
Properties Of Space Filling Curves And Usage
With UB-trees

Tomáš Skopal, Michal Krátký, Václav Snášel

Department of Computer Science, Technical University Ostrava, Czech Republic
tomas.skopal@vsb.cz, michal.kratky@vsb.cz, vaclav.snasel@vsb.cz

Abstract. In this paper we want to investigate certain properties of
space filling curves and their usage with UB-trees. We will examine sev-
eral curve classes according to range queries in UB-trees. Our motivation
is to propose a new curve for the UB-tree which will improve the range
queries efficiency. In particular, the address of this new curve is con-
structed using so-called proportional bit interleaving.

Keywords: space filling curve, UB-trees, space partitioning, Z-curve

1 Introduction

In Information Retrieval there is often requirement on data clustering or
ordering and their consequential indexing. This requirement arises when
we need to search for some objects in large amounts of data. The process
of data clustering→indexing gathers similar data together, thereby allows
effective searching in large data volumes.
Specific approaches of data clustering were established on the vector
space basis where each data object is represented as a vector of its sig-
nificant attributes. Such object vectors can be stored as points/vectors
within a multidimensional vector space. In this article we are going to
examine indexing method for discrete multidimensional vector spaces
based on space filling curves. A space filling curve allows linearize a mul-
tidimensional space in such way that to each point in space is assigned
single unique value – i.e. address on curve. Thus, the space could be
considered as partitioned and even ordered due to the curve ordering.
There exists one indexing structure which combines the principles of
space filling curves and techniques of data indexing. This structure is
called UB-tree.

1.1 Vector Spaces

Definition 1. Let Ω = D1 × D2 × . . . × Dn is a n-dimensional vec-
tor space. The set Di is called the domain of dimension i. The vector
(point, tuple) x ∈ Ω is a n-tuple 〈a1, a2 . . . , an〉 ∈ Ω. In other words
x can be interpreted as a point at coordinates (a1, a2 . . . , an) within n-
dimensional space. The coordinate ai is also called attribute value and
can be represented as a binary number (string) of length li. Thus, to
each domain Di is assigned a bit-size li and its cardinality ci = 2li .
Then holds 0 ≤ ai ≤ ci − 1.



In discrete vector space Ω we use integer coordinates. Usually, the space
domains are also finite due to limited capacity of integer attribute.
In figure 1 we see two-dimensional space ”animal” where the first di-
mension represents ”animal class ” and the second ”limb count”. Animal
”ant” is represented with vector [0,2] ([insect, 6] respectively).

Fig. 1. Two-dimensional vector space 4×4

Representing objects as vectors in space brings following possibilities:
– Formal apparatus of vector spaces allows objects to be treated uni-

formly. Object is vector and there are defined certain operations on
vectors in vector space.

– In metric vector spaces we can measure similarity between two ob-
jects (distance of vectors respectively)

– In vector space we can easily construct range queries

1.2 Space Partitioning

Because of the requirements of data indexing we need to transform the
objects within vector space Ω into some hierarchical index structure.
This space transformation means some kind of space partition which in
turn produces space subregions.

Definition 2. (space filling function)
We call a function f : S ⊂ N0 → Ω a space filling function, if f(S) = Ω
is a bijective function. Ordinal number a, where f(a) = oi, oi ∈ Ω is
called address of vector oi on curve f(S).

Lemma 1. A space filling function defines one-dimensional ordering for
a multidimensional space.
Space filling curves order points in space and may so define regions in
the space. A region is spatially determined with an interval [α : β], α ≤ β
on the curve (α, β are addresses). In figure 2 we can see our example
space (extended to 8×8) filled with three types of curves. Suppose we
want to find the smallest region covering objects ”snake” and ”ant”, we
would obtain [3:16] for C-curve, [5:8] for Z-curve and [4:15] for H-curve.



Fig. 2. Compound (C) curve, Lebesgue (Z) curve, Hilbert (H) curve and addresses of
points within our ”animal” space

1.3 Universal B-trees
The idea of UB-tree incorporates B+-tree and the space filling curves.
Inner nodes of B+-tree contain hierarchy of curve regions. Region of inner
node always spatially covers all regions of its children. Regions on the
same depth level in tree do not overlap. In leaves are stored data objects
(their vectors respectively). The structure of UB-tree (with Z-curve) for
our example is shown in figure 3. We can see that the objects on the
leaf level are ordered left-to-right – the same way as on Z-curve. Further
informations about UB-trees can be found in [Ba97,Ma99].

Fig. 3. Structure of UB-tree

So far, the published papers about UB-tree mentioned only the possibil-
ity of Z-curve. In following analysis we are going to examine also another
curve orderings.

2 Properties of Space Filling Curves

In [Ma99] we can find a curve quality criterion based on curve symme-
try measure. This symmetry is somehow connected with selfsimilarity
concept taken from fractal geometry.
We will introduce another aspects of curve quality classification. Our
goal is to find ideal curve for range queries in vector space or actually in
UB-tree.



2.1 Measure of Utilization

Range query processing in vector space or in UB-tree must examine each
region which intersects query area. We can assume that large region
overlaps will produce unnecessary space searching and thus they cause
high access efficiency costs.
To reduce these costs we’ve developed measure of utilization which allows
to rate each curve and choose the best one. In figure 4 we’ll see greyed
query area and the smallest possible region that entirely covers given
query area.

Fig. 4. Smallest possible region [α : β] covering entire query area

Definition 3. Let A(oi) is a query area centered on coordinates of oi ∈ Ω.
Let R(A(oi)) is the smallest possible region covering A(oi). Then utiliza-
tion of A(oi) is defined as

u(A(oi)) =
volume(A(oi))

βR(A(oi)) − αR(A(oi))

and average utilization of space Ω with query area A and space filling
curve f is defined as

avgutil(Ω,A,f) =

∑f(volume(Ω))

oi=f(0) u(A(oi))

volume(Ω)

Notes Average utilization factor helps us to find better curve from
the range query point of view. Curve with avgutil close to 1 means
that searching the vector space by range query processing is effective –
no unnecessary space is searched. Interesting consequence of high rated
curves is that points that are near in space (according to some metric)
are also near on the curve (according to order).

Choosing query area The shape of range query area must comply
with the nature of range queries. In metric vector spaces we search for
similar objects given by some threshold distance value. In non-metric
vector spaces we search for objects within coordinate ranges. The for-
mer aspect represents n-dimensional sphere and the latter n-dimensional



block. As we can see in figure 4 we’ve choosen n-dimensional sphere for
further analysis.

Volume of sphere in multidimensional discrete space is defined as follows:
Let K(r) denote number of points with integer coordinates contained
within circle, i.e. circle volume in discrete space.

Theorem 1. (Gauss) in [Cha69]
For K(r) the following asymptotic formula holds:

K(r) = πr2 + ∆(r)

∆(r) = O(r)

The circle consists of all the points satisfying x2
1 + x2

2 + · · ·+ x2
n ≤ r2.

The volume of a sphere in Rn is a function of the radius r and will be
denoted as Vn(r). We know that V1(r) = 2r, V2(r) = πr2 and V3(r) =
4
3
πr3.

To calculate Vn(r) (changing to polar coordinates) we get

Vn(r) =

∫ r

0

(∫ 2n

0

Vn−2(
√

r2 − s2)sdθ
)
ds

By using induction, closed forms for calculation of higher dimensional
spheres can be derived

V2n(r) =
πn · r2n

n!

V2n+1(r) =
22n+1 · n! · πn · r2n+1

(2n + 1)!

From theorem 1 we get the volume of n-dimensional sphere

Kn(r) = Vn(r) + O(Vn−1(r))

2.2 Curve Dependency Classification

We have find out that dependency on certain vector spaces characteristics
has important influence on the average utilization factor. We’ll venture to
proclaim that the higher dependency on space characteristics, the higher
average utilization. We have classified this dependency into three space
filling curve classes:

Dimension dependent curves First class of curves takes in ac-
count only the dimension of vector space, e.g. classical Z-curve. This
type treats the space as a multidimensional cube and is not suitable for
spaces with different domain cardinalities. In figure 5 we can see that the
curve overlap the real space. It is obvious that the average utilization of
that curve will be very low due to large smallest covering regions.



Fig. 5. Dimension dependent curve, e.g. Z-curve and one of the smallest covering re-
gions

Address computation is also only dimension dependent. On the input
stand n attributes, bit length is uniform – l. In figure 6 is shown one
type of address construction, i.e. bit interleaving which is simply the
permutation of bit vector a of all attributes (concatenated to single vec-
tor). To every bit in every attribute is assigned a position in the resultant
address. Address contruction based on permutation can be easily realized
with permutation matrix A.

addr = a ·A

Permutation matrix can be created from unitary square matrix by mul-
tiple column (or row) swap. Reconstruction of original attributes from
address is also simple – using the inverse matrix A−1 which is equal (if
A is orthonormal – and permutation matrix is always orthonormal) to
the transposed matrix, i.e. AT = A−1. Then

a = AT · addr

Fig. 6. Bit interleaving for dimension dependent address

Domain dependent curves The second class is not only dimen-
sion dependent but also domain dependent. Curves are constructed with
considerations to domain cardinalities. Curves of that type do not over-
lap given vector space (e.g. C-curve). Address construction for domain
dependent curves can be based on permutation matrix as well.
The curve for UB-tree we have announced in the beginning is one of
this type and is called PZ-curve. PZ-curve advances the original Z-curve



Fig. 7. Domain dependent curve, e.g. PZ-curve and one of the smallest covering regions

Fig. 8. Bit interleaving for domain dependent address

where the new quality we call proportionality of PZ-address, i.e. attribute
bits are interleaved proportionally to each domain (see figures 7, 8).
The PZ-address is intimately described in the next section.

Data dependent curves Third class of curves is dependent on ev-
erything known in the space even on the data stored within. However,
this type is rather theoretical and we present it here only for notion and
future motivation.

Fig. 9. Data dependent curve

Construction of address for data dependent curve is very complex. Gen-
erally, every bit of the output address is evaluated as a function of all
the coordinates in input. Even if we’d accomplish address computation
there is another complication. The curve is data dependent and therefore
it must be completely recomputed after adding new data.



2.3 PZ-address

Construction of PZ-address is based on proportional bit interleaving. We
can describe the interleaving with following simplified algorithm:
1. Vector of PZ-address is empty (all bit positions are empty). Order

of attributes ai is chosen as a parameter, i ∈ I.
2. Bits of attribute ai are uniformly dispersed over the empty bit posi-

tions within the PZ-address vector.
3. Newly occupied bit positions are no longer empty – the vector of

PZ-address is beeing filled step by step.
4. Step 2 is repeated until index set I is exhausted.

Note: The order of attribute processing is important. Attributes that
are processed at first are more accurately dispersed into PZ-address.

For synoptic idea of the algorithm see figure 10.

Fig. 10. PZ-address construction. First, bits of a1 are dispersed into the empty PZ-
address vector. Second, a2 is dispersed over the rest empty positions. Last attribute
(here a3) is actually not dispersed but coppied.

Formal description Let’s have n attributes (coordinates in n-dimensional
space). Attribute ai is represented as a bit vector of length li. PZ-address
(vector PZaddr with length la =

∑n
i=1 li) is computed using following

permutation matrix:

PZaddr =
(
a11 a12 . . . a21 a22 . . . aij

)
·



0 0 . . . 0︸ ︷︷ ︸
ord(a11)−1

1 0 0 0 0 . . .

0 0 0 0 0 . . . 0︸ ︷︷ ︸
ord(a12)−1

1 0 . . .

...
0 0 0 . . . 0︸ ︷︷ ︸
ord(a21)−1

1 0 0 0 . . .

...
0 0 0 0 . . . 0︸ ︷︷ ︸

ord(aij)−1

1 0 0 . . .





where ord(aij) is the position of j-th bit of attribute ai in the resultant
PZ-address.

ord(aij) = emptypos(i, j · disperse(ai))

where disperse(ai) is the uniform bit dispersion of ai over the remaining
empty positions in PZ-address.

disperse(ai) = integer

(∑n
k=i lk

li

)
and where emptypos(i, k) is the k-th empty bit position in PZ-address
after the attribute ai−1 is processed.

emptypos(i, k) = min(F (i), k)

F (i) is the set function (F (i) ⊂ N ) of all empty positions in PZ-address
before attribute ai is processed.

F (1) = {1, 2, . . . , la} F (i + 1) = F (i)−
li⋃

j=1

{ord(aij)}

min(A, k) is the k-th minimum of an ordered set A

min(A, 1) = min(A) min(A, k) = min(A−
k−1⋃
q=1

{min(A, q)})

2.4 Test results

Figure 11 shows us the influence of space dependency on particular curves
and also their types. Proposed PZ-curve has relatively high average uti-
lization rate, thus seems to be suitable for usage with UB-trees.

Fig. 11. Test results – with growing dependency grows also average utilization



3 Testing of the UB-tree range queries

One from the kind of the spatial queries is the range query. The algorithm
of UB-tree range query is described in [Ba97] and [Ma99]. Range query
processing finds all the tuples (objects) lying inside given n-dimensional
query block.
All the regions overlapped by n-dimensional block are retrieved and
searched during the processing of range query. The goal of our tests is to
show that PZ-regions (created using PZ-address) part the n-dimensional
space better than by using of Z-address. The goal is to show the query
block overlaps less regions by usage of the PZ-address than by usage of
the Z-address. If the query block overlaps less Z-regions, the less B-tree
pages are retrieved and also less disk accesses are done and less CPU
time is consumed.
We measure the rate of number of regions overlapped by n-dimensional
block by usage of tested address (for example PZ-address) to number of
regions overlapped by usage of Z-address. We will note the value as eff :

eff =

(
1.0− numregsTestedA

numregsZA

)
· 100.0 [%]

The eff value for m query blocks is then calculated as:

effm =

(
1.0−

∑m
i=1 numregsTestedAi∑m

i=1 numregsZAi

)
· 100.0 [%]

where

numregsTestedA is the number of regions overlapped by query block
by usage of tested address (for example PZ-address)
numregsZA is the number of regions overlapped by query block by
usage of Z-address
numregsTestedAi is numregsTestedA value for query block i
numregsZAi is numregsZA value for query block i

Positive eff value means that number of accessed regions by usage of
tested address is less than numbers of accessed regions by usage of Z-
address.
We will execute three tests which consist of three subtests (the calcula-
tion of eff3

1, eff3
2 and eff3

3 values) and compare PZ-address and Z-
address. The first subtest computes eff3

1 value for three n-dimensional
blocks (see Figure 12a). The second subtest computes eff3

2 value for
three n-dimensional cubes (see Figure 12b). The third subtest computes
eff3

3 value for three n-dimensional blocks (see Figure 12c). Thus, each
of the test consists of three subtests, the nine tests were executed at the
whole. The effavg value was the average for the nine tests.

Test 1:
We see dependency of eff at the arity of the UB-tree in Figure 13. The
16000 tuples were inserted into the 4-dimensional space 16x64x16x64. We
see the usage of PZ-address gives better results by computation eff3

1

value, the usage of PZ-address gives the worse results by computation
eff3

2 value. In spite of this – the effavg value is bigger than zero so



1. 2.

3.

a)

1.

2.

3.

b) 1.

2. 3.

c)(0,0) (0,0)(0,0)

(255,15)(255,15)(255,15)

Fig. 12. The example of testing query blocks for 2-dimensional space 256x16. The
testing query blocks for calculation of a) eff3

1 b) eff3
2 and c) eff3

3.

-20

-10

0

10

20

30

40

5 10 15 20 25 30 35 40

ef
f [

%
]

arity

eff31
eff32
eff33

effavg

Fig. 13. The results of the test 1.

query block overlaps less number of regions by usage of PZ-address than
by usage of Z-address. Thus, less B-tree pages are retrieved. We see
effavg value grows with growing arity.

Test 2:
We see dependency of eff at the dimension n of space in Figure 14. The
number of inserted tuples grows with the dimension n. The tuples were
inserted into spaces with n = 2 (2D space 16x64), n = 3 (16x64x16),
n = 4 (16x64x16x64) and n = 5 (16x64x16x64). We see the PZ-address
gives a better results with growing dimension.

4 Conclusions

In this paper we have presented some properties of space filling curves
according to the usage with UB-tree. The original design of UB-tree
takes into account only the possibility of Z-curve. We have shown that



-30

-20

-10

0

10

20

30

40

1 2 3 4 5 6 7

ef
f [

%
]

dimension

eff31
eff32
eff33

effavg

Fig. 14. The results of the test 2.

there exist several aspects giving a reason to propose another alternative
curves. This reason is especially based on maximization of the range
queries efficiency.
From this point of view we have designed such an alternative curve, i.e.
PZ-curve, which tries to take advantage of some space knowledge. PZ-
curve is domain dependent, i.e. is suitable for indexing specific vector
spaces with differently ranged domains. Example of data modelled within
this spaces could be the XML data. Modelling and indexing XML data
we closely discuss in [KPS02a,KPS02b].

References

[Ba97] Bayer R.: The Universal B-Tree for multidimensional index-
ing: General Concepts. In: Proc. Of World-Wide Computing
and its Applicazions 97 (WWCA 97 ). Tsukuba, Japan, 1997.

[Cha69] Chandrasekharan, K.: Introduction to Analytic Number The-
ory. Springer-Verlag New York, 1969. ISBN 0387041419.

[Ka83] Karacuba A.A.: Introduction to Analytic Number Theory.
Nauka 1983. in russian.

[KPS02a] Krátký M., Pokorný J., Snášel V.: Indexing XML data with
UB-trees. Accepted at ADBIS 2002, Bratislava, Slovakia

[KPS02b] Krátký M., Pokorný J., Skopal T., Snášel V.: Geometric
framework for indexing and querying XML documents. Ac-
cepted at EurAsia ICT 2002, Tehran, Iran

[Ma99] Markl, V.: Mistral: Processing Relational Queries
using a Multidimensional Access Technique,
http://mistral.in.tum.de/results/publications/Mar99.pdf, 1999


