
Construction of Tree-Based Indexes for

Level-Contiguous Buffering Support

Tomáš Skopal, David Hoksza, and Jaroslav Pokorný

Charles University in Prague, FMP, Department of Software Engineering
Malostranské nám. 25, 118 00 Prague, Czech Republic

{tomas.skopal, david.hoksza, jaroslav.pokorny}@mff.cuni.cz

Abstract. In multimedia databases, the spatial index structures based
on trees (like R-tree, M-tree) have been proved to be efficient and scalable
for low-dimensional data retrieval. However, if the data dimensionality is
too high, the hierarchy of nested regions (represented by the tree nodes)
becomes spatially indistinct. Hence, the query processing deteriorates
to inefficient index traversal (in terms of random-access I/O costs) and
in such case the tree-based indexes are less efficient than the sequential
search. This is mainly due to repeated access to many nodes at the top
levels of the tree. In this paper we propose a modified storage layout of
tree-based indexes, such that nodes belonging to the same tree level are
stored together. Such a level-ordered storage allows to prefetch several
top levels of the tree into the buffer pool by only a few or even a single
contiguous I/O operation (i.e. one-seek read). The experimental results
show that our approach can speedup the tree-based search significantly.

1 Introduction

The research in database indexing remains still a hot topic – its importance
even increases with the emergence of new data types like multimedia data, time
series, DNA sequences, etc. For such data, the tree-based indexes are often em-
ployed, e.g. the R-tree, X-tree, M-tree, and others [1,5], while apart from task-
specific criteria of retrieval efficiency, the I/O costs still represent an important
efficiency component. Simultaneously, the complexity of new data types makes
them hardly indexable by tree-based structures, so the sequential search is often
referred to perform better (in terms of I/O costs) than any tree-based index [20].

Despite the recent boom of new storage media (e.g. flash or hybrid disks), the
best (and cheapest) medium for storage/indexing is still the magnetic hard disk
drive (HDD) with rotating platters and moving heads. Due to its construction,
the I/O efficiency of HDD depends on access time and transfer rate. The access
time is determined by the seek time (head moves to a track), settle time (precise
head positioning) and the latency (or rotational delay). The transfer rate is given
by MB/s of sequentially (contiguously) read/written data from/to a track.

While HDD capacity doubles every year and transfer rate increases by 40%,
the access time improves only by 8% (because of kinetic limitations of heads).
Todays HDD can be of 300GB capacity, 50MB/s transfer rate and 10ms access

R. Kotagiri et al. (Eds.): DASFAA 2007, LNCS 4443, pp. 361–373, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

362 T. Skopal, D. Hoksza, and J. Pokorný

time. With 8KB disk blocks (or pages) used by file systems, the fetching of a block
takes 10.16ms, so the access takes 98.5% of the total time. A contiguous fetch
of 800KB data takes only 2.5x the time needed for fetching 8KB data. However,
some two decades ago the HDDs exhibited different parameters, the access time
about 100ms and the transfer rate at about 150KB/s. Thus, a random access to
a disk block is relatively more expensive nowadays than some 20 years ago.

Sequential vs. Tree-based Indexing. The classic access methods have been
developed based on a traditional disk model that comes with simplifying as-
sumptions such as an average seek-time and a single data transfer rate. An
excellent overview of these problems can be found in [19]. The B-tree or R-tree
structures were developed in times of relatively cheap access costs (compared
to the transfer rates). The tree node size (mapped to a block) was 2 or 4KB,
while sequential reading of large data from HDD was not much cheaper than
reading the data by multiple random-access retrievals, e.g. 7s vs. 32s in case of
1MB of data and 4KB blocks. By query processing, a traversal of 1/5 (or less)
of the tree index sufficed to be faster than the simple sequential search. Today,
the tree-based querying must traverse less than 1/86 to overtake the sequential
search. Such a small proportion is achieved by B+-tree, or R-tree built on low-
dimensional data. However, complex data cannot be retrieved in such an efficient
way, because of their high dimensionality. Therefore, in modern applications the
sequential search (or sequential-based indexes like VA-file [20]) is reported as
more efficient (in terms of I/O costs) than indexing by tree-based structures.

How Large the Tree Nodes Should be? One can ask whether the access
times could be reduced by enlarging the tree nodes. Then the number of nodes
would be smaller and so the number of I/Os would decrease. Here the problem is
in the increased number of entries stored in the node (the node capacity). Unlike
B-tree, where the node split operation is of linear complexity with the number of
entries, in R-tree or M-tree the complexity of node split is super-linear because
of (sub)optimal partitioning of entries. A high node capacity also leads to worse
approximations (e.g. MBRs in case of R-tree) in the parent node.

Second, although in B-tree the search in a single large node is fast because of
use of interval halving, this is not possible in R-tree or M-tree where no universal
ordering of entries is guaranteed. This has not to be critical in case of low-
dimensional R-tree where the tuples-in-query testing is fast, however, in M-tree
the sequential search within a node implies expensive distance computations.

1.1 Paper Contributions

In this paper we use level-separated buffering scheme which leads to more effec-
tive buffer utilization. Moreover, we introduce a modified split algorithm which
keeps the tree index level-contiguous, that is, nodes belonging to a certain level
in the tree are stored together. Such a modified index file layout allows to cheaply
prefetch the top levels of the tree and thus further decrease the access costs.

Construction of Tree-Based Indexes for Level-Contiguous Buffering Support 363

2 Tree-Based Indexing

In this section we briefly summarize the structural properties of tree-based in-
dexes and their secondary storage, including buffering into main memory. First,
we assume ”region-based” trees, where the data objects are stored in the leaves,
while each entry in an inner node represents a (spatial) approximation of the ap-
propriate subtree, e.g. R-tree’s MBR, or M-tree’s ball. We also assume an inner
node with m entries (regions) has m children (see Figure 1a). Such assumptions
are satisfied by R-tree, M-tree, but not by the B-tree (which is not region-based).

Fig. 1. (a) Insert into leaf G0. (b) The resulting tree, split up to the root.

We subscript a node by the number of its level (level number), starting by 0
at the leaf level (see Figure 1). Since indexes grow from bottom to top, a node’s
level number does not change. Besides the level number, each node obtains an
identifier. A node is stored at address (or offset) in index file which is the identifier
× node size. The inner and leaf nodes are of single size (given in kilobytes).

Inserting and Splitting. By standard insertion, a leaf is found into which a
new object is inserted. An overflowed leaf must be split between two leaves, one
keeping the old identifier, and a brand new leaf. The two new entries describing
two subtrees are inserted into the parent node (one entry is just updated). When
the parent node overflows, the splitting is repeated (possibly up to the root level).
In Figure 1, an insertion into the leaf G0 raises a sequence of node splits.

Model Structure vs. Index File Layout. Note that the sequential ordering
of nodes in the index file (physical view in Figure 1a) does not preserve the
structure (the model view). This is because the new allocated nodes at the end
of the index file come from different tree levels after a sequence of splits. In the
optimal situation, the physical ordering exactly follows the model ordering given
by breadth-first traversal of the tree. With such an organized index file we would
be able to prefetch the neighboring nodes by a single contiguous read. Unfortu-
nately, the standard splitting strategy cannot preserve the physical ordering of
nodes in accordance with the model, because this would imply O(n) insertion
complexity (shifting many nodes), which is impracticable in most cases.

364 T. Skopal, D. Hoksza, and J. Pokorný

2.1 Standard Buffering and Prefetching

Like other database structures, also indexes use buffering [7] of blocks into mem-
ory frames. When a node is requested, its block is fetched from the disk and
stored in a frame of the buffer pool. If the same node is requested later, it could
still be in the buffer, so we avoid an I/O operation. Since the buffer is smaller
than the volume of requested nodes, a page-replacement policy must be used,
like LRU (LRU-T, LRU-P, LRU-K), MRU, FIFO, Clock, LFU, etc [15,13,14].

Because of reasons discussed in Section 1, we would like to access a large
amount of data in single contiguous I/O operation. Instead of a single node,
we could prefetch several additional nodes from the disk. Such prefetching is
actually provided by the HW cache of the HDD. Unfortunately, the ordering
of nodes in index file does not follow the tree structure. Hence, it would be
inappropriate to force the prefetched nodes to be stored in the buffer, because
such bulk-loading of nodes would lead to release of many nodes from the buffer
which are (maybe) more likely to be requested than the prefetched ones.

3 Related Work

Typically, the tree-based indexes follow linear abstraction of HDD provided by
file system. The only factor that has to be minimized is the number of random-
access I/Os [8]. Most efforts in database indexing have been spent on improving
filtering abilities with respect to the model (e.g. R-tree vs. X-tree [1] or M-tree vs.
PM-tree [18]). Although the filtering improvements have a substantial impact on
the overall efficiency (not only on the I/O costs), at some point further improving
of the model is very hard. At that moment some lower-level techniques have to
be investigated, related to HW and data storage issues.

3.1 Buffering Techniques

The I/O costs can be substantially reduced by appropriate buffering strategies.
The classic work on index buffering [12] suggests the LRU replacement policy
for B+-tree as the most effective. Also for multidimensional indexes the LRU
policy has been proved as effective [6] (R-tree). In [11] a data-driven model
has been proposed to predict the impact of buffering on R-trees. Moreover,
specific replacement policies for spatial indexing have been proposed (suitable
for R*-tree), where the nodes at the higher levels of a tree index are kept longer
in the buffer [2].

3.2 Dynamic Layout Rearrangement

A general approach to speedup data retrieval is the dynamic rearrangement
of storage layout [3,10]. The idea follows the assumption some access patterns
are more frequent than other ones, so blocks belonging to the same pattern
should be stored together to minimize movements of disk heads. The organ-pipe
arrangement [16] is an example of such a layout. The rearrangement (also called

Construction of Tree-Based Indexes for Level-Contiguous Buffering Support 365

shuffling [16]) resembles file defragmentation for a specific access pattern, where
the frequently accessed blocks are moved together during data retrieval with a
hope this pattern will occur again. Although the rearrangement is a universal
method for data management, its usage in database indexing is limited due to
the absence of strong access patterns. Even if there exists an access pattern for
a particular user, a multi-user access to the index will spoil the efforts spent by
rearrangement because of many contradictory access patterns.

In our approach we use a kind of layout rearrangement, however, this one is
performed during the construction of the index (i.e. not during query processing).

3.3 Physical Designs

Some recent works leave the linear abstraction of HDD and exploit physical
properties of modern disks. Modern HDDs are manufactured with zoned record-
ing, which groups adjacent disk cylinders into zones. Tracks are longer towards
the outer portions of a disk platter as compared to the inner portions. Hence,
more data can be recorded in the outer tracks when the maximum linear density
is applied to all tracks. The results are multiple physical zones, where seek times
and transfer rates vary significantly across the zones. In [21] the authors optimize
dynamic multidimensional access methods (R*-tree) given a zoned disk model.

Another adjacent block utilization is presented in [17], however, the authors
deal with storage of multidimensional data rather than indexing. The key idea
is that HDD is, in fact, a three-dimensional medium where the adjacent tracks
(either within a platter or within a cylinder) can be accessed efficiently.

The drawback of these methods is a requirement on specific system-level soft-
ware, that provides applications with access to adjacent portions on the disk.

4 Level-Contiguous Indexing

Unlike the proposals in Section 3.3, we use the classic linear abstraction of data
storage. Furthermore, we focus on indexes where complex queries are issued,
i.e. queries where a substantial volume of nodes at the top levels must be pro-
cessed (e.g. window or kNN query). Hence, we do not consider point or interval
queries on B+-tree, since such queries result in simple one-path traversal. In
other words, we consider an access pattern where the inner nodes are accessed
much more frequently than the leaves. Based on the assumptions, we propose
level-contiguous storage layout – an index storage partially preserving the model
ordering of nodes for only a little construction overhead.

4.1 Index Traversal Analysis

In B+-tree, the most used query types are the point and interval queries defined
for single-key domains, where the traversal is guided along a single path in the
tree (an interval query must additionally search the leaf level), see Figure 2a.

Assuming that the queries are distributed uniformly, the probability that a
node at a level of B+-tree will be accessed is inversely proportional to the number

366 T. Skopal, D. Hoksza, and J. Pokorný

Fig. 2. (a) Point/interval search in B+-tree (b) Range/kNN search in R-tree or M-tree

Fig. 3. Hierarchical space decomposition by (a) R-tree (b) UB-tree (c) M-tree

of nodes at the level, i.e. a leaf has the smallest probability and the root has
100%. However, some tree-based indexes are used for multidimensional or metric
data, e.g. R-tree, X-tree, M-tree, where nodes represent regions in the indexed
space. On such data there is no universal ordering defined, and also the query
types are different. In particular, the R-tree is used for range query (or window
query) and the M-tree is often used for (k-)nearest neighbor (kNN) query.

Since these structures index data which cannot be ordered, the tree traversal
goes not along a single path. More likely, to reach all relevant data in the leaves,
there must be multiple paths passed (see Figure 2b). The reason is that leaves
relevant to a query are not clustered – they are spread over the entire leaf level.

Since the nodes represent regions in the indexed space, the top-level nodes’
regions have large volume (they must cover all children regions, see Figure 3).
Then, during a query processing the nodes are checked against a query region
and those children are further processed, which overlap the query. Obviously,
the larger regions (nodes at the top levels) have greater probability to be ac-
cessed. With high-dimensional data, this means almost all top-level nodes are
accessed (due to the curse of dimensionality [1,4]). Consequently, many random
accesses are performed when querying high-dimensional data, so large portions
of top levels are searched in randomized order. This is, in turn, often worse than
contiguous sequential search of the entire index file.

4.2 Level-Contiguous Index Storage Layout

In our approach, we focus on ”derandomization” of the I/O costs so that infre-
quent large contiguous I/Os are preferred over many random block I/Os. This
can be achieved by a modification of index storage layout, in particular by ensur-
ing that nodes are physically ordered by their level numbers (the order of nodes
within a single level does not matter). In such a way, we can read all the nodes
at several top levels by a single contiguous fetch, and store them into the buffer.

Construction of Tree-Based Indexes for Level-Contiguous Buffering Support 367

The idea makes use of adjusted node splitting. After an object has been inserted
such that some node splits occurred, a special algorithm (called SwapUp, see
Listing 1) is executed. The algorithm uses an array mLevelStartIndex, where its
i-th entry stores the index file position of the first node belonging to i-th tree
level. In principle, the algorithm propagates the new nodes (produced by split-
ting at the end of index file) in order to restore the ordering defined by level
numbers. This is realized by swapping the new (misplaced) nodes with some old
nodes which are located at first positions of a particular level in the index file.

Listing 1. (modified insertion algorithm, SwapUp algorithm)
method InsertObject(object o) {

// insert o into the tree (this also involves splitting of overflowed nodes)
. . .
// if some splits have occurred during the insertion, set splitCount = number of splits
if (splitCount > 1) then SwapUp(splitCount)

}
method SwapUp(integer splitCount) {

splitCount = splitCount - 1;
for (i = 0; i < splitCount; i++) {

integer swappedAtLevel = splitCount - i;
for (j = 0; j < swappedAtLevel; j++) {

SwapTwoNodesAt(mLevelStartIndex[i] + j,
mLevelStartIndex[i] + GetNodesCountAtLevel(i) + j + 1);

}
mLevelStartIndex[i] = mLevelStartIndex[i] + swappedAtLevel;

}
if (splitCount == treeHeight) then { // treeHeight is the number of levels except the root level

allocate mLevelStartIndex[splitCount];
mLevelStartIndex[splitCount] = 0;

}
}

Some notes: The SwapTwoNodesAt swaps the nodes defined by their identi-
fiers (positions in index) together with both parent nodes’ links pointing to the
swapped nodes. To quickly access the parent node, a parent identifier must be
additionally stored in each node. However, now also the parent identifiers of the
child nodes of the two nodes being swapped must be updated. The GetNode-

sCountAtLevel returns the number of nodes at a given level before the insertion.
Also note the SwapUp algorithm has not to be executed if just a leaf was split.

The algorithm running is explained in Figure 4a, which is index file layout
related to the tree in Figure 1. Before insertion, the storage layout was level-
ordered (see the white part in Figure 4a-1). After insertion, multiple splits caused
ordering violation (see the grey part). The SwapUp algorithm now propagates
the new nodes to correct positions. In Figure 4a-1, the new non-leaf nodes are
swapped with the first 3 leaf nodes stored in the index. Then, the two remaining
nodes are swapped with the first two level-1 nodes (see Figure 4a-2) and finally,
the new root node O3 is swapped with the old root K2 (Figure 4a-3). The final
index layout (let us denote it as level-ordered index) is presented in Figure 4a-4,
where the top (bottom, respectively) arrows denote which parents (children) had
to be updated with the new node’s identifier during the swapping-up.

Time Complexity. Suppose n is the number of objects in the tree (i.e. O(log n)
is the tree height). There are O(log n) seeks and contiguous data transfers (of

368 T. Skopal, D. Hoksza, and J. Pokorný

Fig. 4. (a) Swapping-up the new nodes after insertion (which caused multiple splits).
(b) Top-level and Bottom-level buffer pools.

O(log n) blocks) performed during the swapping, while each of the O(log n)
swapping steps spends O(log n) single-block I/Os on updating the links in par-
ent/child nodes. Thus, the total worst-case complexity is O(log2n) when mea-
sured in block I/Os as well as in seek operations.

4.3 Level-Contiguous Buffering

As we have mentioned before, the nodes at top levels are the most accessed
ones. It could appear that LRU/LFU replacement keeps the top-level nodes
in buffer for a long time, since top-level nodes are considered as the recently
(frequently) accessed ones. However, when a query is executed, the greatest
amount of node reads belongs to the leaf level and the ”valuable” top-level
nodes are replaced by the leaves, because these are temporarily the most recently
accessed ones.

Divided Buffer. Due to the obstacles caused by original LRU replacement in a
single buffer pool, we use a kind of LRU-T policy – a buffer logically divided in
two parts (see Figure 4b). The first part stores a user-defined number of top-level
nodes (the top-level buffer), while once a node is loaded into top-level buffer, it
will never be replaced. The second part behaves as an ordinary LRU-based buffer
for the rest of nodes not buffered by top-level buffer (the bottom-level buffer).

Buffering the Top Levels. The top-level buffer can be populated either incre-
mentally (by individual node requests) on an ordinary index, or by prefetching
certain volume of the level-ordered index file. The prefetching itself can be ac-
complished in two ways. We can prefetch a large portion of the index at the
beginning of index usage (bulk prefetching), so that the entire top-level buffer
is populated. Or, we can prefetch smaller (yet sufficiently large) portions at the
moment when a requested node is still not loaded in the top-level buffer (in-
cremental prefetching). While the bulk variant minimizes the query time over
many queries, the incremental one distributes the prefetch load among several
queries.

Construction of Tree-Based Indexes for Level-Contiguous Buffering Support 369

5 Experimental Results

To prove the benefits of level-contiguous storage layout, we have performed ex-
perimentation with the R-tree and the M-tree. In the former case, the test-
ing platform was a P4@3GHz, 1GB RAM, Maxtor OneTouch, Ultra ATA 133,
250GB@7200 rpm, 8MB cache, avg. seek<9.3ms, transfer rate 34 MB/sec. In
the latter case we used P4@3.6GHz, 1GB RAM, Seagate Barracuda, SATA,
200GB@7200 rpm, avg. seek<8ms, 8MB cache, transfer rate 65MB/s. Both plat-
forms were used with WinXP with disabled file-system cache (HDDs’ HW caches
were enabled for read), while both HDDs involved in tests were not system disks.
In addition to R-tree and M-tree, we have also performed the tests on sequential
file to set up a baseline, where for sequential query processing we have used a
buffer of equal size as in case of the competitive R/M-trees. Most of the tests
were executed for 100 different query objects and the results were averaged.

5.1 R-Tree Testbed

The first tests were aimed at indexing large synthetic multidimensional datasets
by the R-tree and its level-contiguous modification (denoted as LC index in
figures). There were 3 datasets generated, consisting of 3 · 106, 6 · 106, and 107

5-dimensional tuples. The tuples were distributed uniformly among 700, 800 and
1000 clusters, respectively. In Table 1 see the R-tree index characteristics.

Table 1. R-tree index statistics

Index size (4kB nodes): 160–511MB Data objects: 3,000,000–10,000,000
Number of tree levels: 6–10 Node capacity: 92 in inners, 169 in leaves
Total buffer memory: 16,4MB Number of nodes: 7,679–19,723 inners,

(3.2–10,3% of index size) 31,545–104,810 leaves
LC construction time: 44min notLC constr. time: 27min
(for 3,000,000 dataset) (for 3,000,000 dataset)

Sequential file size: 82–245MB Buffer for seq. file: 16,4MB (6.7–13,5%)

The number of disk accesses for window queries with increasing query selec-
tivity (number of objects in the answer) is presented in Figure 5a. The label
TopBuffer=x% denotes a bulk-prefetch index with size of top-level buffer equal
to x% of all inner nodes (i.e. TopBuffer=0% means no top-level buffering, while
TopBuffer=100% means all inner nodes can be buffered). The bottom-level buffer
is maintained in the remaining buffer memory. As we can see, the LC index with
TopBuffer=8% outperforms the classic R-tree (”notLC” indexes) as well as LC
indexes with different TopLevel values. Note that we have utilized the top-level
buffering also in the notLC indexes, however, here the top-level nodes cannot be
prefetched, they were accessed one-by-one. In Figure 5b see the realtimes for the
same situation. All the LC indexes show almost 100% speedup when compared
to notLC indexes. Surprisingly, the LC indexes outperform the notLC indexes
even in case that no top-level buffering and prefetching is employed. In Figure
5c the realtimes show behavior of LC/notLC indexes on the 10,000,000 dataset,
and in Figure 6a see the disk accesses on the 3,000,000 dataset.

370 T. Skopal, D. Hoksza, and J. Pokorný

Fig. 5. R-tree: Disk accesses and realtimes for increasing query selectivity

Fig. 6. R-tree: Disk accesses for increasing query selectivity and realtimes for typical
response of i-th query in a query batch

We have also tested the impact of top-level buffering/prefetching with respect
to the order of issued queries. In Figures 6b,c see the average realtime costs
for queries with selectivity = 2 (5, respectively), according to the order of the
query in a query sequence (or query batch). We can observe the benefits of LC
indexes do not decrease in time. In Figure 6b the top-level nodes of LC indexes
were prefetched incrementally, by 100 nodes, but as we can notice, there is no
significant difference between prefetching incrementally or in a bulk (Figure 6c).

5.2 M-Tree Testbed

Second, we have implemented level-contiguous M-tree [5] and performed exper-
iments with the Corel [9] feature vectors (65,615 images). The dataset consisted
of 262,460 8-dimensional vectors, constructed by merging 4 feature representa-
tions (color and layout histograms, textures, color moments). The L1 distance
was used to measure image dissimilarity. See M-tree characteristics in Table 2.

In Figure 7a see the realtimes of kNN queries, with respect to increasing k.
Although the classic notLC M-tree gets worse than the sequential file already
at k = 15 (or k = 20 in case of M-tree with top-level buffering), the LC indexes
remain efficient up to k = 50. The impact of query batch size is presented

Construction of Tree-Based Indexes for Level-Contiguous Buffering Support 371

Table 2. M-tree index statistics

Index size (2KB nodes): 29MB Data objects: 262,460 (8D vectors)
Number of tree levels: 5 (root + 4) Node capacity: 19 in inners, 29 in leaves
Total buffer memory: 2.9MB (10%) Number of nodes: 1188 inners, 13180 leaves
LC construction time: 3.5min notLC constr. time: 2.8min

Sequential file size: 9MB Buffer for seq. file: 0.9MB (10%)

Fig. 7. M-tree: Realtimes for kNN queries depending on k, size of query batch, and
proportion of TopBuffer

Fig. 8. Structure of node accesses per level for queries in R-tree and M-tree

in Figure 7b, where the LC indexes do not deteriorate when compared with
notLC indexes, they get even better. We have also examined the influence of
top-level buffer proportion in the total buffer memory, see Figure 7c. We can
observe that increasing volume of top-level buffer improves the realtimes quite
significantly.

Finally, in Figure 8 see the structure of accesses to nodes per level in the
tree-based indexes. Besides the root node, which must always be accessed, we
can see that the nodes at top levels are accessed indeed frequently, especially in
case of M-tree. Thus, the rationale for top-node buffering and level-contiguous
layout seem to be well-founded, and we can expect level-contiguous layout could
be beneficial also to other tree-based indexes, like X-tree, UB-tree and others.

In summary, the level-contiguous storage layout supports efficient utilization
of access patterns usual for tree-based indexes, so that they can exploit the
advantage of contiguous disk reading (like sequential search does it). This prop-
erty dramatically reduces the random-access I/O overhead spent at top tree
levels.

372 T. Skopal, D. Hoksza, and J. Pokorný

6 Conclusions

We have introduced level-contiguous storage layout for tree-based indexes. The
new layout allows to prefetch the frequently accessed nodes at the top levels
of any multidimensional or metric tree based on B+-tree. Moreover, we have
used divided schema for level buffering, where the prefetched top-level nodes
are stored separately and the replacement policies are not applied to them.
The experimental results show that the prefetching together with the top-level
buffering significantly improves the performance of query processing (up to 200%
speedup) at the costs of a moderate increase of construction costs (about 30%).

Acknowledgments. This research has been supported by GAČR 201/05/P036
and GAČR 201/06/0756 grants provided by the Czech Science Foundation.

References

1. C. Böhm, S. Berchtold, and D. Keim. Searching in High-Dimensional Spaces –
Index Structures for Improving the Performance of Multimedia Databases. ACM
Computing Surveys, 33(3):322–373, 2001.

2. T. Brinkhoff. A Robust and Self-tuning Page-Replacement Strategy for Spatial
Database Systems. In EDBT, pages 533–552, London, UK, 2002. Springer-Verlag.

3. S. D. Carson. A system for adaptive disk rearrangement. Software - Practice and
Experience (SPE), 20(3):225–242, 1990.

4. E. Chávez, G. Navarro, R. Baeza-Yates, and J. L. Marroqúın. Searching in metric
spaces. ACM Computing Surveys, 33(3):273–321, 2001.

5. P. Ciaccia, M. Patella, and P. Zezula. M-tree: An Efficient Access Method for
Similarity Search in Metric Spaces. In VLDB’97, pages 426–435, 1997.

6. A. Corral, M. Vassilakopoulos, and Y. Manolopoulos. The Impact of Buffering on
Closest Pairs Queries Using R-Trees. In ADBIS ’01: Proceedings of the 5th East
European Conference on Advances in Databases and Information Systems, pages
41–54, London, UK, 2001. Springer.

7. W. Effelsberg and T. Haerder. Principles of database buffer management. ACM
Transastions on Database Systems (TODS), 9(4):560–595, 1984.

8. V. Gaede and O. Günther. Multidimensional access methods. ACM Computing
Surveys, 30(2):170–231, 1998.

9. S. Hettich and S. Bay. The UCI KDD archive [http://kdd.ics.uci.edu], 1999.
10. H. Huang, W. Hung, and K. G. Shin. FS2: dynamic data replication in free disk

space for improving disk performance and energy consumption. In ACM SOSP
’05, pages 263–276, New York, NY, USA, 2005. ACM Press.

11. S. T. Leutenegger and M. A. Lopez. The Effect of Buffering on the Performance
of R-Trees. IEEE Transaction on Knowledge and Data Engineering, 12(1):33–44,
2000.

12. L. F. Mackert and G. M. Lohman. Index scans using a finite LRU buffer: a validated
I/O model. ACM Transactions on Database Systems (TODS), 14(3):401–424, 1989.

13. R. Ng, C.Faloutsos, and T. Sellis. Flexible buffer allocation based on marginal
gains. In ACM SIGMOD, pages 387–396. ACM Press, 1991.

14. E. J. O’Neil, P. E. O’Neil, and G. Weikum. The LRU-K page replacement algorithm
for database disk buffering. In ACM SIGMOD, pages 297–306, New York, NY,
USA, 1993. ACM Press.

Construction of Tree-Based Indexes for Level-Contiguous Buffering Support 373

15. R. Ramakrishnan and J. Gehrke. Database Management Systems, 3rd edition.
WCB/McGraw-Hill, 2003.

16. C. Ruemmler and J. Wilkes. Disk Shuffling, Technical Report HPL-CSP-91-30,
Hewlett-Packard Laboratories, 1991.

17. S. W. Schlosser, J. Schindler, S. Papadomanolakis, M. Shao, A. Ailamaki,
C. Faloutsos, and G. R. Granger. On multidimensional data and modern disks. In
4th USENIX Conference on File and Storage Technologies, pages 225–238, 2005.

18. T. Skopal, J. Pokorný, and V. Snášel. Nearest Neighbours Search using the PM-
tree. In DASFAA ’05, Beijing, China, pages 803–815. LNCS 3453, Springer, 2005.

19. J. S. Vitter. External memory algorithms and data structures: dealing with massive
data. ACM Computing Surveys, 33(2):209–271, 2001.

20. R. Weber, H.-J. Schek, and S. Blott. A quantitative analysis and performance
study for similarity-search methods in high-dimensional spaces. In VLDB ’98,
pages 194–205, San Francisco, CA, USA, 1998. Morgan Kaufmann Publishers Inc.

21. B. Yu and S. Kim. An efficient zoning technique for multi-dimensional access
methods. In TEAA 2006, LNCS 3888, Springer, pages 129–143, 2006.

	Introduction
	Paper Contributions

	Tree-Based Indexing
	Standard Buffering and Prefetching

	Related Work
	Buffering Techniques
	Dynamic Layout Rearrangement
	Physical Designs

	Level-Contiguous Indexing
	Index Traversal Analysis
	Level-Contiguous Index Storage Layout
	Level-Contiguous Buffering

	Experimental Results
	R-Tree Testbed
	M-Tree Testbed

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

