces of proteins)
was indexed as 32-dimensional vectors under a linear vari-
ant of the Hausdorff distance (intrinsic dim. ≈ 3). The
left-hand figure shows an expected superior performance of
Pivot tables (LAESA) in terms of DC cost, being on 5% of
sequential search. However, in terms of realtime (right-hand
figure) the M-tree and even the sequential search run faster
for databases over 1.5 million objects (2.5, resp.), due to the
internal cost of Pivot tables and the cheap distance.

0

5

10

15

20

25

1.3 2.4 3.7 4.5 5.6
Database size [millions of peptides]

D
is

ta
n
c
e

c
o
m

p
u
ta

ti
o
n
s

ra
ti
o

[%
]

Pivot table
M-tree

0

2

4

6

8

10

1.3 2.4 3.7 4.5 5.6
Database size [millions of peptides]

A
v
e
ra

g
e

q
u
e
ry

ti
m

e
[s

]

Pivot table
M-tree
sequential

Figure 4: Example: DC cost vs. realtime

Figure 5: Cost measures used in experiments.

2.2.5 Discussion
In Figure 5 see the structure of cost measures used in the

examined papers’ experiments. Among other, it shows the
DC cost was the most popular (in more than 80% papers),
the realtime cost was used in 25% of papers and all costs
(DC+I/O+realtime) were used in 10% papers. Some 12%
papers provided a realtime comparison with the sequential
search, which is seemingly an unimportant detail, but it pre-
vents from commending an expensive MAM over even more



expensive competitors as ”really fast”.
In summary, the structure of cost measures used in the

papers is quite rich, however, it is not very convincing for the
practitioners that need a MAM for their application. This
is documented not only by the relatively small number of
papers using realtime, but also by the alarming observation
that 21% papers used only DC cost and, at the same time,
only cheap (O(n)) distances in their experiments! Hence, we
end up the discussion with the second question of this paper,
Q2: Are the established MAM cost measures relevant?

3. APPLICATIONS
In this section, we leave the area of ”intra-MAM”research,

and move to applications that are expected to profit from
metric indexing (in the future). In particular, we investigate
trends in content-based image retrieval, the existing multi-
media search engines, and the recent attempts to employ
similarity measures more general than metric distances.

3.1 Content-based image retrieval
As a representative summary of the advances in content-

based image retrieval (CBIR), we chose the respected survey
by Datta et al. [10], referencing almost 300 papers related to
CBIR. Apart from presenting the recent feature extraction
techniques, belonging more to Computer vision than to the
area of Image retrieval, we summarize several observations
interesting for applications of MAMs in CBIR.

3.1.1 Modeling vs. indexing in CBIR
The situation in CBIR could be uncovered slightly by two

citations from the survey: ”... we do not have yet a uni-
versally acceptable visual model for content-based search...”,
and ”... the indexing techniques were largely overshadowed
by research on similarity modeling ...”

The good news for MAM applications in CBIR is the un-
compromising interpretation of the content-based retrieval
as a similarity search based on image features. Hence, there
is a clear distinction between the model (similarity func-
tion) and retrieval algorithm (an access method). The bad
news for MAMs is the indexing for efficient search was either
not solved at all (implicit sequential search), or the seman-
tic model itself was prepared to reuse a well-known indexing
technology. Following the latter way, a popular concept is an
automatic annotation of the image content (including even
more popular segmentation) by tags/keywords. The images
described by tags are subsequently indexed using the well-
known boolean or vector model of information retrieval [2],
leading to inverted files at the implementation level. At this
moment we come out with the third question of this paper,
Q3: Is there a real demand for general metric indexing?

Nowadays, MAMs suffer from many limitations that pre-
vent their straightforward (näıve) utilization in CBIR. Al-
though the metric space model is quite general, from the
complex CBIR point of view the metric indexing brings
many obstacles. In particular, MAMs rarely allow modi-
fications to the metric space during their indexes’ lifetime,
making hard to learn/tune the similarity measure, to rear-
range the structure of descriptors, or to include user pref-
erences. Furthermore, as metric distances must fulfill the
triangle inequality, they are limited in measuring local sim-
ilarity that usually leads to nonmetric behavior (discussed
in Section 3.3). Nevertheless, even if MAM will not become
the core of image retrieval techniques, its role in CBIR could

be substantial (as discussed later in Sections 3.1.3 and 4.2).

3.1.2 Similarity measures
When modeling the distance space in CBIR, the complex-

ity is more propagated into the descriptor semantics (see
also the later discussion in Section 4.1), rather than into
the distance measure. In turn, the most popular distances
measuring similarity in CBIR are the usual Euclidean or L1

distance, statistical (non)metric distances (e.g., Kullback-
Leibler divergence), while some approaches use more expen-
sive distances measuring histogram similarity, like quadratic
form distance or earth mover’s distance. As in the previous
section, also these observations do not indicate inevitable
benefits of general metric indexing.

Fortunately, when taking another citation from the sur-
vey, ” ...the richness in the mathematical formulation of sig-
natures (descriptors) grows alongside the invention of new
methods for measuring similarity ...”, the need for more so-
phisticated similarity measuring could lead to more expen-
sive distance measures that would require general (metric)
indexing.

3.1.3 Retrieval models
Had we classify the retrieval models used in CBIR, we

could distinguish three design levels:

• Pseudo-CBIR – proprietary add-ons of text-based
image search engines (surveyed in Section 3.2). The
usual search of images based on keywords extracted
from the surrounding web page is augmented by a lim-
ited CBIR functionality. For example, the images are
additionally labeled by tags representing certain ex-
tracted features, like ”contains face”, ”is illustration”,
”mostly red color”, etc. At query time, the user can
select some of the tags as an additional filter to the
keyword query. There is no room for MAMs at all.

• Single-model similarity search – a true content-
based search, where the retrieval procedure is based
on similarity search using single-descriptor representa-
tion and single distance. Although this model would
position a ”simple”MAM into the prominent role of the
core technology inside a CBIR system, it is not very
likely to happen due to the limitations mentioned in
Section 3.1.1. On the other hand, MAMs could be uti-
lized for particular tasks, as suggested in Section 4.2.

• Hybrid-model similarity search – a true content-
based search, where the complex retrieval procedure
is split into a hierarchy of simple similarity searches.
In particular, an image is represented by multiple lo-
cal subdescriptors (e.g., image segments), where each
subdescriptor could be modeled in its own distance
space. A query image is modeled the same, so that
multiple similarity searches are performed for a single
query. The obtained intermediate results (ordered lists
of subdescriptors) are finally ranked by an aggregating
function, e.g., the top-k operator [12] or reranking [16]
based on user preferences/feedback, etc. The MAMs
could be utilized in the separate local searches, pro-
vided the local distances are metric and static. Here
the above mentioned incremental kNN algorithm by
Hjaltason and Samet is suitable due to unknown k re-
quired by the aggregating function.



Based on the observations discussed in this section (i.e.,
tags-based search, multiple local searches + aggregation),
we come with the fourth question of the paper,
Q4: Are the simple similarity queries competitive enough?
In other words, should the MAM research focus also on a
native support of more complex similarity queries than the
simple range/kNN?

3.2 Search engines
After the more or less academic discussion on MAMs in

CBIR systems, the following analysis investigates the impact
of MAMs on real-world engines. However, because most of
the engines were not much documented and/or patented,
this part of the paper should be considered with caution.

3.2.1 Mainstream multimedia search engines
At first, we have focused on 32 mainstream web sites pro-

viding multimedia retrieval, including search engines, host-
ing servers, and stock servers.

The multimedia search engines do not constitute stan-
dalone solutions, they are rather add-ons extending the clas-
sic web search engines. In particular, we considered web sites
for image search (Google Image Search, Bing Image Search,
AllTheWeb, PicSearch), video search (Bing Video Search,
Lycos, AOL Video Search, SearchForVideo, BlinkX) and
audio search (KaZaA, FindSounds, Skreemr, Yahoo Music
Search). In addition to search engines, we included also host-
ing servers for images (Flickr, PhotoBucket, ImageShack,
Google Picasa, DeviantArt) and videos (YouTube, Daily-
Motion, Yahoo Video, MySpace, MetaCafe, Google Video,
MSN Video). Finally, we included major (micro)stock servers
(Corbis, Getty, iStockPhoto, ShutterStock, Fotolia, Dream-
sTime, Alamy, Veer) that offer a paid multimedia content
(image, video, audio, vector, flash) to professional designers.

Among all the listed web sites, just 7 (Google, Bing, Pic-
Search, FindSounds, Flickr, Picasa, ShutterStock) support a
kind of content-based retrieval. However, only FindSounds
supports true similarity search (though information on the
similarity and index is not available), while the rest of the
sites provide a kind of Pseudo-CBIR (see Section 3.1.3).

3.2.2 Content-based image retrieval engines
In order to increase the number engines providing sim-

ilarity search, we have analyzed CBIR systems listed at
Wikipedia [24], namely, Elastic Vision, Gazopa, Imense,
Imprezzeo, Incogna, Like.com, MiPai, idee Visual Search
Lab, Empora, Shopachu, TinEye, Tiltomo, eBay More Like
This, ALIPR, Anaktisi, BRISC, Caliph & Emir, CIRES,
FIRE, GNU Image Finding Tool, ISSBP, img(Rummager),
imgSeek, IKONA, MUVIS, PIRIA, RETIN, Retrievr, SIMBA,
TagProp, MUFIN. Among the 29 engines, 25 use similarity
search concept, while 7 of them certainly use a metric dis-
tance (for the rest of engines the information was not avail-
able.) Only MiPai and MUFIN were identified as MAM-
based. Anyways, as there is not much evidence (or even
promotion) that current content-based search engines use
MAMs, we ask the fifth question of this paper,
Q5: Have the real-world search engines ever used a MAM?

3.3 Beyond the metric space model
As pointed out in a recent survey [22], the playground for

similarity search is much larger than the usual area of mul-
timedia retrieval. In particular, similarity search tasks be-

come even more common in areas like biometric databases,
various scientific databases (bioinformatics, chemoinformat-
ics, medical data), social networks, etc. Moreover, it was
shown that domain experts develop constantly more com-
plex similarities that have to reflect higher demands on re-
trieval effectiveness, leaving the simple distances like Lp met-
rics or edit distance. The new complex distances are often
being generalized in order to become better parameteriz-
able for a given domain. Due to such extensive similarity
modeling, the new distances often lose their closed form
(i.e., concise mathematical formula) and become heuristic
algorithms. In consequence, the more complex distance,
the more likely it will violate the metric postulates, so it
becomes a nonmetric. As an example we name the (non-
metric) Smith-Waterman alignment [23], generalizing the
edit distance to better model functional similarity of pro-
teins (including scoring matrices, local alignment and gap
penalizations).

The domain experts often do not care whether their dis-
tance is a metric or is not, because their similarity search
tasks are usually not (yet) large-scale and the sequential
search is sufficient for them at the moment. On the other
hand, in case a model gets matured in the particular do-
main (”surviving” a certain period), the demand for better
scalability could reach a higher priority, so that a kind of
nonmetric indexing will be needed. Apparently, the MAMs
cannot be directly utilized here, as they require metric dis-
tances. This observation leads us to the last question of the
paper, Q6: Isn’t the metric space model too restrictive?

3.3.1 "Metric nonmetric" indexing
Nevertheless, there appear transformational approaches

that put the MAMs back into the game also for the pur-
pose of nonmetric similarity search. This could bring fas-
cinating opportunities for indexing by similarity, not yet
discovered by the database community. In particular, the
proposed TriGen algorithm [21] constitutes a mapping of a
semi-metric space into an (approximation of) metric space,
so that MAMs can be used without limitations. The map-
ping is achieved by finding suitable concave function, so that
the triangle inequality becomes satisfied while the intrinsic
dimensionality of the new space is kept as low as possible.

3.3.2 Alternative indexing
There appear also alternative approaches that completely

abandon the metric space model and propose a qualitatively
different mathematic formalism for general similarity index-
ing. For example, the recently introduced concepts of ptole-
maic indexing [14] (replacing triangle inequality by ptole-
maic inequality) or indexing fuzzy similarity [11] (replacing
metric properties by fuzzy logic operators) represent the first
attempts to natively nonmetric indexing.

4. DISCUSSION AND SUGGESTIONS
Based on the observations summarized in the previous sec-

tions, in the following text we give some suggestions to the
future MAM research from the application point of view.
Our aim is to strengthen the competitiveness of metric ac-
cess methods in the context of content-based retrieval, by
addressing the questions formulated in this paper.

As a leitmotif, an active attitude of the MAM commu-
nity to domain problems is necessary, in order to achieve a
larger success of MAM research in ”enterprise” software ap-



plications. Hence, in addition to the ”formal” experiments,
(some of) the MAM proposals should dive into the real-world
problems, showing that MAMs can really contribute to the
performance of complex data management.

4.1 Balancing the model complexity
To address the questions Q1, Q2, Q6, the structure of

the similarity model complexity deserves an increased atten-
tion. The formulation of questions Q1 and Q2 was motivated
by the almost exclusive use of cheap O(n) metric distances
(mostly Euclidean vector spaces) and by the closely related
problem of cost measures relevancy. In the following text,
we discuss the two conceptual possibilities when modeling a
similarity – either a low-level descriptor space and a complex
distance, or a high-level descriptor and a simple distance.

4.1.1 Complex distance + low-level descriptor
The most promising opportunity for MAMs would be seek-

ing for applications that require complex and expensive met-
ric distances. The advantages for MAMs are two-fold, first,
for complex metric distances (often non-vectorial) the al-
ternative indexing methods (e.g., spatial access methods)
cannot be efficiently employed, and second, for expensive
distances the DC cost (being the MAMs’ optimization pri-
ority) becomes relevant due to the negligible contribution of
the other cost types.

From the semantic point of view, this ”complex distance”
concept assumes most of the retrieval logic lies inside a com-
plex distance function, while the descriptor is large and con-
tains rather low-level (raw) features produced by some ele-
mentary feature extraction procedure. In fact, the complex
distance algorithm is supposed to finish the feature extrac-
tion at the moment of distance evaluation, however, dur-
ing the evaluation also the second descriptor is available.
Hence, such ”online” feature extraction is able to integrate
both descriptors into the process, allowing thus their better
comparison.

As an example, we could consider the time series match-
ing using the dynamic time warping (DTW) distance [17].
Instead of applying just the Euclidean distance on the time
series, the DTW distance at first finishes the feature ex-
traction by aligning the closest value pairs between the two
series, while the resulting Euclidean distance is computed
on this optimal alignment.

Unfortunately, as the complex and expensive distances are
often not metrics, a preprocessing step that maps the non-
metric space into metric space, e.g., the TriGen algorithm,
is needed (just the case of the DTW distance). It is also
questionable, whether the ”cleverness” of the complex dis-
tance could pay off the computational expensiveness (when
compared with the opposite approach, that follows).

4.1.2 Simple distance + high-level descriptor
Nowadays, it seems the ”complex distance” concept is less

popular than the inverse concept that supposes a simple and
cheap distance. From the semantic point of view, the ”sim-
ple distance” concept aims to put the essence of the retrieval
logic right into the descriptors. Hence, the descriptor (often
vector) contains rather high-level features produced by a so-
phisticated feature extraction procedure3. The distance is
”degraded”to simple aggregation of internal distances within

3To be complete, there are many approaches (even the ma-
jority?) using simple distance and low-level descriptors.

the particular descriptor features. In most cases, this leads
to the popular model of vector space with non-correlated
dimensions + an Lp distance. Apparently, in the ”simple
distance” concept the position of MAMs is not as advanta-
geous as in the ”complex distance” concept.

To demonstrate the properties of both concepts in the
same domain, we consider, again, the example of time series
matching, but now using the ”simple distance” concept [25].
Instead of low-level features (e.g., the time series itself), the
time series could be modeled as a linear combination (or
concatenation) of some representative subseries. Hence, the
time series becomes a high-level vector modeled in space of
subseries, while the Euclidean distance is used as similarity.

4.1.3 Complex vs. simple distance
When reasoning pragmatically, the ”simple distance” con-

cept promises more benefits for the practitioners (which is
rather bad news for MAMs). In particular, the increased
cost needed for the high-level feature extraction procedure
is amortized within the frequently repeated search by cheap
distance. Here we can see a motivation similar to the very
purpose of indexing, where an expensive one-shot indexing
phase is paid by multiple efficient searches.

Nevertheless, to give MAMs a better prospect, we can
formulate the following question. Can always be the model
complexity put into ”canonized” descriptors within the ”sim-
ple distance”concept, or do there exist (important) problems
requiring inherently a complex distance? A possible positive
answer to this question is suggested in Section 4.3.

4.2 MAMs in search engine architectures
In order to address the questions Q3, Q4, Q5, in the fol-

lowing section we discuss the role of MAMs in various ar-
chitectures of similarity search engines (as categorized in
Section 3.1.3).

4.2.1 MAM as single-model engine
As the single-model engine assumes single-descriptor space

under a complex similarity, a MAM could be used as the core
technology, provided the similarity is (mapped to) a metric
distance. Although the single-model engines have clear se-
mantics of the search (described by a rigorous model), they
are quite limited in flexibility as discussed in Section 3.1.1.
Hence, because there is not much room for adjusting the
distance function after the indexing phase, the expressive
power of the retrieval could be increased by offering a larger
portfolio of similarity queries.

In addition to the simple kNN/range queries that allow
just two parameters (a single example + a radius or k), there
have been more complex query types proposed, providing
more detailed query specification, yet remaining fully con-
sistent with the single model (e.g., multi-example queries [9],
metric skylines [7]).

4.2.2 MAM as a part of hybrid-model engine
In the hybrid-model engine, a MAM is nested deeper in

the architecture (say, at ”middleware” level), but still repre-
senting the most important part. It combines several sim-
ilarity searches into an aggregated output, providing thus
more flexible retrieval. As an example, we mention a shape
retrieval method [3], where multiple queries are performed
on M-tree indexes, while the results are finally aggregated
by a nonmetric ranking.



Note the final aggregation could not only combine output
of several metric indexes, but it can incorporate also results
of searches that are not content-based, e.g., the popular key-
word search.

4.2.3 MAM as a tool
In some implementations of similarity-search engines, the

MAMs cannot compete with specific indexing models. For
example, consider a CBIR based on the model of visual
words [19], where the descriptor of an image is modeled as a
sparse 106-dimensional vector (i.e., million of visual words).
The dimensions of the vector correspond to tf-idf weights
of visual words, which is a concept adopted from the vector
model of information retrieval [2]. The distance between two
vectors is evaluated as the well-known cosine similarity. It
is also well-known that for searching a collection of sparse
vectors under cosine similarity, the inverted file is extremely
efficient (due to only traversing the lists corresponding to
nonzero weights in the query vector). Any MAM in such an
extremely high-dimensional space is condemned to fail.

When creating the image descriptor, for each image seg-
ment4 (for its 128-dimensional SIFT vector, respectively)
the most similar visual word (also SIFT vector) is found,
while all the visual words are organized in a vocabulary.
Hence, the database and query images are transformed into
the space of visual words, using the nearest neighbor search
(under L2 or L1 distance) in the vocabulary. Since the vo-
cabulary (million dense 128D vectors) needs to be efficiently
searched, an index is necessary, while this is an opportunity
for MAMs. Hence, the MAM within the CBIR engine could
not only provide the retrieval of images, it could serve as a
particular tool speeding the descriptor preparation (the fea-
ture extraction, respectively). Moreover, the role of MAM
as a tool is not limited to retrieval engines, as it could be
applicable in other areas, such as multimedia data mining.

4.3 Bidirectional motivation
We end up the discussion with a highly speculative medi-

tation on how to bring closer the interests of MAM research
and domain-specific research. Apparently, the worlds of
databases and various applied sciences requiring manage-
ment of data are separated. The gap caused by different
concerns of each world is even magnified by different termi-
nology, where for a database researcher it is often difficult to
identify a possible similarity function within a proprietary
retrieval algorithm. The popular BLAST method used in
proteomics research could be an example [1], where mea-
suring the similarity of protein sequences is mixed with the
access method (a search tree).

Had we establish a picture of usual thinking stereotype
of a domain expert when modeling a content-based retrieval
technique, we could consider two variants (see Figure 6 top).

4.3.1 All-in-one stereotype
In the first one, the domain expert does not distinguish

between the content-based semantics and the access method
(e.g., the BLAST example), which turns out in a monolithic
retrieval solution (usually a heuristics without a rigorous
formal model)5.

4An image is segmented into more than 3000 segments, so
we get 3000 nonzero weights per each million-dimensional
representation of an image (i.e., 99.7% vector sparsity).
5Actually, BLAST aims to approximate the similarity model

4.3.2 Separated similarity + sequential search
Second, the expert views the retrieval task as sequential

search, where a similarity function is used to check the rel-
evancy of database instances against the query instance.
Hence, this variant is more suitable for a database appli-
cation, as the sequential search could be replaced by a more
efficient access method, for example, a MAM.

4.3.3 Modeling augmented by indexing
The previous variant assumes one-directional motivation,

where a database research is motivated by an already for-
mulated domain-specific retrieval problem. However, be-
cause the domain expert considered a future efficient access
method only as optional, he/she naturally tended to design
the retrieval problem as simple as possible, in order to mini-
mize the cost used by sequential search. In consequence, this
thinking stereotype pressurizes the domain expert to employ
only cheap distances that are not sophisticated (exhibiting
low precision and recall in the retrieval).

Figure 6: Bidirectional motivation.

Thus, we suggest a bidirectional-motivation thinking (see
also Figure 6 bottom), that requires both worlds to tightly
cooperate. The idea is based on ”modeling augmented by
indexing”, where the domain expert banks on necessary in-
dexing in her/his retrieval task. Hence, the prior knowledge
of faster than sequential search enables the expert to model
the similarity more generously, using expensive (metric) dis-
tance functions. The application of MAMs within such a
framework is obvious, while the expensiveness of metric dis-
tances increases the likelihood of MAMs’ success.

5. CONCLUSIONS
In this paper we have discussed benefits and the impact

of metric access methods (MAMs) on the real-world appli-
cations and search engines. We asked six questions related
to the correctness of intra-MAM research and to the appli-
cability of MAMs in content-based retrieval. In the broad
context of content-based retrieval, we have suggested that
MAMs have to fight for their success, as waiting for an
impulse of demand from outside the database community
appears as rather näıve. Anyways, despite the scepticism
intentionally (provocatively) invoked throughout the paper,
we believe the metric access methods have solid foundations
that promise successful applications of MAMs in many do-
mains.

of Smith-Waterman alignment, but it is still a heuristics.



5.1 One more provocation at the end
At the very end, we would like to mention the topic of

correct experimental comparison, however, a detailed anal-
ysis would deserve a standalone survey. Because the number
of papers on various MAMs grows to a substantial volume,
the credibility of experimental results needs to increase as
well. While in the ”ancient” times of only several papers on
MAMs a particular result was rather easy to verify, nowa-
days, in the multitude of proposals such a verification is not
easy due to increasing MAMs’ complexity. At the same time,
we often read claims that ”our method beats the competi-
tors by an order of magnitude”, so one has a feeling that the
power of modern MAMs, being transitively ”by many orders
of magnitude faster than the others”, is almost infinite. Un-
fortunately, this is not true, and it points to the importance
of correct experimentation, including repeatable experiments
(renowned testbeds and algorithms, e.g., the SISAP library),
measuring realtime (see Section 2.2), and fair comparison
(optimization of the competing algorithms and not twisting
the experimental setup to handicap the others).
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