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Abstract. Query in Information Retrieval produces some amount of
relevant results. Consecutively, there is a need for some qualitative clas-
sification of these particular results in such way the user is able to un-
derstand. In this article we introduce a new formal method of navigation
through query result. This navigation method is based on an original
idea of concept order structure, which exploits the concept lattices the-
ory and the fuzzy set theory. So far, user must provide a subjective
factor — attribute scaling. Our method helps to uncover significant con-
cepts without the need of user scaling.
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1 Introduction

Strict boolean query interpretation does expect as the result a set of such objects,
each particular property of which matches given condition. From the query-
semantic point of view, all these objects in query result are equally important.

However, in Information Retrieval (IR), we must often consider notions like
query uncertainty and response relevancy. Query uncertainty is the typical at-
tribute of IR. In IR we are not able to predetermine exactly which particular
property of object in result is to match any predefined condition. We can only
specify a measure of relevancy the object must satisfy. Thus, strict queries are
not quite suitable for IR purposes.

Let us imagine as an example a task to find the most suitable ski centre for our
holidays. We live in Czech Republic and prefer alpine ski centers that are near,
are situated on the highest elevations and are selling inexpensive ski-pass. Had
we express a strict query on those ski centers (objects) each property of which
must satisfy the best possible value, we wouldn’t probably recieve any result.
However, such answer is insufficient for us. Thus, we formulate a query very
loosely — ”alpine ski centre”. This query now produces several (actually much
more, but for simplicity nine) ski centers (see Table 1). On the basis of this result
we want to obtain the ”best compromise”. A way to find this compromise can
be called ”"navigation through query result”.



Table 1. Query result of the ski centers

Ski Centre |Abbreviation| distance| ski-pass |elevation
(km) |price (CZK)| (m)
Mayrhofen Ma 476 5276 3250
Solden So 576 4866 3260
Kitzbiihel Ki 455 4741 2000
Flattach Fl 490 4411 3160
Soll Sl 453 3664 1835
Zell am See Ze 475 4632 3029
Radstadt Ra 450 4625 2130
Gosau Go 390 3774 1600
Rohrmoos Ro 426 4565 2700

1.1 Existing Approaches

During the time, there were various methods of navigation evolved and some
of them exploit properties of concept lattices. Concept lattice is an algebraic
structure which makes possible to order a set of objects with attributes.

Concept lattice theory is based on classical set theory and therefore a crisp
set of attributes is assigned to each object. Object either has or has not a par-
ticular attribute. For example, object "dog” has attribute ”fur” but doesn’t
have attribute ”flippers”. However, in real problems there exist attributes of
many-valued nature, e.g. object ”car” could own numerical attribute ”fuel con-
sumption”. This restriction was attempted to be removed with the introduction
of attribute scaling, e.g. attribute ”fuel consumption” might be distributed over
three attributes ”low f.c.”, ”middle f.c.” and ”high f.c.”. Afterwards, object ” car”
shall satisfy some of the three new attributes. Furthermore, conventional fuzzy-
fication of attributes solves this problem in a similar manner (e.g. [1]).

1.2 Briefly Our Solution

Unfortunately, there is an unpleasant consequence of the conventional attribute
scaling or fuzzyfication that makes these methods worse applicable. It is because
the scaling phase ”swells” the set of attributes too much and the resultant lattice
is very large and confusing structure.

Our alternative is based on concept lattices and fuzzyfication as well, but
in a different way. Instead of scaling the set of attributes, we normalize their
values into interval [0,1] — in other words we create appropriate fuzzy set of
objects for each attribute. From the obtained fuzzy sets we construct so called
fuzzy context and define a-cuts. For each a-cut we derive its crisp context and
its concept lattice. We unify ”somehow” all the produced concept lattices (their
concepts respectively) and obtain an ordered structure of concepts as a result.
This structure is then more compact and more readable then classical concept
lattice. Furthermore, significant concepts in this structure are scale independent.
Simultaneously, there is minimal loss of important characteristics. Additional
theoretical background of this method can be found in [8].



2 Basics of Concept Lattices Theory

The idea of formalization of terms context and concept by means of lattices
theory is not quite new. Formerly isolated experiments at application so called
Galois lattices already existed, especially in the area of Information retrieval,
but systematically built up theory did not arose until the work of R.Wille and
his group [10]. For the formalization of term concept and context, the theory of
ordered sets and the theory of lattices are applied. The terms from these classic
disciplines can be found in [2].

Definition 1. Acontext is a triple (G, M, I), where G and M are sets and
I C G x M. The elements of G are called objects and the elements of M are
attributes. We write gI'm or (g,m) € I and say ”the object g has the attribute
m”. The relation I is called incidence relation of context. Contexts of a smaller
extent are simply representable by a table.

Definition 2. For A C G and B C M, define

At ={m € M| gIm Vg € A}
Bt = {g € G| gIm Ym € B}
where AT is the set of attributes common to all objects in A and B is the set
of objects possessing the attributes in B.
Two operators were defined
. P(G) —» P(M)
Y P(M) — P(G)
where P(G) and P(M) are the set of all context of the sets G and M respectively.
B'! indicates a set (B*)', that means double application of operator from the
previous definition.

Definition 3. Let (G, M, I) be a context. For couple (A, B) where A C G,
B C M, A" = B and BY = A we say A is extent and the set B is intent of
concept (A, B). The set of all concepts is called KX(G, M, I).

Definition 4. For concepts (A1, B1) and (As, B2) in K(G,M,I) we say
(A1, By) is a subconcept of (As, Bs) if Ay C As (it is the same as By C B;) and
we write (A, B1) < (A, B2) and that (Ao, Bs) is a superconcept of (A, By).
The relation < is the relation of order on the set of all concepts K (G, M, T). This
relation is even lattice order on this set, that means that there exist supremum
and infimum with regard to < for every two elements in K(G, M, I). The proof
and further details can be found in [2].

Proposition 1. Let m be the object count and n the attribute count of a
context. Then concept count cx of given context is limited by following statement

e < 2min(m7n) (1)

This inequality has important influence on further analysis as we will see in the
next section.

2.1 Scaling

Traditional methods of scaling (described in [2]) are based on decomposition
of many-valued attribute onto several single-valued attributes. Moreover, these
new attributes must preserve some specific relations between each other.



— Nominal scales are suitable to scale attributes, the values of which mutually
exclude each other.

— Ordinal scales are used to scale many-valued attributes, the values of which
are ordered and where each value implies the weaker ones. This type is also
suitable for fuzzy scaling because the higher membership values always imply
the lower ones.

— Interordinal, biordinal and other existing scales are more complex and we
don’t consider them in this paper.

Table 2. Nominal scale Table 3. Ordinal scale
president, nationality thing temperature
czech | german | TUSSIan warm | h0t| burning
Havel X tea X
Putin X stove X X
Rau X lava X | X X

3 Applications Using Scaling

Let’s now apply scaling on our ski centre problem. According to rules of ordinal
scaling and the data in Table 1, we create crisp scaled context.

Table 4. Scaled context of ski centers

Ski distance S.p. price elevation
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Ma X | X X | X | X | X

So X | x| x| x

Ki X | X | X X

Fl X X | x X | x| x

Sl x | x| x X | x| x X

Ze X | X X X | X | x

Ra X | X | x X X

Go X | x| x| x || x| x| x| x

Ro X | x| x| x || x| x x | %

Concept lattice (see Figure 1) of the above context has 36 concepts. Each
node in lattice (concept) represents a navigation decision and each edge in lattice
(concept order) allows a navigation movement.

Note: The concepts in Figure 1 are labeled according to the reduced labeling
making the lattice more readable (see [2] for more detail).



Example of navigation:

In Figure 1, object concept Ra is greyed. This concept is our initial naviga-
tion decision and it means that we choose ski centres Ra, Ro, Sl that are very
near (attributes di,ds, ds), are quite expensive (attribute s;) and are quite low
elevated (attribute e;). Three arrows pointing out from this concept represent
possible navigation movements. If we choose the downward arrow we will obtain
such concept as a navigation decision that has lost ski centre Ra but has gained
attribute so. In other words, with this movement only two possible ski centres
remain but they sell quite cheap ski-pass.

Fig. 1. Concept lattice for scaled context

3.1 Drawbacks
Using of attribute scaling brings following major drawbacks:

— large structure volume
From the proposition on the beginning of this section we can expect that
the growing set of attributes implies (in the worst case) exponential growth
of the resultant concept lattice. This claim is well-founded because the set
of objects is supposed to be always greater then the set of attributes, which
is obvious due to the nature of query result.
— dependency on scaling
Here are two aspects:
e At the beginning, user must provide a scale for each attribute. There is
no general method how to determine ideal scaling.
e If we modify (even slightly) the set of attributes during the scale refine-
ments, the resultant lattice will change without the preservation of the
most significant concepts in the former structure.



3.2 Other Research

There were attempts to bring the fuzzy factor on the stage (see [1]). However,
resultant concept lattice structures incorporate big number of concept nodes,
similarly like by attribute scaling. This consequence stands such approaches on

the attribute scaling level.

4 Our Idea

As we can see, the solution in the previous section is strongly tied with attribute
scaling. Our motivation was to search such concepts that are scale independent
and bring better support to the user. So far, the problem of ”good” scaling was
left upon the user’s subjective meaning. This aspect was formerly objected to us
(in [5]), thus we also tried to minimalize the problem of subjectivity. The idea is
to remove the scale factor that brings large lattice volume and dependency on

attribute scales.

4.1 Context Normalization

First, we tried to formalize already the initial problem of object memberships
to attributes. For each attribute we create a fuzzy set of objects. This set is

constructed as follows:

1. Membership boundaries are chosen. By user or automatically.
2. Membership function is chosen. By user or automatically.
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Fig. 2. Fuzzy sets prozimity (p), affordability (a), snow quality (¢q) and o — cuts



For automatic fuzzy set generation we can choose the smallest and the great-
est (in sense of attribute measure) object of all attributes as the membership
boundaries. However, for our ski centre example we have chosen ”user defined”
boundaries [400, 600] for distance, [3500, 5000] for ski-pass price and [3500, 1800]
for elevation. Furthermore, linear membership function was chosen. See Figure
2.

Second, it is easy now to transform query result through fuzzy sets into fuzzy
context. In this context, the attribute values are the fuzzy set membership values
of the original attributes. See Table 5.

Table 5. Normalized fuzzy context for ski centers

|Ski Centre ||pr0m'mity|aﬁordability| snow quality|

Ma 0.61 0.00 0.85
So 0.12 0.09 0.86
Ki 0.73 0.17 0.12
Fl 0.55 0.39 0.80
Sl 0.74 0.89 0.02
Ze 0.62 0.24 0.72
Ra 0.75 0.25 0.19
Go 1.00 0.82 0.00
Ro 0.87 0.29 0.53

4.2 Contexts of a-Cuts

On the fuzzy context (on defined fuzzy sets respectively) we create a-cuts (see
Figure 2). From the a value and the fuzzy context we are able to derive a
crisp context for each of the particular a-cuts, i.e. a-context. For our ski centre
problem we derive contexts for a-cuts e.g. ag.4, 0.5, 0.6, Q0.7 and g g.

Context for Context for Context for Context for Context for
Q. 4-cut Qg 5-cut Q. g-cut ag.7-cut a.g-cut

obj[plala] [obillp[a[a] [obillp[ala] [obi[p|ala] [obi]p[a]d]

Mal|x X Mal|x X Mal|x X Ma X Ma X
So X So X So X So X So X
Ki || x Ki || x Ki || x Ki || x Ki

FI ||x X Fl (| x X Fl X Fl X Fl X
Sl |[x|x Sl |[x|x Sl |[x|x Sl |[x|x Sl X
Ze ||x X Ze ||x X Ze ||x X Ze X Ze

Ra||x Ra || x Ra||x Ra || x Ra
Gol|x|x Gol|x|x Gol|x|x Gol|x|x Gol|x|x
Ro||x Ro || x X Ro||x Ro || x Ro||x




4.3 «a-Concept Order

What can we imagine behind particular a-contexts? Concept lattice of a partic-
ular a-context with a high « value contains important concepts, the objects of
which highly satisfy concept’s attributes. On the other side, concept lattice of
a-context with a low « value contains also those concepts, the objects of which
satisfy the concept’s attributes only a little.

Combination of all that concepts and their consequential ordering will pro-
duce relatively small plastic structure, i.e. a-concept order, which makes navi-
gation easier.

Definition 5. (a-concept)

Let K, be union of all the concepts produced from all a-contexts. Then all
concepts ¢;,...,cr € K, such that G(¢;) = ... = G(ci) form a-concept ¢, =
(G(ca), M(cq)). Set of objects G(cy ) is determined by the previous condition. Set
of attributes M (c,) is constructed as a multiset M (c;) U,, --- U,,, M (cx) which
means that to each attribute in the union is assigned a weight — i.e. occurence
count within sets M (c;), ..., M (cx). Weight of a-concept is overall weight of all
its attributes.

Table 6. a-concepts of certain 6 a-contexts

2 Objects Attributes
ISH

SIS i 3 O o
éE@NE%&)EUEpaq
0 |lx x X X X 2
1 ||x X X X X X X X| 2

2 || x X X x| 2 2
3 X X X 1 1
4 X 1 1 1
5 X X X X X X X X X

6 X X 3 4
7 6 6 6
8 |Ix x X X 2
9 || x X X X X x x| 1

10(| x X 1 1
11 X X X X x| 1

12|| x % X 1
13 X X 1
14 X 3 1
15 X 1

Definition 6. (a-concept order)
All a-concepts derived from K, can be ordered according to G(c4) inclusion.



Note:
A remarkable property of highly weighed a-concept is an analogy to the con-
cept of crisp context. A higher weight of an a-concept means that the concept
appears simultaneously in more a-contexts (in their lattices respectively). Thus,
a-concepts with highest weights could be considered as concepts of crisp con-
texts where the attributes have only ”yes or no” values. From this point of view,
a-concept with high weight can be considered as significant or important.

Fig. 3. a-Concept order for a-concepts in Table 6.

Example of navigation in a-concept order:
In Figure 3 we can see three grayed concept nodes which may be considered
by the user as the significant ones. Concepts 2,6 have high weights while the
concept 4 satisfies all the attributes (regardless their lower weights).

Further navigation decisions and movements relate to various user interpre-
tations similarly like the navigation described in section 3.

4.4 Selection of the a-Cuts

Significant a-concepts have an interesting property. They appear simultaneously
in many contexts of a-cuts. This knowledge indicates that anyhow fine the di-



vision of a-cuts is, the significant a-concepts remain preserved. In other words,
a-concept order structure is independent on a-cut selection.

Similar outcomes with a-cuts has published M.Schneider who studied the
influence of a-cut selection on the values of fuzzy topological predicates (see

[4])-

5 Conclusions

We have presented alternative method of navigation through query result which
is based on well-known basis of concept lattices theory and fuzzy set theory.
We want to emphasize two main highlights of our solution. First, suggested
apparatus offers to the user preferentially those concepts (decisions) which do
not depend on certain attribute scaling. Second, navigation structure is compact
and readable without the loss of important characteristics.
Additional details:

— Algebraic properties of the a-concept structure can be described using A-
lattice (see [6], [7])-
— Described navigation method is completely implemented and is being tested.
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