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Abstract. In the area of multidimensional databases, the UB-tree rep-
resents a promising indexing structure. A key feature of any multidimen-
sional indexing structure is its ability to effectively perform the range
queries. In the case of UB-trees, we have proposed an advanced range
query algorithm making possible to operate on indices of high dimension-
ality. In this paper we present experimental results of this range query
algorithm.
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1 Introduction

In multidimensional databases, objects are indexed according to several or many
independent attributes. However, this task cannot be effectively realized using
many standalone indices and thus special indexing structures have been devel-
oped is last two decades. Common to all this structures is that they index vectors
of values instead of indexing single values.

The UB-tree represents one of the promising multidimensional index struc-
tures. Indexing and querying high-dimensional databases is a challenge for cur-
rent research since high-dimensional indexing is significantly influenced by phe-
nomenon called curse of dimensionality. This unpleasant phenomenon states
that increasing dimensionality of feature space makes effective indexing and
querying very hard (we refer to [2] and [8]). In this paper we present an ad-
vanced range query algorithm which makes the UB-tree suitable for indexing
large high-dimensional databases.

In Section 1 we describe the UB-tree, Section 2 presents our range query al-
gorithm and Section 3 analyses the comprehensive experimental results. Section
4 concludes the results.

1.1 TUniversal B-tree

The Universal B-tree (UB-tree) was introduced in [1] for indexing multidimen-
sional data. Its main characteristics reside in an elegant combination of the well-
known B*-tree and the Z-ordering. The power of UB-tree lies in linear ordering
of vectors, similarly like an ordering of simple values is indexed by the B¥-tree.



In the UB-tree we require to establish such ordering on a multidimensional vec-
tor space and thus linearize the space onto a single-dimensional interval which
is usually realized using space filling curves [6]. A space filling curve orders all
the points within a n-dimensional vector space. UB-tree was designed to be used
with the Z-ordering generated using the Z-curve. Points (tuples) in the space are
ordered according to their Z-addresses.

An interval [o : (] (« is the lower bound, § is the upper bound) on the Z-
curve forms a region in the space which is called Z-region. An example of Z-curve
and several Z-regions is presented in Figure 1la.
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Fig. 1. a) The 2-dimensional space 8x8 filled with the Z-curve. The numbers in the
grid are the Z-addresses. The space is partitioned with six Z-regions. The black dots
represent 4 indexed objects. b) The UB-tree nodes correspond to the Z-regions and
super Z-regions.

Each Z-region is then mapped into a single page within the underlying
BT-tree. The UB-tree leafs represent the Z-regions containing indexed objects
themselves while the inner nodes represent the super Z-regions. A super Z-region
contains all the (super) Z-regions lying entirely inside the super Z-region. Hence,
the UB-tree structure is determined by a nested Z-region hierarchy. An indexed
vector space and its appropriate UB-tree is depicted in Figure 1.

1.2 Range Queries

Realization of basic operations in the UB-tree (insertion, deletion, point query)
is analogous to the operations in the ”ordinary” BT-tree. The main difference
is that in the UB-tree we must at first compute the Z-address of the indexed
object as a key for the subsequent operation on the underlying BT -tree.
Unfortunately, a range query cannot be so simply forwarded to the B*-tree.
This fact arises from the speciality of the range query which is intended to be
used on multidimensional data. Range query (window query respectively) in
vector spaces is usually represented with a hyper-box in a given vector space 2.
The ranges of a query box @B are defined by two boundary points, the lower



bound @Bjow = [a1,a2,...,a,] and the upper bound @B, = [b1,bs,...,b,]
where a1 < by,as < bg,...,a, < b,. The purpose of a range query is to return
all the points located inside the query box, i.e. to return all the points o satisfying
a; < 0; <b;, for 1 <i<n (see Figure 2a).

D,

=

A T HJ :

« "OB, = [b,.b.]

a) b)

Fig. 2. a) Two-dimensional query box QB specified with lower bound Q Bj., and upper
bound QB,,. b) Space (2 partitioned to Z-regions.

A more specific range query definition oriented to the UB-tree context can
be formulated as a search over all the UB-tree’s Z-regions that intersect given
query box (see Figure 2b).

Existing Solution. Markl in [4] presents following range query algorithm con-
secutively searching intersecting Z-regions.

In Figure 3, an example of range query algorithm run is shown. At first,
Z-address for the query box lower bound is computed. Using this value a page
from UB-tree is retrieved and searched for relevant objects. Next, subsequent
Z-region is retrieved and so on. The algorithm will finish as soon as the 3 of
the active Z-region is greater than the Z-address of query box upper bound, i.e.
B8 > Zaddr(QByyp).

So far, the algorithm was elegant and clear. But problem arises when we
look deeper into function determining the next Z-address inside the query box.
We denote this function GetNextZaddress. Computing the next Z-address lying
within the query box is not trivial operation since this procedure is obviously
dependent on the shape of Z-region. The algorithm for GetNextZaddress pre-
sented in [4] is of time complexity exponential with the dimensionality. Later, in
[5], authors have presented a version linear with the Z-address bit length.

Limitations. Unfortunately, all descriptions of GetNextZaddress published so
far were mentioned very briefly. Moreover, the explanations were always based on
a pure algorithmic basis using ”handling with bits” and hence lacking a geometric
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Fig. 3. Range query processing example

model providing a little bit deeper abstract view. Finally, original algorithms on
UB-trees are protected with international patents?.

2 Down-Right-Up Algorithm

The DRU (Down-Right-Up) algorithm exploits two types of leaf optimizations
reducing unnecessary disk accesses as well as the Z-region intersection compu-
tations. The first optimization called meighbour first point is used for testing
whether the first point of the right neighbour leaf (its Z-region respectively) lies
inside the query box. If it does, the algorithm can simply ”jump right” (the leafs
are linked) to the neighbour leaf and continue processing. This optimization was
already used in the original Bayer-Markl’s algorithm.

The second optimization called neighbour region is specific to the DRU algo-
rithm and is based on existence of TestZregionIntersection operation. This
operation tests whether a given query box intersects a Z-region. We closely de-
scribe an algorithm realizing this operation as well as the theory to DRU algo-
rithm itself in [7].

The neighbour region optimization is used for testing whether the neighbour
leaf (its Z-region respectively) is intersecting the query box. If it does, the algo-
rithm ”jumps right” similarly like by the first optimization.

The DRU algorithm description:

The algorithm uses a path stack to keep the actual path in the UB-tree. The
path stack allows us to avoid disk accesses to the nodes (and items in nodes)
already processed.

DRU algorithm steps (input is the query box ¢b):

! Deutsches Patentamt Nr. 197 09 041.9 and Nr. 196 35 429.3



1. Find a leaf the Z-region of which contains Zaddr(gb;y,). Store the path on
the stack.

2. Search actual leaf for tuples lying inside gb. Return these tuples as a part of
the result.

3. Retrieve the neighbour leaf from disk and set it as the actual leaf. If the first
point of the actual leaf lies inside gb then goto step 2. This is the neighbour
first point optimization.

4. If the Z-region of the actual leaf intersects ¢b goto step 2. This is the neigh-
bour region optimization.

5. The stack must recover after the ”optimization jumps”. The UB-tree is
passed (along the path in the stack) to the next relevant node. After the
recovery, on the top of stack is a parent node of the leaf reached by the
preceding optimization.

6. (Right-Phase). Peck the node on the top of the stack and try to find a
link to the next relevant node (i.e. to node the Z-region of which intersects
gb). If no such node is found, pop a node from the stack and repeat step 6
(Up-Phase). If a node is found, retrieve the node from the disk and push
it onto the stack (Down-Phase). If a leaf is reached goto step 2 otherwise
repeat step 6.

The algorithm terminates until a Z-region is found such that o > Zaddr(gbsy).

level O
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searched leaf pages

Fig. 4. DRU algorithm

An example of DRU algorithm is presented in Figure 4. Only the intersecting
Z-regions (nodes respectively) are being processed. These Z-regions (nodes) are
grayed. The bold branches are the only paths passed down. On the leaf level, all
tuples lying inside the query box are returned as a query result.



3 Experimental Results

The tests were focused on several cost-factors. Besides the disk access costs
(DAC), the effectivity of leaf optimizations was examined. Furthermore, compu-
tation costs (CC) of the range queries were investigated.

3.1 Cost Model

Let us now discuss the disk access costs and the computation costs. Let h be
the height of the UB-tree, r be the number of Z-regions intersecting the query
box, m¢ be the number of neigbour leafs matched by the neighbour first point
optimization, and m,. be the number of neighbour leafs matched by the neighbour
region optimization.

The basic DAC = (h + 1) x r. Had we consider the neighbour first point
optimization, the DAC will be reduced to (h+41)x (r—my)+my. Considering both
leaf optimization will reduce the DAC to (h+1) x (r— (ms+m,))+ (m;+m,).

The asymptotic CC = 0((h+2) x ). Had we consider the neighbour first point
optimization, the asymptotic CC will be reduced to §((h + 1) x (r — my) + 7).
Considering both leaf optimizations will reduce the CC to 8((h+1) x (r—my) —
h x m,. +7).

The set of tests was made on synthetic datasets of increasing dimensionality.
The tuples were generated into randomly located clusters of fixed radius (using
the Ly metric) and indexed with the UB-tree. The number of tuples was in-
creasing with the number of dimensions. In order to obtain solid results we have
tested large datasets (up to 8 milion 30-dimensional tuples).

Query boxes of various shapes were generated randomly according to the
distribution of tuples in the space. The ranges of query boxes were for growing
dimensionality the same thus the volumes were increasing but the ratio query
box volume/space volume was decreasing. This query box construction is typical
for multidimensional applications. The number of queries was increasing with the
number of dimensions (from 24 to 120 queries). The results are averaged.

The tests were performed on an Intel Pentium®4 2.4GHz with 512MB DDR333,
60GB UDMA100 7200rpm, run under Windows XP.

3.2 Two-Dimensional Datasets

For the two-dimensional datasets, we have examined the performance depen-
dence on the growing UB-tree node capacity. In general, the greater node capac-
ity implies lower disk access costs and number of computations.



UB-tree characteristics:

| D;| 232 dimensions 2

tuples 524,288 tree height 4-8

Z-regions 121,138-21,472

node capacity ~ 6-35 utilization 72.7-69.7%

node size 116-580B index file 17.4-12.4MB
Range query characteristics:

range queries 24 query selectivity (tuples) 9676.1

query real times 0.09-0.06 s

Figure 5a shows the number of leaf Z-regions in two-dimensional UB-tree
indices in order to node capacity. We can see that the growing leaf capacity ”in-
flates” the Z-regions’ volume while the number of Z-regions decreases. Figure 5b
shows the number of Z-regions intersecting the query box. This indicates that
the total volume of intersecting Z-regions is not dependent on the growing node
capacity. In Figure 6, the disk access costs as well as the number of compu-
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Fig. 5. a) Number of Z-regions. b) Number of Z-regions intersecting the query box.

tations for two-dimensional UB-tree indices are presented. The DRU algorithm
performs significantly better than the original Bayer-Markl’s algorithm since the
DRU algorithms accesses by 30%-60% less disk pages. Similarly, the number of
computations is lesser by 25%-50%.

The success of the DRU algorithm is caused by effective application of the
neighbour region optimization. In Figure 7, the number of matching attempts of
the leaf optimizations is presented. Matching attempt means a case when the Z-
region s intersected, i.e. value true is returned and ”jump” to the right neighbour
leaf is performed. Figure 7a shows that the meighbour first point optimization
is very effective for lower node capacities. The neighbour region optimization is
performed after the neighbour first point was non-matching. Hence, the result
is that for two-dimensional indices (low-dimensional respectively) the neighbour
first point optimization filters the majority of unnecessary disk accesses. The
third line shows the total attempts (matching and non-matching) of either opti-
mization. In Figure 7b, the optimization effectivity is presented. The neighbour
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Fig. 6. a) Disk access costs. b) Number of computations.

first point optimization is effective by 90%, together with the neighbour region
optimization by 95%.
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Fig. 7. a) Leaf optimizations. b) Leaf optimizations effectivity.

A particular result is that for low-dimensional UB-trees the Bayer-Markl’s
algorithm is only slightly less effective than the DRU algorithm. A different
situation comes with more dimensions as we will see in the following sub-section.

3.3 High-Dimensional Datasets

In high-dimensional spaces, say for n > 10, the range query efforts rapidly in-
crease. This fact is caused by the curse of dimensionality described later in this
section. In practice, the disk access costs and the number of computations grow
with the increasing dimensionality.



UB-tree characteristics:

card(D) 232

tuples

nodes 22,400-321,885
node capacity 35

node size 580-4612B

dimensions 2-30

524,288-7,864,320 tree height 4

Z-regions  21,475-321,885
utilization 69.7-69.8%
index file 12.4MB-1.44GB

Figure 8a shows the number of inserted tuples according to dimensionality
of the dataset. In Figure 8b, the range query selectivity is depicted, i.e. average
number of returned tuples. The other line in the graph represents the number
of accessed leaf Z-regions. In Figure 9, the disk access costs and the number of
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Fig. 9. a) Disk access costs. b) Computations.

computations are presented. We can see that with increasing dimensionality the
costs grow. However, the growth for the DRU algorithm is much less steep than
for the Bayer-Markl’s algorithm. Thus, the DRU algorithm is more effective for



higher dimensionalities. The reason of the DRU algorithm’s success resides again
in the application of the leaf optimizations.

For higher dimensionalities, the significance of the neighbour leaf optimiza-
tion exponentially grows while the neighbour first point optimization goes down
to zero. This behaviour is caused by the complex shape of the Z-curve for higher
dimensionalities thus the probability that the first point of the neighbour Z-
region will intersect the query box tends to zero. On the other side, this kind of
probability does not affect the effectivity of the neighbour region optimization
since it determines the Z-region/query box intersection absolutely.
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Fig. 10. a) Leaf optimizations. b) Leaf optimizations efficiency.

In Figure 11 we present average real times of a range query execution.
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Fig. 11. Range query real times.



3.4 Curse of Dimensionality

Presented results allow us to think about the curse of dimensionality [2], [8]
appearing in the UB-tree. With the growing dimensionality of UB-trees grow
also the costs, even though less than exponentially. Figure 12a presents a ratio
of tuples inside the query box to the number of intersecting Z-regions. Figure
12b shows ratio of intersecting Z-regions containing at least one tuple inside
the query box to all of the intersecting Z-regions. This ratio says that in higher
dimensionalities more than 95% of relevant Z-regions ”give” no tuples to the
result. The reason is obvious — the topological properties of the Z-curve are
worse for higher dimensionalities.

Range query selectivity ratio Z-region ratio
& "o S
‘ —— Tuples / Z-regions N 7 - = Match regions/Inters. regions
\ — |Inters. regions/Interval regions
o | i
- o
S 1
x® '
) [
=9 1 0 o .
© - kel —
e 3 © °
[ )
0 — ¥ °
% g - o
%00 — —Q——0——0
o 0—0——0—0—o0 o -|f000—8—0r="87 77379
I I I I I I T T T I T T
5 10 15 20 25 30 5 10 15 20 25 30
dimensions dimensions

Fig. 12. a) Range query selectivity ratio. b) Query box ratios.

On the other side, the Figure 12b also shows a ratio of intersecting Z-regions
to the Z-regions lying in the interval [Zaddr(gbiow) : Zaddr(gby,)] (i.e. interval
of the query box’s ”bounding Z-region”). One could expect that the negative
effect of the curse of dimensionality will ”raise” this ratio up to 100% which is
the same as a traversal through the majority of the UB-tree structure. However,
this test shows that (even for high dimensionalities) the number of Z-regions
intersecting the query box is much lesser than the number of Z-regions within
the above mentioned interval. This particular result indicates that the UB-tree
together with the DRU algorithm is remarkably resistant to the curse of dimen-
sionality. For a comparison, the well-known R-tree [3] used in many applications
is very affected by the curse of dimensionality and its usage for high-dimensional
indexing is nearly impossible.

4 Conclusions

The experimental results have shown that the DRU range query algorithm makes
the UB-tree applicable for effective indexing and querying of high-dimensional
feature spaces.



The key to the DRU algorithm effectivity is an incorporation of two leaf
optimizations. The neighbour region optimization allows the DRU algorithm
process range queries in high-dimensional spaces and thus proves that the UB-
tree is partially resistable to the unpleasant curse of dimensionality. In particular,
the DRU algorithm allows to effectively process ”tight” range queries, i.e. query
boxes having very disproportionate ranges.
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