
ACB Compression Method and Query

Preprocessing in Text Retrieval Systems

Tomáš Skopal

VŠB-Technical University of Ostrava, Computer Science Dept.

e-mail: Tomas.Skopal@vsb.cz

Abstract. This article presents ACB – high efficient text compression method,
its word-based modification and finally discuss relating benefits by creating
auxiliary query subsystem for usage in text retrieval systems.

Key words: ACB, compression, context item, index, query preprocessing

1 Compression and Indexing in TRS

Data compression is widely used in text (or full-text) databases to save storage space
and network bandwidth. In typical full-text database, various auxiliary structures
are provided in addition to the main compressed text. They include at least a text
index, a lexicon, and disk mappings [BELL93].

Many compression methods can be used to reduce size of all these data. Relatively
more advanced methods are based on coding words as basic unit. We could cite word-
based adaptive Huffman coding and HuffWord [HC92, WIT94], another experiments
have been done with word-based LZW by Horspool and Cormack [HC92, SAL98].

However, word-based compression methods may serve moreover for other pur-
poses, in addition to data compression itself. One of these purposes have been pre-
sented by Dvorský, Pokorný and Snášel in [ADBIS99]. Their modification of LZW
(WLZW) simultaneously provides an indexing of source text (documents). In addi-
tion to the compressed data stream, a token index file is produced. This file maintains
for every token an inverted entry, which contains a list of all documents where the
token occurs.

Thus, index file is particular example of interconnection between data compression
and TRS. Another approach of such interconnection is introduced in the following
section.

2 Query preprocessing

In TR environment we often don’t know how to query for intended data. User knows
only few (and/or very general) terms, which can be found in very many documents.

1

DATESO ’02

On the other side, user may express the conceptual content of the required information
with query terms which do not match the terms appearing in the relevant documents.

This vocabulary problem, discussed, for example, by Furnas et al. [FUR87], is
more severe when the user queries are short or when the database to be searched is
large, as in the case of Web-based retrieval.

A survey of this topic is thoroughly presented in [ACM01] where several query-
advancing techniques are discussed, leading to relevant documents response.

Back to the data compression. The word-based modification of ACB compression
method is suitable for production (besides compressed stream and text index) of
structure (i.e. context index) which can be used as a standalone TR tool for query
advancing. This structure allows us to query upon data we don’t exactly know, using
a simple term-matching query. As a response of that query, we will obtain a set of
word-based substrings contained within indexed/compressed documents, in which the
original query term appears. These substrings we call data contexts. Furthermore,
in the data context we can browse for any other terms lexicographically/semantically
connected with the original term. Such sequences of iterative querying-obtaining will
produce more terms, even term strings, which can be issued to the standard full-text
searching systems (through vector/boolean queries).

Thus, idea of data contexts can be utilized for advanced query construction. Fol-
lowing section will introduce the fundamental structures of ACB method, respectively
structures for building context-based TR subsystem. Detailed description of plain
ACB method can be found in [SAL98].

3 Basic structures

In following definitions we will use general strings – sequences of terms (characters or
tokens) – and the common string operations. Representation of terms can vary from
bits through ASCII characters to general tokens.

3.1 Context, content, context item

Every term (character/token) ti in the given text can be represented as a position in
the text. Let any substring α in the left vicinity from this position is called context
and any substring β in the right vicinity (including ti) β = ti.βext is called content of
term ti. Let the pair Ii = (α, β) be context item of term ti. Let γj be the substring
(term string) of the text, β = γj.βext, then pair Jj = (α, β) is context item of string
γj. If context or content of context item is limited by a number of terms, then the
context item is bound.

Example 1.

a) Terms are ASCII characters
text: swisstmisstistmissing
4-bound context item for the 4th ’s’ is ’stmissti’

2

ACB Compression Method and Query Preprocessing in Text Retrieval Systems

b) Terms are bit characters
text: 10011101011
unbound context item for the 3rd 0 is ’10011101011’

c) Terms are words (identifiers)
text: ’swiss’’miss’’is’’missing’
2-bound context item for the ’is’ is ’’swiss’’miss’’is’’missing’’

Any subset of all possible k-bound context items of the text form k-bound context
item collection.

3.2 Context dictionary

Structure of context dictionary adds a complete order to the context item collec-
tion. The order can be described by following:

1. Context item I is smaller then context item J if αI is smaller using reverse
comparison then αJ . Reverse comparison means right-to-left. Comparison of
individual terms is interpretation-dependent.
Formally holds: αI < αJ → I < J

2. If both contexts are equal, contents are examined using regular comparison
(left-to-right).
Formally holds: (αI = αJ)&(βI < βJ) → I < J

3. If both contexts and both contents are equal then context items are equal.

Duplicate items are not allowed.

1 ...swisst|m.....

2swi|sstm..

3s|wisstm

4swis|stm...

5swiss|tm....

6sw|isstm.

Fig. 1: Context dictionary, terms are ASCII chars (vertical separates context and
content)

3

DATESO ’02

4 Compression method ACB

This compression method1 uses idem structures for highly efficient text compression.
Compression algorithm passes the text term-by-term obtaining context items by usual
fashion. At the beginning of encoding/decoding, the runtime2 context dictionary is
empty.

4.1 Encoding algorithm

1. Current context item C (made up from text already encoded (context) and
the rest of the text (content)) is examined against the actual state of context
dictionary. Position i of the nearest context item N (most similar to C) in the
dictionary is found using the defined order, but comparing only the contexts.
Formally holds: (αC ≤ αN)&∀K(αK < αN → αK < αC)

2. From this position in dictionary we incrementally search (in both directions –
the search radius is naturally limited) a context item M at a position k, where
βM best match βC . Best match is determined by n – maximal count of equal
terms.

3. To the output goes a triplet (k− i,n,t) – where t is the first non-matching term
in βC (from step 2)

4. The context dictionary is updated with n + 1 new context items. Each new
added context item is the previous one incremented by 1 (i.e. the context is
longer by 1 and the content is shorter by 1).

Example 2. (encoding step) :

Text being encoded is string from example 1a. Dictionary’s actual state is shown at
the figure 1. Current context item is ’swisstm|isstistmissing’.

1. Appropriate item in context dictionary is found. Item at position 2.

2. Then search in the dictionary from this position for item with best content
match. Item at position 6. 4 chars match (’isst’), first non-matching char in
the current item content is ’i’.

3. To the output goes triplet (4,4,’i’).

4. Context dictionary is updated with 5 new items (see figure 2).

1Associative Coder of Buyanovsky by George Buyanovsky
2means in-memory; items are positions of terms and are unbound

4

ACB Compression Method and Query Preprocessing in Text Retrieval Systems

1 ...swisstmisst|i..........

2swisst|missti.....

3swisstmi|ssti.......

4swi|sstmissti..

5swisstm|issti......

6s|wisstmissti

7swisstmis|sti........

8swis|stmissti...

9swisstmiss|ti.........

10.........swiss|tmissti....

11............sw|isstmissti.

Fig. 2: Context dictionary after update (items in frame are the new ones)

4.2 Decoding algorithm

The decoding is exactly inverse. Runtime context dictionary grows the same way as
by encoding. Text is reconstructed applying triplets on the actual state of dictionary.

Example 3. (decoding step) :

Initial current item and state of dictionary are the same as in previous example. Input
triplet (4,4,’i’) is processed by following:

1. Find in dictionary the appropriate item for current item. Same way as by
encoding. Item 2 was found.

2. Take the first member of triplet (here 4) and add it to the found position. Get
item on position 6. Read from the items content first n chars specified by the
second triplet member. You get ’isst’.

3. To the output goes ’isst’ + the third member ’i’ → ’issti’

4. Dictionary is updated with 5 new items (see figure 2)

4.3 Benefits of ACB brought into TRS

• ACB uses for each file (data stream) new dictionary, which serves as a compres-
sion tool. This data-locality allows represent context by numbers (positions to
source text).

• For purposes of TRS we can persist produced dictionary as a valuable source
of semantic relations. For a growing collection of documents there could evolve
big dictionary over time. In this phase we should speak rather about context
index than about persistent dictionary.

5

DATESO ’02

• ACB algorithm itself can provide (as a side effect) heuristic techniques to im-
prove context index creation and analysis.

5 Building context-based TR subsystem

General context index conception must now become more clear. Because of context
index is persistent and standalone structure, context items cannot be represented as
some positions in source text. This feature considerably differs from runtime context
dictionary which can be unbound. Context index items are represented as term
identifier strings. Identifiers and terms are associated in text index which serves as a
lexicon as well.

Thus, context index must be bound and length of context items significantly
determines storage costs. Fortunately, lengths up to 10 terms seem to be sufficient.

5.1 Simple query

Example 4. (one item in 4-bound context index) :

:
:

steam engines | work reliably

:
:

When querying on ’engines’, string ”’steam’ ’engines’ ’work’ ’reliably’” will return as
a response. This answer offers possibility that the word ’engines’ relates somehow to
the other words. The user have obtained more information and is able to formulate
better query.

5.2 Context item reduction

It is obvious that even 10-bound context index might produce big storage overhead.
Linguistically, only few words are possible to be semantically interconnected with
words in distance greater than 3. However, this is a question for additional testing in
real TR environment.

5.3 Alphabet of terms

Next goal in the process of context index reduction is the alphabet reduction. This
can be achieved by following restrictions:

• Word and non-word consideration as presented in [ADBIS99]. Words are se-
mantic terms (words) and non-words are blank terms (spaces, separators, tabs,

6

ACB Compression Method and Query Preprocessing in Text Retrieval Systems

etc). Words and non-words strictly alternate (word is immediately followed by
non-word).

Context index contains only words (i.e. their identifiers). This feature consid-
erably improves response relevancy.

• Reduction achieved by lemmatizers3. Lemma is the lexical root of its various
derivates (for example ’go’ is lemma for ’goes’,’went’,’going’,etc). Instead of
that derivates, the lemma will be used in context index. However, this loss of
information may worsen the response relevancy.

• Ignoring stop-words consideration. Stop-word is a word with minimal semantic
meaning. For example ’the’, ’a’, ’it’, ’that’.

Reduction of alphabet causes reduction of context index as well. There will be high
probability (even higher with low-bound items), that required item addition will
produce duplicate items in the index – that is not allowed – thus the item will be
ignored.

6 Future work

• In the future we are going to examine transitive queries, i.e. complex queries
combining particular context-content match.

Example 5.

steam engine | is an ancestor of jet propulsion
jet propulsion | uses liquid fuel

Request on ’steam engine’ might produce ’jet propulsion’ or even ’liquid fuel’.

• Nowadays, all the presented stuff is under software development and extensive
testing.

Rereferences

[ADBIS99] J. Dvorský, J. Pokorný, V. Snášel: Word-based Compression Methods
and Indexing for Text Retrieval Systems, Proc. ADBIS’99, Springer
Verlag, 1999, pp. 75-84

[ACM01] C. Carpineto, R. de Mori, G. Romano, B. Bigi: An Information-
Theoretic Approach to Automatic Query Expansion, ACM Transactions
and Information Systems, Vol. 19, No. 1, January 2001

[FUR87] G.W. Furnas, T.K. Landauer, L.M. Gomez, S.T. Dumais: The vocabu-
lary problem in human-system communication. Commun. ACM 30, 11
(Nov.) 1987, 964971.

3stemming techniques

7

DATESO ’02

[BELL93] T.C. Bell et al: Data Compression in Full-Text Retrieval Systems,
Journal of the American Society for Information Science. 44(9), 1993,
pp.508-531

[HC92] R.N. Horspool, G.V. Cormack: Construction Word-based Text Com-
pression Algorithms, Proc. 2nd IEEE Data Compression Conference,
Snowbird, 1992

[SAL98] D. Salomon: Data Compression, Springer Verlag, 1998

[WIT94] I.H. Witten, A. Moffat, T.C. Bell: Managing Gigabytes: Compressing
and Indexing Documents and Images., Van Nostrand Reinhold, 1994

8

