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Abstract. The M-tree and its variants have been proved to provide an
efficient similarity search in database environments. In order to further
improve their performance, in this paper we propose an extension of the
M-tree family, which makes use of nearest-neighbor (NN) graphs. Each
tree node maintains its own NN-graph, a structure that stores for each
node entry a reference (and distance) to its nearest neighbor, considering
just entries of the node. The NN-graph can be used to improve filtering
of non-relevant subtrees when searching (or inserting new data). The fil-
tering is based on using ”sacrifices” – selected entries in the node serving
as pivots to all entries being their reverse nearest neighbors (RNNs). We
propose several heuristics for sacrifice selection; modified insertion; range
and kNN query algorithms. The experiments have shown the M-tree (and
variants) enhanced by NN-graphs can perform significantly faster, while
keeping the construction cheap.

1 Introduction

In multimedia retrieval, we usually need to retrieve objects based on similarity
to a query object. In order to retrieve the relevant objects in an efficient (quick)
way, the similarity search applications often use metric access methods (MAMs)
[15], where the similarity measure is modeled by a metric distance δ. The prin-
ciple of all MAMs is to employ the triangle inequality satisfied by any metric,
in order to partition the dataset S among classes (organized in a metric index ).
When a query is to be processed, the metric index is used to quickly filter the
non-relevant objects of the dataset, so that the number of distance computa-
tions needed to answer a query is minimized.1 In the last two decades, there
were many MAMs developed, e.g., gh-tree, GNAT, (m)vp-tree, SAT, (L)AESA,
D-index, M-tree, to name a few (we refer to monograph [15]). Among them, the
M-tree (and variants) has been proved as the most universal and suitable for
practical database applications.

In this paper we propose an extension to the family of M-tree variants (im-
plemented for M-tree and PM-tree), which is based on maintaining an additional
structure in each tree node – the nearest-neighbor (NN) graph. We show that
utilization of NN-graphs can speed up the search significantly.
1 The metric is often supposed expensive, so the number of distance computations is

regarded as the most expensive component of the overall runtime costs.



2 M-tree

The M-tree [7] is a dynamic (easily updatable) index structure that provides good
performance in secondary memory (i.e. in database environments). The M-tree
index is a hierarchical structure, where some of the data objects are selected
as centers (references or local pivots) of ball-shaped regions, and the remaining
objects are partitioned among the regions in order to build up a balanced and
compact hierarchy of data regions, see Figure 1a. Each region (subtree) is indexed
recursively in a B-tree-like (bottom-up) way of construction.

The inner nodes of M-tree store routing entries

routl(Oi) = [Oi, rOi , δ(Oi, Par(Oi)), ptr(T (Oi))]

where Oi ∈ S is a data object representing the center of the respective ball
region, rOi is a covering radius of the ball, δ(Oi, Par(Oi)) is so-called to-parent
distance (the distance from Oi to the object of the parent routing entry), and
finally ptr(T (Oi)) is a pointer to the entry’s subtree. The data is stored in the
leaves of M-tree. Each leaf contains ground entries

grnd(Oi) = [Oi, δ(Oi, Par(Oi))]

where Oi ∈ S is the indexed data object itself, and δ(Oi, Par(Oi)) is, again, the
to-parent distance. See an example of routing and ground entries in Figure 1a.

Fig. 1. (a) Example of an M-tree (b) Basic filtering (c) Parent filtering

2.1 Query processing

The range and k nearest neighbors (kNN) queries are implemented by traversing
the tree, starting from the root2. Those nodes are accessed, the parent region
(R, rR) of which (described by the routing entry) is overlapped by the query ball
(Q, rQ). In case of a kNN query (we search for k closest objects to Q), the radius
rQ is not known in advance, so we have to additionally employ a heuristic to
dynamically decrease the radius during the search (initially set to ∞).
2 We just outline the main principles, the algorithms are described in Section 4, in-

cluding the proposed extensions. The original M-tree algorithms can be found in [7].



Basic filtering. The check for region-and-query overlap requires an explicit
distance computation δ(R,Q), see Figure 1b. In particular, if δ(R,Q) ≤ rQ + rR,
the data ball R overlaps the query ball, thus the child node has to be accessed.
If not, the respective subtree is filtered from further processing.

Parent filtering. As each node in the tree contains the distances from the
routing/ground entries to the center of its parent node, some of the non-relevant
M-tree branches can be filtered out without the need of a distance computa-
tion, thus avoiding the “more expensive” basic overlap check (see Figure 1c). In
particular, if |δ(P,Q)− δ(P,R)| > rQ + rR, the data ball R cannot overlap the
query ball, thus the child node has not to be re-checked by basic filtering. Note
δ(P,Q) was computed in the previous (unsuccessful) parent’s basic filtering.

2.2 M-tree Construction

Starting at the root, a new object Oi is recursively inserted into the best subtree
T (Oj), which is defined as the one for which the covering radius rOj must increase
the least in order to cover the new object. In case of ties, the subtree whose center
is closest to Oi is selected. The insertion algorithm proceeds recursively until a
leaf is reached and Oi is inserted into that leaf. A node’s overflow is managed
in a similar way as in the B-tree – two objects from the overflowed node are
selected as new centers, the node is split, and the two new centers (forming two
routing entries) are promoted to the parent node. If the parent overflows, the
procedure is repeated. If the root overflows, it is split and a new root is created.

3 Related work

In the last decade, there have been several modifications/successors of M-tree
introduced, some improving the performance of M-tree, some others improving
the performance but restricting the general metric case into vector spaces, and,
finally, some adjusting M-tree for an extended querying model.

In the first case, the Slim-tree [14] introduced two features. First, a new policy
of node splitting using the minimum spanning tree was proposed to reduce inter-
nal CPU costs during insertion (but not the number of distance computations).
The second feature was the slim-down algorithm, a post-processing technique for
redistribution of ground entries in order to reduce the volume of bottom-level
data regions. Another paper [12] extended the slim-down algorithm to the gen-
eral case, where also the routing entries are redistributed. The authors of [12]
also introduced the multi-way insertion of a new object, where an optimal leaf
node for the object is found. A major improvement in search efficiency has been
achieved by the proposal of PM-tree [13, 10] (see Section 5.1), where the M-tree
was combined with pivot-based techniques (like LAESA).

The second case is represented by the M+-tree [16], where the nodes are fur-
ther partitioned by a hyper-plane (where a key dimension is used to isometrically
partition the space). Because of hyper-plane partitioning, the usage of M+-tree



is limited just to Euclidean vector spaces. The BM+-tree [17] is a generalization
of M+-tree where the hyper-plane can be rotated, i.e. it has not to be parallel
to the coordinate axes (the restriction to Euclidean spaces remains).

The last category is represented by the M2-tree [5], where the M-tree is
generalized to be used with an arbitrary aggregation of multiple metrics. Another
structure is the M3-tree [3], a similar generalization of M-tree as the M2-tree,
but restricted just to linear combinations of partial metrics, which allows to
effectively compute the lower/upper bounds when using query-weighted distance
functions. The last M-tree modification of this kind is the QIC-M-tree [6], where
a user-defined query distance (even non-metric) is supported, provided a lower-
bounding metric to the query distance (needed for indexing) is given by user.

In this paper we propose an extension belonging to the first category (i.e.
improving query performance of the general case), but which could be utilized
in all the M-tree modifications (M-tree family) overviewed in this section.

4 M*-tree

We propose the M*-tree, an extension of M-tree having each node additionally
equipped by nearest-neighbor graph (NN-graph). The motivation for employing
NN-graphs is related to the advantages of methods using global pivots (objects
which all the objects in dataset are referenced to). Usually, the global pivots are
used to filter out some non-relevant objects from the dataset (e.g. in LAESA [9]).
In general, the global pivots are good if they are far from each other and provide
different ”viewpoints” with respect to the dataset [2]. The M-tree, on the other
hand, is an example of a method using local pivots, where the local pivots are the
parent routing entries of nodes. As a hybrid structure, the PM-tree is combining
the ”local-pivoting strategies” of M-tree with the ”global-pivoting strategies” of
LAESA.

We can also state a ”closeness criterion” for good pivots, as follows. A pivot
is good in case it is close to a data object or, even better, close to the query
object. In both cases, a close pivot provides tight distance approximation to the
data/query object, so that filtering of data object by use of precomputed pivot-
to-query or pivot-to-data distances is more effective. Unfortunately, this criterion
cannot be effectively utilized for global pivots, because there is only a limited
number of global pivots, while there are many objects referenced to them (so
once we move a global pivot to become close to an object, many other objects
become handicapped). Nevertheless, the closeness criterion can be utilized in
local-pivoting strategies, because only a limited number of dataset objects are
referenced to a local pivot and, conversely, a dataset object is referenced to a
small number of pivots. Hence, a replacement of local pivot would impact only
a fraction of objects within the entire dataset.

4.1 Nearest-neighbor graphs

In M-tree node, there exists just one local pivot, the parent (which moreover
plays the role of center of the region). The parent filtering described in Section 2.1



is, actually, pivot-based filtering where the distance to the pivot is precomputed
so we can avoid computation of the query-to-object distance (see Figure 1c).
However, from the closeness criterion point of view, the parent is not guaranteed
to be close to a particular object in the node, it is rather a compromise which is
”close to all of them”.

Following the closeness criterion, in this paper we propose a technique where
all the objects in an M-tree node mutually play the roles of local pivots. In
order to reduce space and computation costs, each object in a node is explicitly
referenced just to its nearest neighbor. This fits the closeness criterion; we obtain
a close pivot for each of the node’s objects. In this way, for each node N we get
a list of triplets 〈Oi, NN(Oi, N), δ(Oi, NN(Oi, N))〉, which we call the nearest-
neighbor graph (NN-graph) of node N , see Figure 2a.

The result is M*-tree, an extension of M-tree, where the nodes are addition-
ally equipped by NN-graphs, i.e. a routing entry is defined as

routl(Oi) = [Oi, rOi , δ(Oi, Par(Oi)), 〈NN(Oi), δ(Oi, NN(Oi))〉, ptr(T (Oi))]

while the ground entry is defined as

grnd(Oi) = [Oi, δ(Oi, Par(Oi)), 〈NN(Oi), δ(Oi, NN(Oi))〉]

Fig. 2. (a) NN-graph in M*-tree node (b) Filtering using sacrifice pivot

4.2 Query processing

In addition to M-tree’s basic and parent filtering, in M*-tree we can utilize the
NN-graph when filtering non-relevant routing/ground entries from the search.

NN-graph filtering. The filtering using NN-graph is similar to the parent
filtering, however, instead of the parent, we use an object S from the node.
First, we have to select such object S; then its distance to the query object Q is
explicitly computed. We call the object S a sacrifice pivot (or simply sacrifice),
since to ”rescue” other objects from basic filtering, this one must be ”sacrificed”
(i.e. the distance to the query has to be computed).



Lemma 1 (NN-graph filtering)

Let entry(R) be a routing or ground entry in node N to be checked against a
range query (Q, rQ). Let entry(S) be a sacrifice entry in node N , which is R’s
nearest neighbor, or R is nearest neighbor to S. Then if

|δ(S, Q)− δ(S, R)| > rR + rQ

the entry(R) does not overlap the query and we can safely exclude entry(R) from
further processing (for a ground entry rR = 0).

Proof: Follows immediately from the triangle inequality. (a) Since δ(S, R)+rR

is the upper-bound distance of any object in (R, rR) to S, we can extend or reduce
the radius of rout(S) to δ(S, R)+rR and then perform the standard overlap check
between (Q, rQ) and (S, δ(S, R)+ rR), i.e. δ(S, Q)− δ(S, R) > rR + rQ. (b) Since
δ(S, R) − rR is the lower-bound distance of any object in (R, rR) to S, we can
check whether the query (Q, rQ) lies entirely inside the hole (S, δ(S, R) − rR),
i.e. δ(S, R)− δ(S, Q) > rR + rQ. �

When using a sacrifice S, all objects which are reverse nearest neighbors
(RNNs) to S can be passed to the NN-graph filtering (in addition to the single
nearest neighbor of S). The reverse nearest neighbors are objects in N having
S as their nearest neighbor. Note that for different sacrifices Si within the same
node N , their sets of RNNs are disjoint. The operator RNN can be defined as
RNN : S × Nodes 7→ 2S×R+

, where for a given sacrifice S and a node N , the
operator RNN returns a set of pairs 〈Oi, di〉 of reverse nearest neighbors.

The objects returned by RNN operator can be retrieved from the NN-graph
without a need of distance computation (i.e. ”for free”). See the NN-graph fil-
tering pseudocode in Listing 1.

Listing 1 (NN-graph filtering)

set FilterByNNGraph(Node N , sacrifice 〈S, δ(S, Q)〉, RQuery (Q, rQ)) {
set notFiltered = ∅
for each entry(Oj) in RNN(S, N) do

if |δ(S, Q)− δ(S, Oj)| > rQ + rOj then
filtered[entry(Oj)] = true;

else
add entry(Oj) to notFiltered

return notFiltered
}

Range query. When implementing a query processing, the tree structure is
traversed such that non-overlapping nodes (their parent regions do not overlap
the query ball) are excluded from further processing (filtered out). In addition
to the basic and parent filtering, in M*-tree we can use the NN-graph filtering
step (inserted after the step of parent filtering and before the basic filtering),
while we hope some distance computations needed by basic filtering after an
unsuccessful parent filtering will be saved.



When processing a node N , there arises a question how to choose the or-
dering of N ’s entries passed to NN-graph filtering as sacrifices. We will discuss
various orderings in Section 4.2, however, now suppose we already have a heuris-
tic function H(N) which returns an ordering on entries in N . In this order the
potential sacrifices are initially inserted into a queue SQ.

In each step of a node processing, the first object Si from SQ (a sacrifice
candidate) is fetched. Then, the sacrifice candidate is checked whether it can
be filtered by parent filtering. If not, the sacrifice candidate becomes a regular
sacrifice, so distance from Q to Si is computed, while all Si’s RNNs (objects in
RNN(Si, N)) are tried to be filtered out by NN-graph filtering. Note the non-
filtered RNNs (remaining also in SQ) surely become sacrifices, because RNN
sets are disjoint, i.e., an object is passed at most once to the NN-graph filtering.
Hence, we can immediately move the non-filtered RNNs to the beginning of SQ
– this prevents some ”NN-filterable” objects in SQ to become sacrifices. See the
range query algorithm in Listing 2.

Listing 2 (range query algorithm)

QueryResult RangeQuery(Node N , RQuery (Q, rQ), ordering heuristic H) {
let P be the parent routing object of N

/* if N is root then δ(Oi, P )=δ(P, Q)=0 */
let filtered be an array of boolean flags, size of filtered is |N |
set filtered[entry(Oi)]=false, ∀entry(Oi) ∈ N
let SQ be a queue filled with all entries of N , ordered by H(N)

if N is not a leaf then {
/* parent filtering */
for each rout(Oi) in N do

if |δ(P, Q)− δ(Oi, P )| > rQ + rOi
then

filtered[rout(Oi)] = true;
/* NN-graph filtering */
while SQ not empty

fetch rout(Si) from the beginning of SQ
if not filtered[rout(Si)] then

compute δ(Si, Q)
NF = FilterByNNGraph(N , 〈Si, δ(Si, Q)〉, (Q, rQ))
move all entries in SQ ∩NF to the beginning of SQ
/* basic filtering */
if δ(Si, Q) ≤ rQ + rSi

then
RangeQuery(ptr(T (Si)), (Q, rQ), H)

} else {
/* parent filtering */
for each grnd(Oi) in N do

if |δ(P, Q)− δ(Oi, P )| > rQ then
filtered[grnd(Oi)] = true;

/* NN-graph filtering */
while SQ not empty

fetch grnd(Si) from the beginning of SQ
if not filtered[grnd(Si)] then

compute δ(Si, Q)
NF = FilterByNNGraph(N , 〈Si, δ(Si, Q)〉, (Q, rQ))
move all entries in SQ ∩NF to the beginning of SQ
/* basic filtering */
if δ(Si, Q) ≤ rQ then

add Si to the query result
}

}



kNN query. The kNN algorithm is a bit more difficult, since the query radius
rQ is not known at the beginning of kNN search. In [7] the authors applied a
modification of the well-known heuristic (based on priority queue) to the M-tree.
Due to lack of space we omit the listing of kNN pseudocode, however, its form
can be easily derived from the original M-tree’s kNN algorithm and the M*-tree’s
range query implementation presented above (for the code see [11]).

Choosing the Sacrifices. The order in which individual entries are treated
as sacrifices is crucial for the algorithms’ efficiency. Virtually, all entries of a
node can serve as sacrifices, however, when a good sacrifice is chosen at the
beginning, many of others can be filtered out, so the node processing requires
less sacrifices (distance computations, actually). We propose several heuristic
functions H which order all the entries in a node, thus setting a priority in
which individual entries should serve as sacrifices when processing a query.

– hMaxRNNCount
An ordering based on the number of RNNs belonging to an entry ei,
i.e. |RNN(N, ei)|.
Hypothesis: The more RNNs, the greater probability the sacrifice would filter
more entries.

– hMinRNNDistance
An ordering based on the entry’s closest NN or RNN,
i.e. min{δ(ei, Oi)},∀Oi ∈ RNN(N, ei) ∪NN(N, ei).
Hypothesis: An entry close to (R)NN stands for a close pivot, so there is a
greater probability of effective filtering (following the closeness criterion).

– hMinToParentDistance
An ordering based on the entry’s to-parent distance.
Hypothesis: The lower to-parent distance, the greater probability that the
entry is close to the query; for such an entry the basic filtering is unavoidable,
so we can use it as a sacrifice sooner.

4.3 M*-tree Construction

The M*-tree construction consists of inserting new data objects into leaves, and
of splitting overflowed nodes (see Listing 3). When splitting, the NN-graphs
of the new nodes must be created from scratch. However, this does not imply
additional computation costs, since we use M-tree’s MinMaxRad splitting policy
(originally denoted mM UB RAD) which computes all the pairwise distances among
entries of the node being split (the MinMaxRad has been proved to perform the
best [7]). Thus, these distances are reused when building the NN-graphs.

The search for the target leaf can use NN-graph filtering as well (see List-
ing 4). In the first phase, a candidate node is tried to be found, which spatially
covers the inserted object. If more such candidates are found, the one with short-
est distance to the inserted object is chosen. In case no candidate was found in
the first phase, in the second phase the closest routing entry is determined. The
search for candidate nodes recursively continues until a leaf is reached.



Listing 3 (dynamic object insertion)

Insert(Object Oi) {
let N be the root node
node = FindLeaf(N ,Oi)
store ground entry grnd(Oi) in the the target leaf node
update radii in the insertion path
while node is overflowed then

/* split the node, create NN-graphs, produce two routing entries, and return the parent node */
node = Split(node)
insert (update) the two new routing entries into node

}

When inserting a new ground entry into a leaf (or a routing entry into an
inner node after splitting), the existing NN-graph has to be updated. Although
searching for the nearest neighbor of the new entry could utilize the NN-graph
filtering (in a similar way as in kNN query), a check whether the new entry
became the new nearest neighbor to some of the old entries would lead to com-
putation of all the distances needed for a NN-graph update. Thus, we consider
simple update of the NN-graph, where all the distances between the new entry
and the old entries are computed.

Listing 4 (navigating to the leaf for insertion)

Node FindLeaf(Node N , Object New) {
if N is a leaf node then

return N
let P be the parent routing object of N /* if N is root then δ(Oi, P )=δ(P, New)=0 */
let filtered be an array of boolean flags, size of filtered is |N |
set filtered[entry(Oi)]=false, ∀entry(Oi) ∈ N
let usedSacrifices = ∅ be an empty set
let SQ be a queue filled with all entries of N , ordered by H(N)

set candidateEntry = null
minDist = ∞

while SQ not empty {
fetch rout(Si) from the beginning of SQ
/* parent filtering */
if |δ(P, New)− δ(Si, P )| > minDist + rSi

then
filtered[rout(Si)] = true;

if not filtered[rout(Si)] then {
compute δ(Si, New)
insert 〈Si, δ(Si, New)〉 into usedSacrifices
/* NN-graph filtering */
NF = ∅
for each Sj in usedSacrifices do

NF = NF ∪ FilterByNNGraph(N , 〈Sj , δ(Sj , New)〉, (New,minDist))
move all entries in SQ ∩NF to the beginning of SQ
if δ(Si, New) ≤ rSi

and δ(Si, New) ≤ minDist then
candidateEntry = Si

minDist = δ(Si, New)
}

}
if candidateEntry = null then {

do the same as in the previous while cycle, the difference is just in the condition when updating
a candidate entry, which is relaxed to:

if δ(Si, New) ≤ minDist then
candidateEntry = Si

minDist = δ(Si, New)
}
return FindLeaf(ptr(T (candidateEntry)), New)

}



4.4 Analysis of Computation Costs

The worst case time complexities of single object insertion into M*-tree as well
as of querying are the same as in the M-tree, i.e. O(log n) in case of insertion
and O(n) in case of querying, where n is the dataset size. Hence, we are rather
interested in typical reduction/increase of absolute computation costs3 exhibited
by M*-tree, with respect to the original M-tree.

M*-tree Construction Costs. When inserting a new object into M*-tree,
the navigation to the target leaf makes use of NN-graph filtering, so we achieve
faster navigation. However, for insertion into the leaf itself the update of leaf’s
NN-graph is needed, which takes m distance computations for M*-tree instead
of no computation for M-tree (where m is the maximum number of entries in
a leaf). On the other side, the expensive splitting of a node does not require
any additional distance computation, since all pairwise distances have to be
computed to partition the node, regardless of using M-tree or M*-tree.

M*-tree Querying Costs. The range search is always more efficient in M*-tree
than in M-tree, because only such entries are chosen as sacrifices which cannot be
filtered by the parent, so for them distance computation is unavoidable. On the
other side, due to NN-graph filtering some of the entries can be filtered before
they become a sacrifice, thus distance computations are reduced in this case.

5 PM*-tree

To show the benefits of NN-graph filtering also on other members of the M-tree
family, we have implemented PM*-tree, a NN-graph-enhanced extension of the
PM-tree (see the next section for a brief overview). The only structural extension
over the PM-tree are the NN-graphs in nodes, similarly like M*-tree extends the
M-tree.

5.1 PM-tree

The idea of PM-tree [10, 13] is to combine the hierarchy of M-tree with a set of
p global pivots. In a PM-tree’s routing entry the original M-tree-inherited ball
region is further cut off by a set of rings (centered in the global pivots), so the
region volume becomes smaller (see Figure 3a). Similarly, the PM-tree ground
entries are extended by distances to the pivots (which are also interpreted as rings
due to approximations). Each ring stored in a routing/ground entry represents
a distance range (bounding the underlying data) with respect to a particular
pivot. The combination of all the p entry’s ranges produces a p-dimensional
minimum bounding rectangle (MBR), hence, the global pivots actually map the

3 The NN-graph filtering is used just to reduce the computation costs, the I/O costs
are the same as in the case of M-tree.



metric regions/data into a ”pivot space” of dimensionality p (see Figure 3b).
The number of pivots can be defined separately for routing and ground entries
– we typically choose less pivots for ground entries to reduce storage costs.

Prior to the standard M-tree ”ball filtering” (either basic or parent filtering),
a query ball mapped into a hyper-cube in the pivot space is checked for an
overlap with routing/ground entry’s MBRs – if they do not overlap, the entry is
filtered out without a distance computation (otherwise needed in M-tree’s basic
filtering). Actually, the overlap check can be also understood as L∞ filtering (i.e.
if the L∞ distance from a region to the query object Q is greater than rQ, the
region is not overlapped by query).

Fig. 3. Hierarchy of PM-tree regions (using global pivots P1, P2): (a) metric space view
(b) pivot space view. (c) L∞ distance from Q to MBRs of routing/ground entries.

In PM*-tree we suppose the following ordering of steps when trying to filter
a non-relevant node:

parent filtering → L∞ filtering → NN-filtering → basic filtering

5.2 Choosing the Sacrifices

The idea of L∞ filtering can be also used to propose a PM*-tree-specific heuristics
for choosing the sacrifice ordering (in addition to the ones proposed for M*-tree).

– hMinLmaxDistance
An ordering based on the minimum L∞ distance from Q to the entry’s MBR
(see Figure 3c).
Hypothesis: The smaller L∞ distance, the greater probability that also the
δ distance is small, so that the entry has to be filtered by basic filtering
(requiring a distance computation).

– hMaxLmaxDistance
An ordering based on the maximum L∞ distance from Q to the entry’s MBR.
Hypothesis: The greater L∞ distance, the greater probability that also the δ
distance is great, so the entry’s RNNs are far from the query and could be
filtered by NN-graph.



6 Experimental results

To verify the impact of NN-graph filtering, we have performed extensive exper-
imentation with M*-tree and PM*-tree on three datasets. The sets of query ob-
jects were selected as 500 random objects from each dataset, while the query sets
were excluded from indexing. We have monitored the computation costs (num-
ber of distance computations) required to index the datasets, as well as costs
needed to answer range and kNN queries. Each query test unit consisted of 500
query objects and the results were averaged. The computation costs for querying
on PM(*)-tree do not include the external distance computations needed to map
the query into the pivot space (this overhead is equal to the number of pivots
used, and cannot be affected by filtering techniques).

The datasets were indexed for varying dimensionality, capacity of entries per
inner node, and the number of pivots (in case of PM(*)-tree). Unless otherwise
stated, the PM-tree and PM*-tree indexes were built using 64 pivots (64 in
inner nodes and 32 in leaf nodes). Moreover, although the M-tree and PM-tree
indexes are designed for database environments, in this paper we are interested
just in computation costs (because the NN-graph filtering cannot affect I/O
costs). Therefore, rather than fixing a disk page size used for storage of a node,
we specify the inner node capacity (maximum of entries stored within an inner
node – set to 50 in most experiments).

6.1 Corel dataset

The first set of experiments was performed on the Corel dataset [8], consisting of
65,615 feature vectors of images (we have used the color moments). As indexing
metric the L1 distance was used. Unless otherwise stated, we have indexed the
first 8 out of 32 dimensions. In Table 1 see the statistics obtained when index-
ing the Corel dataset – the numbers of distance computations needed to index
all the vectors and the index file sizes. The computation costs and index sizes
of M*-tree/PM*-tree are represented as percentual growth with respect to the
M-tree/PM-tree values.

index type construction costs index file size
M-tree 3,708,968 4.7MB

M*-tree +22% +25.5%
PM-tree(64,32) 18,522,252 8.8MB

PM*-tree(64,32) +25.6% +0%

Table 1. Corel indexing statistics.

In Figure 4a see the M-tree and M*-tree querying performance with respect
to increasing capacity of nodes. We can see the M-tree performance improves up
to the capacity of 30 entries, while M*-tree steadily improves up to the capacity
of 100 entries – here the M*-tree is by up to 45% more efficient than M-tree.
The most effective heuristic is the hMaxRNNCount.

The impact of increasing PM*-tree node capacities is presented in Figure 4b.
The PM*-tree with hMinLmaxDistance heuristic performs the best, while the



Fig. 4. 5NN queries depending on varying node capacity (a) M*-tree (b) PM*-tree. (c)
Range queries depending on increasing dataset dimensionality.

other heuristics are even outperformed by the PM-tree. The gain in efficiency is
not so significant as in case of M*-tree (5%).

In Figure 4c see a comparison of M-tree and M*-tree when querying datasets
of increasing dimensionality. Again, the hMaxRNNCount heuristic performed the
best, the efficiency gain of M*-tree was significant – about 40% on average.

6.2 Polygons dataset

The second set of experiments was carried out on the Polygon dataset, a syn-
thetic dataset consisting of 1,000,000 randomly generated 2D polygons, each
having 5-10 vertices. As the indexing metric the Hausdorff set distance was em-
ployed (where L2 distance was used as partial distance on vertices). In Table 2
see the statistics obtained for the Polygons indexes.

index type construction costs index file size
M-tree 70,534,350 148.4MB

M*-tree +12,1% +5%
PM-tree(64,32) 291,128,463 202.7MB

PM*-tree(64,32) +17% +0%

Table 2. Polygons indexing statistics.

In Figure 5a the M*-tree 1NN performance with respect to the increasing
dataset size is presented. To provide a better comparison, the computation costs
are represented in proportion of distance computations needed to perform full
sequential search on the dataset of given size. The efficiency gain of M*-tree is
about 30% on average.

The costs for kNN queries are shown in Figure 5b, we can observe the effi-
ciency gain ranges from 30% in case of 1NN query to 23% in case of 100NN query.
As usual, the M*-tree equipped with the hMaxRNNCount heuristic performed the
best.

The performance of 1NN queries on PM*-tree is presented in Figure 5c, con-
sidering increasing number of pivots used. The PM*-tree performance improve-
ment with respect to PM-tree is quite low, ranging from 15% (2 and 4 pivots,
heuristic hMaxLmaxDistance) to 6% (≥ 8 pivots, heuristic hMinLmaxDistance).



Fig. 5. (a) 1NN queries depending on increasing dataset size. (b) kNN queries (c) 1NN
queries depending on increasing number of pivots used in PM-tree.

6.3 GenBank dataset

The last dataset in experiments was created by sampling 250,000 strings of
protein sequences (of lengths 50-100) from the GenBank file rel147 [1]. The edit
distance was used to index the GenBank dataset. In Table 3 see the indexing
statistics obtained for the GenBank dataset.

index type construction costs index file size
M-tree 17,726,084 54.5M

M*-tree +38,9% +18,2%
PM-tree(64,32) 77,316,482 66.8MB

PM*-tree(64,32) +20.6% +0%

Table 3. GenBank indexing statistics.

In Figure 6 see the results for kNN queries on M*-tree and PM*-tree, re-
spectively. Note that the GenBank dataset is generally hard to index, the best
achieved results for 1NN by M*-tree and PM*-tree are 136,619 (111,086 respec-
tively) distance computations, i.e. an equivalent of about half of the sequen-
tial search. Nevertheless, in these hard conditions the M*-tree and PM*-tree
have outperformed the M-tree and PM-tree quite significantly, by up to 20%.
As in the previous experiments, the hMaxRNNCount heuristic on M*-tree and
hMinLmaxDistance heuristic on PM*-tree performed the best.

6.4 Summary

The construction costs and index file sizes of all M*-tree and PM*-tree indexes
exhibited an increase, ranging from 5% to 25%. For PM*-tree the increase in
index file size was negligible in all cases.

The results on the small-sized Corel dataset have shown the M*-tree can sig-
nificantly outperform the M-tree. However, the PM*-tree performed only slightly
better than PM-tree. We suppose the superior performance of PM-tree simply
gives only a little room for improvements. Note the dataset of size ≈ 65,000 can



Fig. 6. kNN queries (a) M-tree (b) PM-tree.

be searched by the PM-tree for less than 300 distance computation – this cor-
responds, for example, to six paths of length 3 in the PM-tree where 15 entries
per node must be filtered by basic filtering.

We suppose the extent of M*-tree/PM*-tree performance gain is related to
the intrinsic dimensionality [4] of the respective dataset. The high-dimensional
GenBank dataset is hard to index, so any ”help” by additional filtering tech-
niques (like the NN-graph filtering) would result in better pruning of index
subtrees. On the other side, when considering the low-dimensional Corel and
Polygons datasets, the PM-tree alone is extremely successful (up to 10x faster
than M-tree), so we cannot achieve a significant gain in performance.

7 Conclusions

We have proposed an extension of M-tree family, based on utilization of nearest-
neighbor graphs in tree nodes. We have shown the NN-graphs can be successfully
implemented into index structures designed for a kind of local-pivot filtering. The
improvement is based on using so-called ”sacrifices” – selected entries in the tree
node which serve as local pivots to all entries being reverse nearest neighbors
(RNNs) to a sacrifice. Since the distances from a sacrifice to its RNNs are pre-
computed in the NN-graph, we could prune several subtrees for just one distance
computation. We have proposed several heuristics on choosing the sacrifices, and
the modified insertion, range and kNN query algorithms.

7.1 Future Work

The properties of NN-graph filtering open possibilities for other applications.
Generally, the metric access methods based on compact partitioning using local
pivots could be extended by NN-graphs. In the future we would like to integrate
the NN-graph filtering into other metric access methods, as a supplement to
their own filtering techniques.
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