On fuzzy vs. metric similarity search in complex
databases

Alan Eckhardt?, Tomas Skopal', and Peter Vojtas!2

! Department of Software Engineering, Charles University,
2 Institute of Computer Science, Czech Academy of Science,
Prague, Czech Republic
{eckhardt,skopal,vojtas}@ksi.mff.cuni.cz,

Abstract. The task of similarity search is widely used in various ar-
eas of computing, including multimedia databases, data mining, bioin-
formatics, social networks, etc. For a long time, the database-oriented
applications of similarity search employed the definition of similarity re-
stricted to metric distances. Due to the metric postulates (reflexivity,
non-negativity, symmetry and triangle inequality), a metric similarity
allows to build a metric index above the database which can be subse-
quently used for efficient (fast) similarity search. On the other hand, the
metric postulates limit the domain experts (providers of the similarity
measure) in similarity modeling. In this paper we propose an alterna-
tive non-metric method of indexing for efficient similarity search. The
requirement on metric is replaced by the requirement on fuzzy similarity
satisfying the transitivity property with a tuneable fuzzy conjunctor. We
also show a duality between the fuzzy approach and the metric one.

1 Introduction

The task of similarity search is widely used in various areas of computing, in-
cluding multimedia databases, data mining, bioinformatics, social networks, etc.
In fact, retrieval of any semantically unstructured data entities requires a form
of an aggregated qualification that returns data relevant to a query. A popular
type of such a mechanism is similarity querying.

Unlike exact search (e.g., SQL SELECT used in relational databases), the
only practicable way how to process and retrieve the vast volumes of unstruc-
tured data is the content-based similarity search, i.e., we consider the real content
of each particular database object rather than its external annotation or meta-
data. For example, similarity search in a database of images considers the raw
image data (colors, shapes, textures, etc.), not keywords or other external an-
notation. Unlike traditional strong-typed rows in relational database tables or
XML with a schema, the unstructured objects (like images) have no universal
and/or unique syntactic and semantic structure. Hence, the most general and
feasible abstraction used in content-based retrieval is the query-by-ezample con-
cept, where the database objects are ranked according to similarity to a query
object (the example). Only such database objects are retrieved, which have been



ranked as sufficiently similar to the query object. The similarity measure returns
a real-valued similarity score for any two objects on the input.

Right at the beginning we must emphasize that this paper does not deal
with similarity modeling, i.e., with the domain-specific effectiveness of search.
That is, we do not propose new or improved similarity search paradigm or better
similarity measures which should improve the quality of query result. Instead, we
focus on the efficiency of the search, which is just a database-specific problem. In
simple words, the core problem could be formulated as follows. A domain expert
(e.g., expert in computer vision/graphics, or even an expert outside computer
science, like radiologist, geologist, biologist etc.) has a database of data entities
(e.g., images, time series, audio tracks, 3D models, etc.) and a domain-specific
similarity measure defined for that data (e.g., Smith-Waterman similarity for
matching protein sequences). When the database is sufficiently small and/or the
similarity measure is computationally cheap, the expert can use a naive way
of similarity search — a query example object is sequentially compared with
all the objects in the database, selecting the most similar object to the query.
However, a problem arises when the database is large or the similarity measure
is expensive (e.g., having super-linear time complexity with respect to the object
size). At that moment the expert needs a database-specific help that will preserve
his “perfect” domain-specific model and, at the same time, will provide more
efficient (faster) search. Hence, here we enter the context of our paper — efficient
similarity search. Basically, efficient similarity search means keeping the number
of similarity computations needed to answer a query as low as possible. In the
following section we briefly discuss the metric approach to efficient similarity
search and show its domain-specific restrictions.

In this paper, we focus on spaces that are not inherently metric, specifically
those where triangle inequality does not hold. Two methods, one based on space
transformation and the other on fuzzy logic operators, for making use of effi-
cient search even on these spaces, are described and compared. In Section 2 we
describe the basics about similarities and metric distances. An efficient query an-
swering based on pivots using metricity of data is described there. In Section 3
we describe the TriGen algorithm that transforms non-metric similarity function
so that it becomes metric, and this allows to search non-metric spaces as they
would be metric ones. Finally, Section 4 and 5 describe the actual contribution
of this paper — how the fuzzy logic can be used to see a non-metric space as a
metric one and how this view can be applied for efficient query answering. We
also study the duality between metric and fuzzy similarity approaches which can
lead to better understanding of the proposed fuzzy approach.

2 Metric approach

In the database domain, the models of similarity retrieval are based on sim-
plifying similarity space abstraction. Let a complex unstructured object O be
modelled by a model object o € U, where U is a model universe, which could be
a Cartesian product over attribute sets, a set of various structures (polygons,



graphs, other sets, etc.), string closure, sequence closure, etc. A database S is
then represented by a dataset S C U.

Definition 1 (similarity & dissimilarity measure)

Let s : UX U +— R be a similarity measure, where s(0;,0;) is considered as a
similarity score of objects O; and O;. In many cases it is more suitable to use a
dissimilarity measure ¢ : U x U — R equivalent to a similarity measure s(-,-) as
s(q,0:) > s(q,05) < 6(q,0;) < 6(g,05). A dissimilarity measure (also distance)
assigns a higher score to less similar objects, and vice versa. The pair D = (U, 9)
is called a dissimilarity space — a kind of topological space. O

2.1 Metric distances

The distance measures often satisfy some of the metric properties (Vo;, 05,0, € U):

5(0i,05) =0 < 0, = 0, reflexivity (1)
8(0s,05) > 0 & 0; # 0; non — negativity (2)
0(0i,05) =6(0j,0;) symmetry (3)
0(0i,05) +6(0j,05) > 6(0;,0r)  triangleinequality (4)

The reflezivity (1) permits the zero distance just for identical objects. Both
reflexivity and non-negativity (2) guarantee every two distinct objects are pos-
itively dissimilar. If § satisfies reflexivity, non-negativity and symmetry (3), we
call § a semimetric. Finally, if a semimetric § satisfies also the triangle inequality
(4), we call § a metric (or metric distance). The triangle inequality is a kind of
transitivity property; it says if 04, 0; and o;, o) are similar, then also o;, oy are
similar. If there is an upper bound d* such that ¢ : U x U — (0,d™), we call §
a bounded metric. In such case M = (U, ¢) is called a (bounded) metric space.

To complete the enumeration, we also distinguish pseudometrics (not satisfy-
ing the reflexivity), quasimetrics (not satisfying symmetry) and ultrametrics (a
stronger type of metric, where the triangle inequality is restricted to ultrametric
inequality — max{d(0;,0;),6(0j,01)} > 6(0;, 01)).

2.2 Traditional approach to efficient metric search

We base our comparison with traditional metric search [1,2]. It uses metric
distance (dissimilarity) for efficiently searching the answer to a query. A range
query is represented by an object ¢ € U and the maximal distance € > 0, while
it selects database objects within the distance € from ¢ (e.g. {0 : d(g,0) < €},
0 €S).

When the dataset is large (and/or intrinsically high-dimensional), there is a
preprocessing needed, so that subsequent frequent querying would not imply an
exhaustive sequential search (evaluation of |S| distance computations for each
query). As a simple yet representative metric access methods, the LAESA [3]
uses a set of pivots P C S by use of which an index is created. The distances
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Fig. 1. Using pivots with distances for metric search.

d(p, 0) from each pivot p € P to each object o in the dataset S are computed in
advance, forming a distance matrix of size |P| x |S| — the LAESA index.

Then, in the time of a query (g,¢€), the lower and the upper bounds on
the distances between the query and all database objects are computed using
these pivots and the index matrix without the need of any additional distance
computation 6(q, ). An example of estimation of both bounds is on Figure 1.
Three points o, p and ¢ represent an object from database, a pivot, and the
query object. Then the distance 6(g,0) between ¢ and o can be bounded by the
following formula:

16(q, p) — 0(p,0)| < 6(q,0) < d(q,p) +d(p,0) (5)

In the following text, we will refer to lower bound and upper bound. In case
of metric distance the lower bound is |§(q,p) — d(p, 0)| (i.e. the lowest possible
distance between two objects) and the upper bound is 6(q,p) + d(p,0) (i.e. the
highest possible distance). To be as effective as possible, the upper/lower bounds
should be as tight as possible. That is the reason we use multiple pivots — the
lower bound distance is then defined as maz,,ep{|6(q,p;) — d(pi,0)|}. Similarly,
the upper bound is defined as miny,cp{d(q,p;) + d(pi,0)}.

A range query can be efficiently processed using lower and upper bounds in
a filter-and-refine manner. Prior to the query processing, the distances d(q, p;)
are computed. In the filter step, each database object that has its lower bound
distance from ¢ larger than e is safely filtered out from further processing. Con-
versely, a database object that has its upper bound smaller than e is safely
confirmed as a part of the result. Note that in the refine step we need not to
compute any additional distance computation, as all the distances are either
stored in the matrix (§(p;, 0) distances) or computed prior to the query process-
ing (0(q,p;) distances). All the non-filtered /non-confirmed database objects are
sequentially processed in the refine step (implying thus a distance computation
for each object in the rest). When the number of pivots is large enough and/or
their distribution in space is “good”, the filter step could prune a substantial
part of the entire dataset, so the query processing becomes efficient.



2.3 Limitations of the metric approach

As the quantity /complexity of multimedia data grows, there is a need for more
complex similarity measuring. Here the metric model exhibits its drawbacks,
since the domain experts (being not computer scientists) are forced to “implant”
metric properties into their non-metric measures, which is often impossible.

(d)  d,*+d;<d,

Fig. 2. Objections against metric properties in similarity measuring: (a) reflexivity
(b) non-negativity (c) symmetry (d) triangle inequality

However, a non-metric similarity has also a qualitative justification. In par-
ticular, the reflexivity and non-negativity have been refuted by claiming that
different objects could be differently self-similar [4, 5]. For example, in Figure 2a
the leaf on a trunk can be viewed as positively self-dissimilar if we consider the
less similar parts of the objects (here the trunk and the leaf). Or, alternatively, in
Figure 2b the leaf-on-trunk and leaf could be treated as identical if we consider
the most similar parts of the objects (the leaves). The symmetry was questioned
by showing that a prototypical object can be less similar to an indistinct one
than vice versa [6,7]. In Figure 2c, the more prototypical ”Great Britain and
Ireland” is more distant to the ”Ireland alone” than vice versa. The triangle
inequality is the most attacked property. Some theories point out the similar-
ity has not to be transitive [8,9]. Demonstrated by the well-known example, a
man is similar to a centaur, the centaur is similar to a horse, but the man is
completely dissimilar to the horse (see Figure 2d).

3 Generalized metric search

To overcome the problem with restrictiveness of the metric space model (as
discussed in Section 2.3), the TriGen algorithm [10,11] allows to index databases
under non-metric similarity measures. Instead of full metric, the domain expert
is not forced to implant the triangle inequality into his dissimilarity measure
— it is accomplished automatically by the TriGen algorithm using a suitable
transformation of the original dissimilarity. Simply, the TriGen turns a non-
metric into a metric. We also emphasize this transformation does not alter the



effectiveness of the retrieval model, that is, the resulting metric is equivalent to
the original non-metric (with respect to the task of similarity search).

In particular, TriGen can non-trivially put more or less of the triangle in-
equality into any semimetric 0 (i.e., into any reflexive, non-negative, symmetric
distance), hence, keeping the database indexable by triangle inequality. Thus,
any semimetric distance can be turned into an equivalent full metric (allowing
exact search by metric access methods), or into a semimetric which satisfies the
triangle inequality to some user-defined extent (allowing approximate search).
For its functionality, the TriGen needs a (small) sample of the database objects.

The principle behind TriGen is a usage of triangle triplets and T-bases. A
triplet of numbers (a, b, c) is triangle triplet if a+b > ¢,b+c¢ > a,a+c¢ > b. If,
for a distance 4, all triplets (6(0;,0;),0(05,0k),6(0;,0%)) on all possible objects
0;, 04,05, are triangle triplets, then § satisfies the triangle inequality. Using trian-
gle triplets, we measure the T-error — a degree of triangle inequality violation,
computed as the proportion of non-triangle triplets in all examined distance
triplets.

A T-base f(x,w) is an increasing function (where f(0,w) = 0) which turns
a value z > 0 of an input (semi)metric ¢ into a value of a target (semi) metric
87, ie., 07(-,-) = f(6(-,-),w). Besides the input distance value x, the T-base
is parameterized also by a fixed weight w € (—o00,00) which determines how
concave or convex f should be. The higher w > 0, the more concave f, which
means also the lower T-error of any /. Conversely, the lower w < 0, the more
convex f and the higher T-error of any 6.

4 Fuzzy similarity approach

Although the TriGen algorithm freed the domain experts from manual imple-
mentation of the triangle inequality into their similarity measures, it still relied
on the metric space model. Hence, a dissimilarity was transformed into a metric,
and from that moment on the metric was used by the metric access method.
However, we must realize the metricity of a similarity measure is not a qualita-
tive goal, it is just database-specific requirement that enables efficient similarity
search. To satisfy triangle inequality, the TriGen algorithm actually “inflates”
the original non-metric space to become a metric one. However, in highly non-
metric spaces this inflation could be very high, leading to almost useless distance
distributions where each object in the database is very far from the rest of ob-
jects. Such a highly inflated space cannot be efficiently indexed because of its
high intrinsic dimensionality (a variant of the curse of dimensionality, for details
see [10]).

Fortunately, the metric postulates are surely not the only topological prop-
erties a similarity measure may satisfy. We can imagine infinitely many such
properties, however, only some of them could be empirically observed from the
data (from distance distribution, actually), and, furthermore, only some of them
are useful for an implementation of efficient similarity search. In this section
we propose such an alternative to the metric model — the fuzzy similarity &



fuzzy logic model. Our motivation for using fuzzy logic as a method for efficient
similarity search is that fuzzy logic has a great variety of operators available.
So, instead of transforming the similarity itself, fuzzy logic allows us to accom-
modate the operators + and — that work with similarities. Hence the inherent
properties of data space U remain untouched, only the handling with these val-
ues is modified. Note that this idea is complementary to the generalized metric
model used by TriGen. Instead of modifying the similarity measure in order to
fulfil the metric postulates, the fuzzy approach preserves the similarity measure
but modifies the formulas employed for efficient similarity search.

We present an idea of using fuzzy similarity that fulfils the transitivity prop-
erty with a tuneable fuzzy conjunctor. If triangle inequality of dissimilarity does
not hold, it is still possible that there is a fuzzy conjunctor such that transi-
tivity of similarity holds. We show that the usual indexing techniques based on
pivots and triangle inequality for range queries can be applied also in the fuzzy
similarity approach.

We stress that this paper has nothing to deal with fuzzy databases. Our
databases are not fuzzy. We have crisp data and queries are range and k-NN
queries. We have a domain expert similarity measure. Fuzzy theory is used here
only for obtaining alternative indexing. Connections to fuzzy databases are out
of scope of this paper; main emphasis is on indexing structures for efficient
retrieval.

4.1 Fuzzy similarity

Triangle inequality was substantial in the above mentioned metric model of
similarity search. Nevertheless, when observing real-world data, a non-metric
similarity measure can have some interesting properties [12]. In this section we
deal with similarities rather than distances (see Definition 1). We combine these
similarities using fuzzy logic connectives. The similarity s(o1,02) is the degree
of fuzzy predicate “o; and oo are the same”. As s is inverse to ¢, all inequalities
have to be reversed (> replaced by < and vice versa).

Metric triangle inequality is in the case of similarities replaced by transitivity,
where a generalized fuzzy conjunction T is used (implication I will be used, to0o).
Interested reader may read e.g. [13] for much more information about fuzzy
conjunctions. In the following text, we assume at least basic knowledge of fuzzy
conjunctions and implications.

Three basic fuzzy conjunctions and implications(Lukasiewicz, product and
Godel) are shown in the following table.

‘ Conjunction C’f ‘ Implication I f
Lukasiewicz|maz (0,2 +y — 1)| min(1,1 -z +y)
product xTxy min{y/z,1}, 1ifx =0
Godel min{z,y} yife>y, lifz <y

Note that all conjunctions above have different behaviour. For more flexible
way of this behaviour change, families of t-norms were defined using parameter \.



The advantage of using fuzzy logic is that it has been studied for a long time.
The result is that there is quite a large number of possible parametric families
of conjunctions, while every family is well studied (see [13]). Among others,
we note Frank, Schweizer-Sklar, Hamacher, Frank, Yager and Dombi, where A
ranges from —oo to +00 in most cases, but some families are defined on [0, 1] or
[—1,+00). The differences between families are in their characteristics and also
in the speed of computation.

In the rest of the paper, we will work with parametric family of Frank t-norms
defined bellow, but others may be also used.

Ty (z,y) = logx <1+W_/\1)_(A1y_1)> AN#£0,1,00 (6)
Ty (w,y) = min{x, y} (7)

Ty (z,y) =z *y (8)

TE (z,y) = maz(0,2 +y — 1) (9)

Using conjunction 7', we say that a two variable function s with 1 > s(01, 02) >
0 is T-transitive, if it fulfils the following property:

s(01,03) > T(s(01,02),5(02,03)) T — transitivity (10)

Let us note that the operator + is fixed in metric triangle inequality; there
is a flexible conjunction 7T in transitivity. The advantage is that there can be
many conjunctions T' for which the data satisfy the condition 10.

4.2 Fuzzy similarity applied in indexing and search

A data space is said to be a T-similarity space, if for all objects 01,092,035 € U
we have

s(01,03) > T(s(01,02), s(02,03))

To derive inequalities analogous to (5) we need residuation from fuzzy logic
(here Iy is a fuzzy implication which is residual to the conjunction T, see e.g.
[13] page 50).

As in the metric case, let us consider a query object ¢, a pivot p, and an
object o from the database. Let us assume T-transitivity of s. We know that
T(s(q,p),s(q,0)) < s(p,0) from T-transitivity. From residuation (11), we get

IT(S(qap)vs(pv 0)) > S(q,O) (12)
From the fact that T'(s(p,0), s(q,0)) < s(q,p), we get

Ir(s(p,0),5(q,p)) > s(q,0) (13)



Estimation of similarity of query and object o is

T(s(q,p),s(p,0)) < s(q,0) (14)
s(g,0) < min{Ir(s(q,p),s(p,0)), Ir(s(p,0),s(q,p))} (15)

Then a range query (e.g. {0 : s(q,0) > 1 — €} ) can be efficiently processed by
using these inequalities and s(g,p), in a similar way as lower /upper bounds are
used for metric-based similarity search.

Similarly to T-bases in TriGen, also here we solve a problem of finding the
right parameter A that fits the underlying similarity scores among objects in
database.

Tuning problem. Given data S and a similarity s. Find minimal A, A(S, s)
such that s is a Tf -transitive on S.

Example. Let us suppose that we have S = {01, 02,03} forming a non-metric
triplet d(o01,02) = 0.2, §(02,03) = 0.8 and 6(o1, 03) = 0.5. We transform distance
to similarity using formula s = 1/(1+6) and get s(01, 02) ~ 0.83, s(02,03) ~ 0.55
and s(o1, 03) ~ 0.66.

Let us try to find s(o01,03) using the other two similarities. Using (14) and
(15) we get different estimates on s(o01, 03) for different A.

Lower bound |Upper bound A
0.38 0.72 A=

TF(0.83,0.55)|1F(0.83,0.55)|\ € (1, 00)
0.46 0.66 A=1

TF(0.83,0.55)|1(0.83,0.55)| A € (0,1)
0.55 0.55 A=0

From the summary above, we can see that T-transitivity of s holds for A < 1.

5 Duality between metric and fuzzy similarity approach

There is an interesting phenomenon, when looking to definitions of metric and

fuzzy similarity. We see relating patterns in symmetry, reflexivity, non-negativity,

but most striking is the duality between triangle inequality and transitivity.
For a metric distance measure §, the triangle inequality reads as follows

6(01,03) < 6(01,02) + 6(02,03) (16)
For a similarity s and a t-norm T, the transitivity reads as follows
s(01,03) > T(s(01,02), $(02,03)) (17)

‘We omit now the problem that s is bounded and § has not to be.
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What we see is that + in (16) corresponds to T in (17). From the fuzzy point
of view + is a “sort of disjunction” (not considering unboundedness).

Inequality < in (16) corresponds to > in (17). Note that (17) is equivalent
to a fuzzy Datalog rule

s(01,092) & s(02,03) — s(01,03) (18)

where s is a binary predicate and & is a fuzzy conjunction with truth value
function being T (more on this see [14]).

Inverting inequality and switching from a disjunction to a conjunction points
to an order inverting duality between s and 4. From a pragmatic point of view,
this duality can be, e.g., s=1—6,0=1—s,0r s = H%d, 0= 1is or any order
inverting function with some reasonable properties.

From a fuzzy logic point of view such a duality points to the duality between
a t-norm and a t-conorm, or to deMorgan laws with an order inverting negation
(usually =(z) =1 — z).

From the point of view of range querying and an indexing scheme supporting
efficient range querying, we see a duality between inequalities used to restrict
range query when using pivot indexing (as described in Section 2.2).

In a metric space, restricting search if indexed via pivots is done using fol-
lowing inequalities

6(g,p) — 6(p,0)| < d(g,0)
and
6(g,0) < 6(q,p) +4(p,0)
Again in fuzzy similarity model the corresponding inequalities

min{Ir(s(q,p), s(p,0)), Ir(s(p,0),5(q,p))} = s(q,0) (19)

and

s(g,0) > T'(s(q,p),s(p,0)) (20)

can be also used for the restriction of range queries using pivot indexing.

Again, the duality between (5) and (20) resembles duality between triangle
inequality and transitivity, inverting order and replacing (a quasi disjunction) +
with a t-norm 7.

Much more interesting is the duality between (5) and (19). Again duality is
order inverting. The difference — corresponds to residuation (from fuzzy logic
point of view residuation to Lukasiewicz is expressed by —). Moreover absolute
value corresponds to min - choosing from two possibilities of computing residu-
ation. Moreover one of residual values I is not interesting when being equal to
1 and one of §(g,p) — d(p, 0) and §(p, 0) — d(q, p), namely the negative one is not
interesting. The duality is much more clear when rewriting the absolute value
to max:

maz{d(¢,p) — 4(p,0),0(p,0) — (¢, p)} < 4(q,0) (21)

Now everything is nicely dual: min to max, < to > and — to Ir. So it seems
that the duality is really deep.
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5.1 Consequences of duality

Now the crucial problem for us is: “Is it just a duality or does it bring (or at
least, is there a chance that it brings) an improvement?”. A detailed discussion
on this question is out of the scope of this paper. Nevertheless, we make some
initial observations.

Mapping metric to fuzzy similarity. We have already observed that (omit-
ting boundedness problem) any order inverting function mapping s to d and vice
versa is a candidate for the transformations between distance and similarity.

We have observed that using s =1 —§ (and § = 1 — s, resp.) does not make
any difference. The main reason is that it makes metric data a transitive set only
with respect to Lukasiewicz logic, because Lukasiewicz corresponds directly to
metric 4+ and —.

Using s = %H (and § = %Jrs) is more interesting. There are other possible
transformations between distance and similarity. The deeper inspection of them
is out of the scope of the paper.

We have tested two facts.

1. How is the similarity distribution histogram changing.
2. How does the A parameter behave, namely making the data set a T’ transi-
tive set.

Here it is also interesting to consider the percentage (amount of) data fulfill-
ing the transitivity. From the fuzzy logic point of view, we have some data
which violate the transitivity constraint given by the conjunction. Consider
an extreme t-norm: Tp(z,y) = x for y = 1, y for x = 1, and 0 otherwise.
When a triple of objects comes with similarities s(01,02) = 1, s(02,03) = 0.5,
s(01,03) = 0.2, there is no fuzzy t-norm where the following equation holds:
s(o1,03) = T(s(01,02),8(02,03)). These exceptions have to be handled sepa-
rately — fortunately, they can be detected beforehand.

6 Conclusion

We have presented a fuzzy similarity search model which enables efficient range
queries processing by use of pivots in non-metric spaces. This model is based on
transformation of operators rather than similarity, which may result in conser-
vation of properties of similarity.

The duality between distance and similarity has also been studied in depth,
providing a new insight into the similarity querying as a whole. This duality is
the key aspect when we try to use fuzzy logic in query processing.

6.1 Future work

It remains for future work to design algorithms for the tuning problem. It would
be also interesting to compare querying load for our approach and the one from
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[10,15] on different non-metric data. There is also a possibility to combine both
methods — to use TriGen as a preprocessing that transforms the similarity, and
then to deal with such a transformed data using fuzzy operators. Because fuzzy
conjunctions can be more flexible than +, the requirements on how drastically
the similarity is transformed by TriGen should be lower, thus making TriGen
faster and less destructive.

Acknowledgements. The work on this paper was supported by Czech projects
MSM 0021620838, 1ET 100300517, GACR, 201/09/H057 and GACR 201,/09/0683.
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