The Geometric Framework for Exact and
Similarity Querying XML Data

Michal Kratky!, Jaroslav Pokorny?, Tomé§ Skopal!, and Viclav Snagel!

! Department of Computer Science, VSB-Technical University of Ostrava, Czech
Republic
michal.kratky@vsb.cz, jaroslav.pokorny@ksi.ms.mff.cuni.cz
2 Department of Software Engineering, Charles University, Prague, Czech Republic
tomas.skopal@vsb.cz, vaclav.snaselQvsb.cz

Abstract. Using the terminology usual in databases, it is possible to
view XML as a language for data modeling. To retrieve XML data from
XML databases, several query languages have been proposed. The com-
mon feature of such languages is the use of regular path expressions.
They enable the user to navigate through arbitrary long paths in XML
data. If we considered a path content as a vector of path elements, we
would be able to model XML paths as points within a multidimensional
vector space. This paper introduces a geometric framework for index-
ing and querying XML data conceived in this way. In consequence, we
can use certain data structures for indexing multidimensional points (ob-
jects). We use the UB-tree for indexing the vector spaces and the M-tree
for indexing the metric spaces. The data structures for indexing the vec-
tor spaces lead rather to exact matching queries while the structures for
indexing the metric spaces allow us to provide the similarity queries.

1 Introduction

Using the terminology usual in databases, it is possible to view XML as a lan-
guage for data modelling. The notions like XML database and XML query lan-
guage logically extend this idea [6/I4]. So called native XML databases are im-
plemented in increasing extent. To reach a quality of conventional relational
databases, appropriate tools for manipulating have been designed. Among many
attempts to query languages over XML data, the language XQuery [15] seems
to be the leading approach now. The common feature of such languages is the
use of regular path expressions. They enable the user to navigate through arbi-
trary long paths in XML data. Obviously, in the next step to XML databases
some appropriate index structures have to be constructed for their data. Par-
ticularly, paths can be objects of indexing. In [9], we consider a path content
as a vector of path elements. Then we can model XML paths as points within
a multidimensional vector space. To speed-up access to such vectors, either vari-
ous multidimensional trees (such as the R*-tree [4], X-tree [5] or UB-tree [2]), or
metric trees can be used for their indexing (e.g., the M-tree [I] and the mvp-tree
[7]). Only few these data structures have been used for indexing XML data. In

M.H. Shafazand and A M. Tjoa (Eds.): EurAsia-ICT 2002, LNCS 2510, pp. 35-[46] 2002.
© Springer-Verlag Berlin Heidelberg 2002

36 M. Kratky et al.

[9], we used UB-trees for indexing path contents for more efficient exact querying
XML data. In this work we pursue a different, in some sense complementary, di-
rection that is based on M-trees. Metric trees only require the distance between
points to be a metric, thus they can be used even when no vector representa-
tion exists. We show how M-trees can be used for indexing XML paths and how
similarity querying XML data can be supported. Section 2 introduces to us the
geometric framework used in this paper. We shortly describe necessary basics of
vector and metric spaces. Section 3 contains the vector model for indexing and
querying XML data. The approach is based on the notion of path content. The
main contribution of the paper — a similarity indexing XML data with M-tree —
is contained in Section 4. We introduce briefly M-trees and propose a cumulated
metric based in the Hamming metric for indexing XML paths. The section is
completed with experimental evaluation of M-tree index applied on a real XML
data set. In conclusions we summarize the approach.

2 Geometric Framework

In our approach to indexing and querying XML data we exploit the proper-
ties of two geometric models. Both of these models treat the XML data as
objects/points within a space. In the first case within a vector space and in the
second case within a metric space. As we will see, each of the models is suitable
for a different purpose. We can say that they are complementary to each other.

There are two initial problems. First, we need to find a technique of transfor-
mation (so-called feature transformation) of the XML data into objects within
a vector or metric space. Second, we need to find the data structures for storage
and effective querying XML data according to the given model.

2.1 Vector Spaces

Vector model treats the XML data as points within multidimensional vector
space. This approach allows us to index values and even the structure of XML
documents and provides an ability of exact matching range queries. High vector
space dimension (greater than approx. 20) is unfortunately associated with curse
of dimensionality which has a negative influence on the range queries efficiency
(see [3]). A representative data structure for the vector model is the UB-tree
(see [2]). We discuss the vector model for indexing and querying XML data in
Section 3.

2.2 Metric Spaces

In a metric space there are generally neither the dimension nor the vectors.
However, in this paper we share the same representation of objects for the metric
spaces and for the vector spaces — i.e. multidimensional points. An important
difference is that each metric space has defined a metric — i.e. function measuring
a distance (or similarity) between every two objects. This function d must satisfy
following conditions:

The Geometric Framework for Exact and Similarity Querying XML Data 37

d(0;,0;) =0 (1)
d(0i,0;) >0 (0i # 05) (2)
d(0i, 05) = d(0j, 0;) 3)
d(0i, 0x) + d(0k, 0;) = d(0s, 0;) (4)

The presence of the metric prompts that the metric model provides an ability
of similarity queries. A representative data structure for the metric model is the
M-tree, see section 4.

3 The Vector Model for Indexing and Querying XML
Data

In our approach to indexing XML documents we model the XML data as points
within multidimensional vector space and thus we can use certain index struc-
tures for multidimensional indexing (for example UB-tree). This approach was
introduced in [9]. The data structures for indexing the vector spaces lead rather
to exact queries.

We distinguish between indexing XML data with and without “mixed con-
tent” in [9]. Here we show only the latter case. The example of DTD for doc-
uments without “mixed content” and an XML document valid w.r.t. the DTD
are in Figure [[h) and [b), respectively. We will not consider the attributes of
elements in our approach.

Ezample 1 (Querying XML document).

The example of the DTD and the valid XML document is in Figure [l The path
accounts/account/name denotes a query for obtaining all account customer
names from the document.

<?7xml version="1.0" 7>

<accounts>

<account><id>1234-8952</id>
<name>Thomas Newell</name></account>

<account><id>1234-4123</id>
<name>David Moore</name></account>

<account><id>5842-5321</id>
<name>David Moore</name></account>

</accounts>

a) b)

<IDOCTYPE accounts [
<!ELEMENT accounts (account*)>
<!ELEMENT account (id, name)>
<!ELEMENT id (#PCDATA)>
<!ELEMENT name (#PCDATA)>

1>

Fig. 1. a) An example of DTD for XML documents without “mixed contents”. b) An
example of valid XML document without “mixed contents”.

38 M. Kratky et al.

3.1 Indexing Path Contents and XML Structure

In our approach to indexing XML documents, we consider the n-dimensional
points representing path contents for XML structure indexing of all paths from
the root to all its leafs. The dimension n of the space is equal to the length of
the maximal path in XML-tree, i.e. the number of edges from the root to its
leaf element. To estimate the number n from DTD, we will consider only the
“nonrecursive” DTDs in our approach.

Definition 1 (path content).

Given a path e = e1/ea/ ... /ey, e € Xp, Xp is set of paths, the path content
is defined as a sequence of string values s = s1/s2/ ... /s, s € Xpc, Xpc is set
of path contents. Each s;, except sy, can be empty (e).

Because string values can have a different length, it is necessary to use a
procedure, which maps different strings into binary numbers of the same length.
We use the signatures in our approach (e.g. [10]). The main idea of signatures is
to reflect the data items into bit patterns and store them in a separate file which
acts as a filter to eliminate the non-qualifying data items for an information
request. We will denote the function generating signatures by sig(x), where x is
a variable of string type.

The XML document is represented by m points within n-dimensional space,
where m is the considered number of path contents. All these points are inserted
into any index structures for multidimensional indexing. All complete paths con-
tents are stored in other data structures. It is important to create binding be-
tween the elements of XML document having the same parent. We can create
this binding using the elements unique numbers in the point representing path
content for XML structure indexing. Of course, it is possible to index even paths

(see Section B2).

Ezample 2 (Transformation of XML data to n-dimensional points).

We will show the transformation of the XML document from [Ib) to the points
of multidimensional space. We see the space has n = 3. We determine the length
of the domains as 64b. This signature value is large enough for the signature s;.
But generally, there is not cause for domain cardinalities to be the same. The
cardinality of domain for signatures of #PCDATA and for unique numbers of
root elements can be different for example. The important role plays here the
analysis of DTD.

If we are browsing through document in Figure [[b), then the following path
contents are obtained: €/¢/1234-8952, ¢/¢/Thomas Newell, €/¢/1234-4123, ¢/
€/David Moore, €/¢/5842-5321 and ¢/¢/David Moore. It is necessary to group
these path contents according to the relationship to particular accounts and
account elements. Therefore we nest the unique numbers of accounts and
account elements into 1%¢ (2"? respectively) coordinate of points representing
path contents. The points representing path contents will be (0,0,sig("1234-
8952")), (0,0,sig("Thomas Newell")), (0, 1, sig("1234-4123")), (0, 1,
sig("David Moore")), (0, 2, sig("5842-5321")), and (0, 2, sig("David

The Geometric Framework for Exact and Similarity Querying XML Data 39

Moore")). The points in 3-dimensional space are depicted in Figure These
points are inserted into the indexing structure. If we index paths (see Section[3:2)),
then we will work with 4-dimensional space.

query block 1

query block 2

plains containing : -/(0, 2, sig("David Moore"))
different elements \ ; (0, 2, sig('5842-5321"))

account < ﬁ : ‘/(o, 1, sig("David Moore"))
s J 4 __—(0, 1, sig("1234-4123"))

~ t
5 P 7 TT—(0,0, sig(" Thomas Newell"))
g3l > (0, 0, sig("1234-8952"))
< g QS
E& P @
B~ dimension 1 & &
6\@ <
(accounts) @*

Fig. 2. The 3-dimensional space with indexed XML document without “mixed con-
tents”.

Ezample 8 (Querying XML document).

We show now how it is possible to query the XML document from Figure [b)
transformed to the points within multidimensional space by above mentioned
technique. Let as take the query accounts/account [name=’David Moore’], i.e.
we want to get all account elements for David Moore’s account. First we need
to transform this query to the range query. It means to find all the points from
Figure 3] that are contained by query block 1. It is necessary to determine the
coordinates of two points defining the query block. By means of range query we
get the points from the 3-dimensional space which represent the unique num-
bers of parent elements of name element with content David Moore. We get the
result set and if user will want to obtain the contents of child elements of any
account element, for example, then the query block like query block 2 from
Figure Bl is effected for their retrieval. To distinguish the points representing
the path contents for different paths it is necessary to index even the paths (see

Section B-2)).

3.2 Indexing Paths

The indexing XML data as it is proposed in Section Bl considers only a path
content. If the XML document is transformed to points of a space in this way,
the element tags are lost. If we consider the XML document from Figure [l then
we will be not able to distinguish the points representing the path contents for
paths accounts/account/id or accounts/account/name.

We consider a binary relation PPC [9] between paths and their path contents.
All points representing paths will be inserted to other index structure. Besides

40 M. Kratky et al.

the point coordinates and pointers to data structures containing the whole paths
we insert even the path unique numbers in another dimension of the space which
contains the path contents. In fact, the relation PPC' is built by adding other
dimension to the space which contains path contents, i.e. the dimension of space
will be n+ 1. It is hereby possible to index even the documents valid to different
DTD in one index structure in this way.

Ezample 4 (Indexing paths).

We get two different paths accounts/account/id and accounts/account/name
from the XML document in Figure[b). So we get two points (we get two paths)
representing paths in 3-dimensional space (paths contain three elements). These
points are inserted into other indexing structure. The point (sig("accounts"),
sig("account"),sig("id")) representing path accounts/account/id is in-
serted with unique number 0 and point representing path (sig("accounts"),
sig("account") ,sig("name")) with unique number 1. The points represent-
ing paths are in Figure Bl The points representing the path contents have last
coordinate equal to the unique number of the associated path.

We see the space to have n = 4 (one dimension will be for unique
numbers of paths). The gained path contents are in Example 2. Let as
take the path content e/e/1234-8952 and point representing the path con-
tents (0,0,sig("1234-8952")) for example. The path unique number of
path accounts/account/id from index structures which contain points rep-
resenting paths is append as fourth coordinate to the point. We get point
(0,0,si1g("1234-8952"),0) in this manner. The all six points gained by the
same way are inserted into index structure containing path contents.

point representig
accounts/account/name

|
|
|
point representig : g | — path
|

accounts/account/id 04
path T,
| e :
I i
/STTTETTTIT T
N / :
5E 7 H "
cs| L2 : ® @
o 3 & qﬁ(\
Es & &
T 7 dimension 1 S &
(accounts)

Fig. 3. The 3-dimensional space with points representing paths.

Ezample 5 (Querying XML document).

It is important to get by a point query the unique number of the desired path
from index structure containing paths. After that we get desired points by a range
query from the indexing structure containing path contents. It is necessary to

The Geometric Framework for Exact and Similarity Querying XML Data 41

work with four dimensions in the case of defined coordinates of points determin-
ing the query block.

4 Similarity Queries

Another aspect of indexing XML data, in addition to the structural indexing, is
the similarity indexing. In such an XML index we can query for XML objects
that are similar to a query object.

Properties of metric spaces, where the metric represents the notion of similar-
ity, are suitable formal basis for indexing similarities inside XML data. Following
subsection describes a data structure M-tree which allows to index general ob-
jects of metric spaces.

4.1 M-Tree

Data structure M-tree (introduced in [1] and closely discussed in [13]) was devel-
oped for indexing and querying objects within metric spaces. Its main charac-
teristic is that M-tree allows to process similarity queries. It is, in fact, dynamic,
persistent, paged and balanced tree like e.g. the B-tree. The difference is in the
semantics of the nodes. Indexed objects themselves, i.e. ground objects, lie in the
leaf nodes. The inner nodes contain routing objects that represent a hierarchy of
specific metric regions.

— The record of a routing object O, in inner node contains:
1. a ground object O,. (its significant properties respectively). This ground
object determines the center of the metric region.
2. pointer ptr(T(O,)) to its own subtree T'(O,.) — i.e. covering tree
3. value r(O,.) — covering radius of the metric region
4. value d(O,, P(O,)) — distance to the parent routing object P(O,)
Notes:
The ground object in the routing object (inner node) is one of the ground
objects remaining in the child leaf nodes of T'(0,.). The distance function d
is a metric of a metric space.
— The record of a ground object looks similarly, but it also contains 0id(O;) —
identifier of the whole object (stored outside of M-tree) — instead of covering
tree and covering radius.

Hierarchy of M-tree is based on partition of the metric space onto metric
subregions which do not have to be strictly disjunct. This regions are formed by
the routing objects O, where the child routing objects (their regions respectively)
and the child ground objects of its covering tree T'(O,.) are within the distance
r(O;) to the center of O,. Formally,

VO, € T(0,), d(O,,0;) <r(0y)

The precalculated distance value d(O,., P(O,)) to the parent object along
with the covering radius r(O,.) allow to eliminate the untouched regions from the
process of an operation on M-tree (i.e. searching, insertion, deletion). Structure
of the M-tree and the routing object relations are depicted in figure Hl

42 M. Kratky et al.

| 0,0) /L |
‘ ofro)|do.PoN| || | | B8 ‘
‘ptr(T(O,)) \
lo] | o | [
q
a) b)

Fig. 4. (a) Nodes of M-tree contain object records. (b) Routing objects — metric regions.

Searching the M-tree. We must take into account two factors of complexity
when we make some operation on the M-tree. The first one is the number of
accesses to disk pages (number of regions being searched respectively) and the
second one (specifically to M-tree) is the number of distance calculations. The
goal is to minimize both these factors.

We can meet two kinds of queries by metric trees. The range queries search
for all the objects within certain distance to the query object. The k-nearest
neighbours queries search for the first k£ nearest objects to the query object. In
both cases we can see a tendency to order the metric space — relative to the
query object.

Managing the regions. The crucial factor of the M-tree’s cost-effectiveness is
a “good layout” of the metric regions stored within the M-tree. As we have said
earlier, the regions can overlap another ones. This property arises from the M-
tree’s universality which is caused due to specifying only a metric of the metric
space. High “overlap rate” leads, in the worst case, to sequential search —i.e. to
linear complexity.

With the design of the M-tree there were also developed some techniques
for minimizing this “overlap rate”. The first technique is “embedded” into the
phase of a tree node(page) splitting and consists of a choice of split policy and
a mechanism of creating the best routing object — promoting phase. This is
the dynamic technique. The second technique, more efficient, is the bulk loading
algorithm. This algorithm takes at the beginning the whole collection of objects
and loads all of them into the empty M-tree at once. The loading is based on
preliminary clustering where prospective regions of objects are created at once.
This is the static method.

Summary. M-tree is balanced, highly parametrizable data structure making
possible to index objects of a metric space. The M-tree operations are performed
with approximately logarithmic time complexity (if well build) but the M-tree
doesn’t represent a complete linear order like other trees (B-tree, UB-tree, ...)
do. On the other side, M-tree is more general than the Spatial Access Methods
based on vector spaces.

The Geometric Framework for Exact and Similarity Querying XML Data 43

4.2 Indexing XML Data with M-Tree

If we consider XML paths as simple objects, we can index such objects into a met-
ric space or actually into the M-tree. For example, path BOOK/AUTHOR/SURNAME
is object to store within M-tree. All paths in given XML document(s)
can be transformed in this way into a collection of this simple XML ob-
jects. XML objects can also have assigned to every element tag its ele-
ment content, which will increase the number of unique objects. For exam-
ple, BOOK{technical}/AUTHOR{writer}/ SURNAME{Walsh}, but furthermore, for
simplicity, we will ignore the possibility of any content.

XML object o; (path) can be represented as a variable vector of strings
(element tags), o; = (o}, 02, -, o).
Choosing metric for paths. Metric chosen for XML indexing must take as
arguments two XML objects (paths) and calculate distance between them. We
propose as an example cumulated metric which is defined as:

maa(li ;)

D(Oiaoj) = Z d(Of,O?)

k=1

where d(z,y) is an ordinary metric (e.g. Hamming metric) between two strings.

Hamming metric [8] adds up the mismatching pairs of characters where the
first character of a pair is located on a position in the first string while the second
character is on the same position in the second string. Formally,

min(|zl,ly[)

di(z,y) = Y sgn(l=li] = ylal) + llz| - |yl

i=1
For example, dy (AUTHORS, AUTOMATON) =0+04+0+14+1+14+1+2=06

Ezample 6.
Let d be the Hamming metric. Then
D(BOOK/AUTHOR/SURNAME, BOOK/AUTHOR/FIRSTNAME) =04+ 0 + 8 =8
Let d be the discrete (yes/no) metric. Then
D(BOOK/PREFACE/TITLE, BOOK/BOOKINFO/TITLE) = 0 + 1 + 0 = 1

Note: In this section, the paths used in examples are generated according to
the DocBook DTD, see [12].

Processing queries. We have defined objects of metric space (XML paths) as
well as metric (cumulated metric) thus we have accomplished the requirements
for indexing with the M-tree.

We can distinguish two types of queries:

1. similarity queries. An object o; in query result is within some distance r
(query radius) to the query object oy, i.e. the M-tree is traversed with con-
dition D(og4,0;) < r. This kind of query allows to obtain the similar XML
paths.

44 M. Kratky et al.

Ezample 7 (cumulated Hamming metric).

Query object = BOOK/PART/CHAPTER/PARA/ACRONYM, r = 6

Query result = {BOOK/PART/CHAPTER/PARA/ACRONYM (distance 0)
BOOK/PART/CHAPTER/PARA/SCREEN (distance 4)
BOOK/PART/CHAPTER/TITLE/ACRONYM (distance 5)
BOOK/PART/CHAPTER/PARA/FILENAME (distance 6) }

2. exact matching queries. An object o; in query result must exactly match the
query object o4, i.e. the M-tree is traversed with the condition D(o4,0;) = 0.
This is the special case of similarity query with r = 0 — no differences are
allowed.

Notes:

— The query object is not expressed by any query language, its structure is the
same as the structure of any ground object.

— The syntax of query object can be extended with keyword “*”, where using
this keyword on the k-th coordinate of object vector brings evaluation of
d(o’;,of) always as 0 (match).

Example: D(BDOK/AUTHOR/*, BOOK/AUTHOR/FIRSTNAME) =0+ 0 4+ 0 = 0.
This extension allows to treat the exact matching queries as range queries.

— The objects in query result give only the information about existence of
such paths in XML tree but the objects cannot tell the exact location. This
lack of “context” can be removed with additional property of XML object
— unique identifier of the last path element pointing into an external data
structure (e.g. the source XML tree or UB-tree index). This improvement
makes possible the consequential navigation in the external XML tree.

4.3 Testing with M-Tree

We have performed particular tests with M-tree — XML path indexing and
XML similarity queries. XML data we have indexed was a XML file con-
taining the documentation to DocBook. The size of this file was about 3MB.

In the first phase, we have transformed the

whole file into collection of XML objects (unique Table 1. M-tree statistics

[Level [Pages count[Avg. radius|

paths) — 972 unique paths were extracted. Second, 0 (rool) 3 207.33
we have inserted all of these objects one-by-one 5 o b
into the M-tree. Page size of the M-tree was 1kB H 10 12175
and cumulated Hamming metric was chosen. Each 5 34 85.18
object (path vector) of the M-tree was aligned on g o oo
size of 256 bytes. 8 141 37.14
X) 9 233 22.95

After the indexing phase, the M-tree has ac- 10 376 13.12

11 (leafs) 590 6.01

quired following statistics: pages(nodes) count:
1568, leafs count: 590. Table 1 shows for each level
of the M-tree its pages count and average radius of all routing objects(regions)
within the level.

Furthermore, disk access costs test was performed. A series of queries was
produced by specifying the query object as:

The Geometric Framework for Exact and Similarity Querying XML Data 45
("BOOK/PART/CHAPTER/SECT1/SECT2/PARA/ACRONYM") and by increasing the

query radius from r = 0 (exact matching query) to r = 32. The results are
shown in figure [Bl

1000

900

800

600

disk access costs

500

0 5 10 15 20 25 30 35
query radius

Fig. 5. Results of disk access costs test. The numbers below particular results are the
total numbers of objects returned in particular query result (objects similar to the
query object within the current radius).

5 Conclusions and Outlook

In this paper we have shown that XML data can be modelled in multidimensional
vector spaces and in metric spaces. We use the UB-tree for indexing the vector
spaces and the M-tree for indexing metric the metric spaces in our approach of in-
dexing XML data. The data structures for indexing the vector spaces lead rather
to the exact queries while structures for indexing of the metric spaces allow us
to provide similarity queries. In the course of writing this paper some interesting
questions appeared, e.g. new metric designs or different feature transformations.
Their solution will be the topic of our future work. Furthermore, presented data
structures are independent and our intention is to integrate them into a sin-
gle hybrid data structure providing a possibility of XML data storage and also
efficient exact and similarity querying.

Acknowledgments. This research was supported in part by GACR grant
201/00/1031.

46

M. Kratky et al.

References

10.

11.

12.

13.

14.

15.

. Ciaccia P, Pattela M., Zezula P.: M-tree: An Efficient Access Method for Similarity

Search in Metric Spaces. Proc. 23rd Athens Intern. Conf. on VLDB (1997), 426—
435.

. Bayer R.: The Universal B-Tree for multidimensional indexing: General Con-

cepts. In: Proc. Of World-Wide Computing and its Applications 97 (WWCA 97).
Tsukuba, Japan, 1997.

. Boéhm C., Berchtold S., Keim D.A.: Searching in High-dimensional Spaces — Index

Structures for Improving the Performance of Multimedia Databases. ACM, 2002

. Beckmann, N., Kriegel, H.-P., Schneider, R., Seeger, B.: The R*-tree: An efficient

and robust access method for points and rectangles. In: Sigmod’90, Atlantic City,
NY, 1990, pp. 322-331.

. Brechtold, S., Keim, A., Kriegel, H.-P.: The X-tree: An index structure for high-

dimensional data. In: Proc. of 22nd Intern. Conference on VLDB’96, Bombay,
India, 1996, pp. 28-39.

. Bourret, R.: XML and Databases.

http://www.rpbourret.com/xml/ XMLAndDatabases.htm. 2001.

. Bozkaya, T., Ozsoyoglu, M.: Distance-based indexing for high-dimensional metric

spaces. In: Sigmod ’97, Tuscon, AZ, 1997, pp. 357-368.

. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addison Wesley,

New York, 1999.

. Kratky M., Pokorny, J., Snasel V.: Indexing XML data with UB-trees. ADBIS

2002, Bratislava, Slovakia, accepted.

Lee, D.L., Kim, Y.M., Patel, G.: Efficient Signature File Methods for Text Re-
trieval., Knowledge and Data Engineering, Vol. 7, No. 3, 1995, pp. 423-435.
Markl, V.: Mistral: Processing Relational Queries using a Multidimensional Access
Technique, http://mistral.in.tum.de/results/ publications/Mar99.pdf, 1999
The DocBook open standard, Organization for the Advancement of Structured In-
formation Standards (OASIS), 2002,
http://www.oasis-open.org/committees/docbook

M. Patella: Similarity Search in Multimedia Databases. Dipartmento di Elet-
tronica Informatica e Sistemistica, Bologna 1999 http://www-db.deis.unibo.it/
“patella/MMindex.html

Pokorny, J.: XML: a challenge for databases?, Chap. 13 In: Contemporary Trends
in Systems Development (Eds.: Maung K. Sein), Kluwer Academic Publishers,
Boston, 2001, pp. 147-164.

XQuery 1.0: An XML Query Language. W3C Working Draft 20 December 2001,
http://www.w3.org/TR/2001/ WD-xquery-20011220/

	Introduction
	Geometric Framework
	Vector Spaces
	Metric Spaces

	The Vector Model for Indexing and Querying XML Data
	Indexing Path Contents and XML Structure
	Indexing Paths

	Similarity Queries
	M-Tree
	Indexing XML Data with M-Tree
	Testing with M-Tree

	Conclusions and Outlook

