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Jiří Novák, Tomáš Skopal, David Hoksza and Jakub Lokoč
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ABSTRACT
In biological applications, the tandem mass spectrometry is
a widely used method for determining protein and peptide
sequences from an ”in vitro” sample. The sequences are not
determined directly, but they must be interpreted from the
mass spectra, which is the output of the mass spectrome-
ter. This work is focused on a similarity-search approach to
mass spectra interpretation, where the parametrized Haus-
dorff distance (dHP ) is used as the similarity. In order to
provide an efficient similarity search under dHP , the metric
access methods and the TriGen algorithm (controlling the
metricity of dHP ) are employed. We show that similarity
search using dHP exhibits better correctness of peptide mass
spectra interpretation than the cosine similarity commonly
mentioned in mass spectrometry literature. Moreover, the
search model using the dHP distance could be extended to
support chemical modifications in the query mass spectra,
which is typically a problem when the cosine similarity is
used. Our approach can be utilized as a coarse filter by any
other database approach for mass spectra interpretation.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing—indexing methods; J.3 [Life and
Medical Sciences]: Biology and Genetics

General Terms
Design, Performance

1. INTRODUCTION
Proteins – organic molecules made of amino acids – are

the basis of all living organisms. The proteins are essential
for construction of cells and for their proper functioning [22].
For bioinformatic purposes (i.e., in computerized biology),
a protein can be understood as a linear sequence over 20-
letter subset of the English alphabet1, where each letter cor-

1The letters B,J,O,U,X and Z are omitted.
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responds to an amino acid. A protein sequence must be
determined from an ”in vitro” protein sample, while tan-
dem mass spectrometry is a very fast and popular method
for this task. The proteins in the sample are split by en-
zymes into shorter pieces called peptides, and these are sub-
sequently analyzed by the tandem mass spectrometer [8].
However, instead of direct production of the desired peptide
sequences, the spectrometer outputs a set of experimental
mass spectra2 that have to be interpreted as peptide se-
quences some other way. In particular, the interpretation of
an experimental spectrum may be accomplished by means
of similarity search.

In order to interpret an experimental spectrum, a data-
base P of known protein sequences (e.g., MSDB [17]) could
be employed. The peptide sequences and their hypotheti-
cal spectra are generated from the database P , forming a
database S of mass spectra. Then, the experimental spec-
trum is used as a query object q and the database S is
searched for the nearest neighbor spectrum of q (the most
similar spectrum from S). The experimental spectrum is
then interpreted as a peptide sequence corresponding to the
spectrum found as the nearest neighbor. As functions used
to evaluate the similarity between two spectra, variations of
the cosine similarity are popular.

1.1 Paper Contribution
We present the non-metric parameterized Hausdorff dis-

tance dHP , which exhibits better correctness of mass spectra
interpretation than the cosine similarity does. Moreover, we
propose a technique for efficient search in a database of mass
spectra indexed under dHP , where for indexing we employ
the metric access methods (MAMs). Since dHP is a non-
metric distance, the MAMs cannot be used directly, so prior
to indexing we utilize the TriGen algorithm to control the
metricity of dHP . Among the number of MAMs, we have
chosen the M-tree and the Pivot tables in our study. We
also show that utilization of cosine similarity for the task of
peptide mass spectra interpretation using MAMs is limited.

2. RELATED WORK
We briefly describe the structure of data captured by the

mass spectrometer and two basic ways commonly used for
mass spectra interpretation. The spectra may be interpreted
directly using graph algorithms or by the search in a data-
base of protein sequences.

2Each spectrum in the set corresponds to one peptide.



2.1 Mass Spectrometry Fundamentals
The mass spectrum is a histogram of peaks corresponding

to fragment ions (Fig. 1). A peak is represented by a pair(
m
z
, I
)
, where m

z
is the ratio of mass and charge, and I is

the intensity of a fragment ion occurrence. The charge is
supposed for our purposes z = 1, so the ratios m

z
are equal

to the mass m of fragment ions in Daltons3. The precursor
mass mp (mass of peptide before splitting) and charge zp are
also provided as an additional information for each peptide
spectrum captured by the spectrometer.

Figure 1: An example of a mass spectrum.

In a mass spectrum, there are several types of fragment
ions that are the most important for a correct interpreta-
tion. The most frequent types of fragment ions with well
predictable structure are y-ions and b-ions4. Each type of
fragment ions forms a ion series, e.g., y-ions series or b-ions
series (Fig. 1). The completeness of y-ions and b-ions se-
ries is crucial for correct spectra interpretation, because the
mass difference between two neighboring peaks in one series,
e.g., yi and yi+1 corresponds to a mass of an amino acid.

Often, many of the y-ions or b-ions may never arise in the
spectrometer and thus the number of missing y-ions and b-
ions is too high to correct mass spectra interpretation. In
fact, more than 85% of spectra captured by the spectrometer
cannot be interpreted neither by an algorithm nor manually.
However, there are more factors making the interpretation
complex. Up to 80% of peaks in an experimental spectrum
may correspond to fragment ions with very complicated or
unpredictable chemical structure and they complicate the
recognition of y-ions and b-ions. Such peaks are regarded as
noise.

The interpretation of spectra may be also complicated due
to chemical modifications of amino acids, because mass of
amino acids are changed in that case and thus peaks are
shifted. This may happen, e.g., during a sample prepara-
tion for mass analysis or in the spectrometer. The database
UNIMOD [31] gathers discovered protein modifications for
mass spectrometry. At the time of writing this paper, there
were about 650 known modifications.

2.2 Graph-based Approaches
The mass spectra may be interpreted directly using graph

algorithms (without any reference database). Such approa-
ches are called de novo peptide sequencing [4] and they are
based on detection of y-ions and b-ions series. A graph is

3Dalton (Da) is a unit of the relative atom mass.
4In fact, more kinds of fragment ions with predictable struc-
ture may arise in the spectrometer, but many of them occur
very rarely.

constructed from an experimental spectrum, where a node
corresponds to a peak (its mass m) and an edge is ranked
with the mass difference between two nodes. The graph
is traversed, while paths where weights of edges best fit
the mass of amino acids are selected. A problem is that
many paths and thus many peptide sequences can be as-
signed to an experimental spectrum, so the correctness of
interpretation of such approaches is low (about 30%). This
is due to noise, chemical modifications and the fact that
some of y-ions or b-ions may never arise in the spectrome-
ter. Some tools for mass spectra interpretation based on the
de novo approach are, e.g., PEAKS [15], PepNovo [6] and
Lutefisk [14].

2.3 Similarity Search Approaches
The best way how the mass spectra may be interpreted

is to search a database of already known or predicted pep-
tide (protein, respectively) sequences [11, 26]. There are hy-
pothetical mass spectra generated from peptide sequences,
and an algorithm (mostly sequential) is used for similar-
ity comparison of an experimental (query) spectrum with
the hypothetical (database) spectra. The only difference is
that fragment ions intensities cannot be generated from pep-
tide sequences. The basic similarity functions for compari-
son of the experimental spectrum with hypothetical spectra
generated from the database of protein sequences are, e.g.,
SPC [9] (shared peak count; in fact, the Hamming distance
on boolean vectors, see Fig. 3), spectral alignment [23] (kind
of dynamic programming distance on boolean vectors) [23],
SEQUEST-like scoring [27]. The most common tools for
mass spectra interpretation based on search in the database
are SEQUEST [27], MASCOT [16], ProteinProspector [24],
OMSSA [7], etc.

2.3.1 Metric Indexing
Since protein sequence databases grow rapidly and a se-

quential scan of the whole database becomes slow and inef-
ficient, there is a need for utilization of index structures. A
few methods for mass spectra interpretation based on metric
access methods were proposed. Metric space approaches are
usually based on variants of the cosine similarity (Sec. 4.1).
One of them uses locality sensitive hashing to preprocess the
database [5], another uses the MVP-tree [25]. The latter ap-
proach defines two alternatives of the cosine similarity. The
first is called the fuzzy cosine distance, while the other is
called the tandem cosine distance.

3. METRIC ACCESS METHODS
Since our approach to mass spectra interpretation is based

on metric similarity search, we need to briefly summarize the
main points concerning metric access methods (MAMs) [32]
and their applicability. The MAMs were designed for effi-
cient search in databases where a metric distance d(x, y) is
employed as the similarity function. The metric distance
is a function that satisfies postulates of identity, symme-
try, non-negativity and triangle inequality [32]. The met-
ric postulates (especially the triangle inequality) are crucial
for MAMs, in order to correctly organize database objects
within metric regions and to prune irrelevant regions while
searching. The MAMs usually support range and k-NN (k-
nearest neighbor) queries. Among the vast number of MAMs
developed so far, in our approach we have utilized the M-tree
and Pivot tables.



3.1 M-tree
The M-tree [3] is a dynamic (updatable) index structure

that provides good performance in secondary memory, i.e.,
in database environments. The M-tree index is a hierarchical
structure, where some of the data objects are selected as
centers (also called local pivots) of ball-shaped regions, while
the remaining objects are partitioned among the regions in
order to build up a balanced and compact hierarchy of data
regions. When performing a query, the M-tree is traversed
from the root, while the subtrees the regions of which overlap
the query region must be searched as well, recursively.

3.2 Pivot Tables
A simple but efficient solution to similarity search repre-

sent methods called pivot tables (or distance matrix meth-
ods) [18]. In general, a set of l objects (so-called pivots) is
selected from the database, while for every database object
a l-dimensional vector of distances to the pivots is created.
The vectors belonging to the database objects then form a
distance matrix – the pivot table. When performing a kNN
query, a distance vector for the query object q is determined
the same way as for a database object. Then, the query
is processed on the pivot table such that database object
vectors which do not belong to the already retrieved kNN
candidates are filtered out from further processing.

3.3 Intrinsic Dimensionality
The requirement on metric postulates is crucial for MAMs

to index the database, however, the postulates alone do not
guarantee an efficient query processing. The efficiency limits
of any MAM also heavily depend on the distance distribution
in the database S, and can be formalized by the concept of

intrinsic dimensionality ρ(S, d) = µ2

2σ2 , where µ is the mean

and the σ2 is the variance of the distance distribution [2]. In
other words, the intrinsic dimensionality is low if the data
form tight clusters. Hence, the database can be efficiently
searched by a MAM, because a query overlaps only a small
number of clusters. On the other hand, a high intrinsic
dimensionality (say, ρ > 10) indicates most of the data ob-
jects are more or less equally far from each other. Hence,
in intrinsically high-dimensional database there do not exist
clusters, while the search deteriorates to sequential search.

3.4 Non-metric and Approximate Search
The applicability of MAMs can be extended beyond the

metric space model, so that MAMs could be used also for
non-metric and/or approximate similarity search. In partic-
ular, given a semi-metric distance d(x, y) (a metric distance
violating the triangle inequality) and a database, the trian-
gle inequality can be added to the semi-metric, so that we
obtain a metric modification f(d(x, y)) that could be used
for similarity search instead. Hence, the MAMs can be cor-
rectly used to index and search the database using the met-
ric modification. Moreover, the enforcement of the triangle
inequality could be only partial, where the ”partial” metric
distance could be used for approximate search by MAMs.

3.4.1 TriGen Algorithm
The TriGen algorithm [28] was proposed to keep a user-

controlled amount of triangle inequality in a semi-metric dis-
tance. The idea is based on utilization of a T-modifier, which
is either a concave or a convex increasing function f , such
that f(0)=0. A concave function f , when applied on a semi-

metric, increases the number of triplets 〈f(d(x, y)), f(d(y, z)),
f(d(x, z))〉 that form a triangle (so-called triangle triplets),
and so improves the triangle inequality fulfillment of f(d).
On the other hand, a convex T-modifier f does the opposite
– it decreases the number of triangle triplets. Simultane-
ously, a concave modification f(d) increases the intrinsic
dimensionality, as it inhibits the differences between dis-
tances. Conversely, a convex modification f(d) decreases
the intrinsic dimensionality, as it magnifies the differences
between distances. Formally, the proportion of triplets that
are NOT triangular in a sample of examined triplets is called
the T-error . Given a user-defined T-error tolerance, the Tri-
Gen algorithm was designed to find a T-modifier for which
the intrinsic dimensionality ρ(S, f(d)) is minimized, while
the T-error does not exceed the tolerance.

Figure 2: The FP-base and an RBQ(a,b)-base.

In order to automate the search for the optimal T-modifier,
the TriGen works with so-called T-bases f(v, w). A T-base
is a T-modifier with an additional parameter w, that aims to
control to convexity or concavity of f . For w > 0, the f gets
more concave, for w < 0 it gets more convex, and for w = 0
we get the identity f(v, 0) = v. A simple T-base used by
TriGen is the Fractional-Power base (FP-base) (1), while a
more sophisticated T-base is the Rational-Bézier-Quadratic
base (RBQ-base) (2), see Fig. 2. Actually, the TriGen uses
multiple RBQ-bases – each for a particular pair (a, b).

FP(v, w) =

{
v

1
1+w for w > 0
v1−w for w ≤ 0

(1)

RBQ(a,b)(v, w) =

{
rbq(v, w, a, b) for w > 0
rbq(v,−w, b, a) for w ≤ 0

(2)

For description of the rbq function, see [28].
The modified distance f(d) determined by TriGen can be

then employed by any MAM for an exact but slower (T-error
tolerance is zero, so ρ gets higher) or only an approximate
but fast (T-error tolerance is positive, so ρ gets smaller)
similarity search (metric or non-metric).

4. SIMILARITIES FOR MASS SPECTRA
Although the TriGen algorithm (Sec. 3.4.1) allows to use

MAMs also with non-metric distances, it does not guaran-
tee that a particular non-metric distance modified into met-
ric will be suitable for indexing by MAMs. In particular, a
highly non-metric distance (exhibiting high T-error) is mod-
ified by TriGen very aggressively to achieve zero T-error,
which means the resulting metric will imply high intrinsic di-
mensionality of the database, thus making it not indexable.



This could be the case of non-metric distances mentioned
in Section 2.3, where the T-error and intrinsic dimensional-
ity was not observed as an important factor for indexability.
Hence, when designing a new similarity that has to be in-
dexable by MAMs, the attention should be given not only
to the semantics of the similarity, but also to its indexability
(low both the T-error and intrinsic dimensionality).

Figure 3: A high-dimensional boolean representa-
tion of a mass spectrum.

4.1 Cosine Similarity
The cosine similarity and its metric form, the angle dis-

tance, are commonly mentioned in mass spectrometry liter-
ature for peptide mass spectra interpretation [12, 29, 1, 25,
5]. The cosine similarity requires a representation of mass
spectra as high-dimensional boolean vectors (Fig. 3). For
example, let the range of m

z
values in a mass spectrum be 0-

2,000 Da and let it be divided in subintervals of 0.1 Da. The
mass spectrum is then represented by a 20,000-dimensional
boolean feature vector having 1s at places corresponding
to intervals for which the m

z
value is nonzero in the spec-

trum. Instead of storing the high-dimensional sparse vector
x, there is usually a compact representation ~x used, where
the positions of 1s in x (i.e., dimensions in which the val-
ues of x are nonzero) turn into values of the compact vec-
tor ~x. The compact representation of vector x in Fig. 3 is
~x = 〈7, 13, 18, 23, 27, 34〉. We used a semimetric variant dA
of the angle distance based on the compact representation
(4), where ξ is a mass error tolerance. Note that subintervals
are not bounded as in Fig. 3 because the differences between
m
z

values are computed.

da(~xi, ~yj) =

{
0, if |~xi − ~yj | > ξ
1, else

(3)

dA(~x, ~y) = arccos

(∑
xi∈~x maxyj∈~y {da(~xi, ~yj)}√

dim(~x)dim(~y)

)
(4)

However, the indexability of dA showed to be inefficient due
to the extremely high intrinsic dimensionality. In the exper-
iments (Sec. 5.2) we show that even the utilization of TriGen
algorithm with reasonably set T-error tolerance (say, up to
0.2) does not lead to an intrinsic dimensionality acceptable
for indexing by MAMs. In particular, many mass spectra
are maximally distant (having the angle π

2
, i.e., dA = 1),

so that none of the T-modifiers can decrease the intrinsic
dimensionality.

An approach for fast indexing under angle distance by
MAMs was proposed in [25], where two semimetric alterna-
tives of the cosine similarity have been defined. The first is
called the fuzzy cosine distance and it has similar behaviour
as dA. The other is called the tandem cosine distance and
it is, in fact, the combination of dA with the precursor mass
filter, i.e., the difference between the precursor mass mx

p and
my
p of the compared spectra was joined with dA in order to

reach good indexability (6), where c1 and c2 are constants
and ξ′ is the precursor mass error tolerance. A disadvantage

is that the precursor mass filter could limit the capability of
managing chemical modifications, because mp of experimen-
tal spectra with modifications can differ by more than a few
tens of Daltons from mp of hypothetical spectra generated
from the database of protein sequences.

dmp(m
x
p ,m

y
p) =

{
0, if |mx

p −my
p| ≤ ξ′

|mx
p −my

p|, else
(5)

d′A(~x, ~y) = c1dA(~x, ~y) + c2dmp(m
x
p ,m

y
p) (6)

4.2 Parametrized Hausdorff Distance
In this paper we employ the parameterized Hausdorff dis-

tance, that outperforms the angle distance dA in both, the
indexability by MAMs (i.e., efficiency) and correctness of
mass spectra interpretation (i.e., effectiveness).

4.2.1 Logarithmic Distance
The first step towards dHP was the logarithmic distance

dL (8) [19]. The dL was defined for the compact repre-
sentations ~x, ~y of the high-dimensional boolean vectors x, y
(Sec. 4.1). The logarithmic distance is more robust than the
Euclidean distance (L2). For our application (i.e., mass spec-
tra interpretation) a distance is robust if two vectors ~x and ~y
are closer if there are great differences in a small number of
their components than if there are small differences in a large
number of their components. For example, let us assume
vectors ~x = 〈200, 300, 400, 500〉, ~y1 = 〈200, 300, 460, 500〉
and ~y2 = 〈210, 305, 420, 475〉. The missing number 400 in
~y1 with respect to ~x means that the corresponding peak in
the mass spectrum is missing. The superfluous number 460
in ~y1 refers to a noise peak, so the vectors ~x and ~y1 should
be closer than ~x and ~y2. However, the Euclidean distance
(L2) of the vectors ~x and ~y1 is higher. The dL distance is
lower and thus it models the similarity among mass spec-
tra better (dL(~x, ~y1)

.
= 1.8, dL(~x, ~y2)

.
= 4.4, L2(~x, ~y1) = 60,

L2(~x, ~y2)
.
= 33.9).

dl (~xi, ~yi) =

{
log |~xi − ~yi|, if |~xi − ~yi| > 1
0, else

(7)

dL (~x, ~y) =
∑
i

dl(~xi, ~yi) (8)

4.2.2 Hausdorff distance
In general, the Hausdorff distance dH [32] is a metric dis-

tance defined on sets A and B (10). The dH is computed
such that nearest neighbors from objects in one set are de-
termined to all objects in the other set (both directions),
while the maximal distance is reported as the result of dH .
The internal distance dx operating on the objects of A,B
could be any other distance (e.g., L2 in case of point sets).
If the dx is a metric then the dH is metric, too.

h(A,B) = max
ai∈A

{
min
bj∈B

{dx(a, b)}
}

(9)

dH(A,B) = max(h(A,B), h(B,A)) (10)

4.2.3 Parametrized Hausdorff Distance
The parametrized Hausdorff distance dHP (13) is a semi-

metric, which combines advantages of the dL and dH [20].
The dHP uses nth root function instead of logarithm be-
cause of higher correctness of interpretation. Also, com-
pact vectors of different dimensions can be used which is



desirable because the mass spectra have different numbers
of peaks and thus the compared compact vectors have differ-
ent lengths. A property inherited from dH is its robustness
– unlike dL, the values in ~x, ~y are compared based on their
closeness, not the same position (dimension) in the vectors.
Since the values in ~x, ~y are ordered, the dHP computation is
of linear complexity (unlike the general dH) [20]. Moreover,
using of the time expensive nth root function does not cause
any problem, because the range of mass corresponding to
generated peptide sequences is limited and thus a table of
the roots can be precomputed.

de(~xi, ~yj) =

{
|~xi − ~yj |, if |~xi − ~yj | > ξ
0, else

(11)

h′(~x, ~y) =

∑
~xi∈~x

n

√(
min~yj∈~y {de(~xi, ~yj)}

)
dim(~x)

(12)

dHP (~x, ~y) = max(h′(~x, ~y), h′(~y, ~x)) (13)

where dim(~x) is the dimension/length of the compact vector
~x. The internal distance de measures the difference between
two values, while only distances exceeding threshold ξ (mass
error tolerance) are taken into account.

4.2.4 Modifying dHP by TriGen
Although dHP is generally a semi-metric distance, its T-

error is very low (below 0.001) but its intrinsic dimension-
ality is very high (above 100). Thus, we have used TriGen
to improve the intrinsic dimensionality, setting the T-error
tolerances to the range 0.001 – 0.2. The FP-base and 454
different RBQ-bases (different points (a, b)) were used by
TriGen. Note that dA and dHP must be normalized to 〈0, 1〉
in order to employ the TriGen. The dA is normalized by
π
2

, while dHP by n
√
dmaxe , where dmaxe is the maximal pos-

sible value in a compact vector (i.e., the dimension of the
high-dimensional representation).

For all the T-error tolerances the TriGen found convex
T-modifiers (w < 0), so the intrinsic dimensionality was
reduced (down to 2 for T-error tolerance 0.2). The resulting
modifiers determined by TriGen for the dHP and n = 50 with
lowest intrinsic dimensionality are shown in Tab. 1. The
intrinsic dimensionality ρ using RBQ modifiers is slightly
better than ρ using the FP modifier, however, testing many
RBQ modifiers is time consuming.

FP(v,w) RBQ(a,b)(v,w)

T-err.tol. ρ T-err. w ρ T-err. a b w

0.001 18.6 0.001 -2.6 15.7 0.001 0.22 0.82 -3.1

0.01 7.6 0.013 -5.0 6.8 0.013 0.22 0.82 -11.3

0.02 6.0 0.023 -5.9 5.7 0.020 0.22 0.82 -20.5

0.04 4.5 0.042 -7.0 4.6 0.042 0.13 0.83 -7.6

0.06 3.8 0.062 -7.9 3.7 0.061 0.13 0.83 -10.4

0.08 3.3 0.082 -8.6 3.1 0.081 0.13 0.83 -15.3

0.1 3.0 0.102 -9.2 2.8 0.092 0.13 0.83 -20.4

0.12 2.8 0.120 -9.6 2.3 0.112 0.13 0.83 -54.9

0.14 2.6 0.138 -10.1 2.7 0.140 0.05 0.85 -6.4

0.16 2.4 0.154 -10.5 2.5 0.160 0.05 0.85 -7.1

0.18 2.3 0.173 -10.9 2.3 0.174 0.05 0.85 -7.5

0.2 2.2 0.191 -11.3 2.1 0.196 0.05 0.85 -8.4

Table 1: Empirically determined FP and RBQ mod-
ifiers and intrinsic dimensionality ρ for dHP .

4.2.5 Precursor Mass Filter
As well as dA, the dHP can be extended with the precursor

mass filter in order to reach much better indexability even

if TriGen is not employed (14). A disadvantage is that later
extension of dHP for analysing of chemical modifications in
the query mass spectra may be limited (Sec. 4.1).

d′HP (~x, ~y) = c1dHP (~x, ~y) + c2dmp(m
x
p ,m

y
p) (14)

4.3 Interpretation using Similarity Search
The entire process of peptide mass spectra interpretation

we propose can be summarized as follows:
1) Each protein sequence in the database is split to shorter
peptide sequences. The rules for the splitting are determined
by an enzyme. The most common enzyme is trypsin, which
splits the protein chains after each amino acid K (lysine)
and R (arginine) if they are not followed by P (proline) [21].
However, even if the splitting sites are well predictable, the
process is not perfect in practice and there can some missed
cleavage sites occur. The maximum number of missed cleav-
age sites maxcs is adjusted as a parameter.
2) The m

z
values of y- and b-ions are generated in ascending

order for each peptide sequence, while each sequence cor-
responds to one indexed vector. The vector for the peptide
sequence of the length l has the dimension 2(l−1), see Fig. 1.
3) The vectors are indexed by a MAM (e.g., by the M-tree or
Pivot tables) under dHP modified by the TriGen (Sec. 4.2.4).
4) The experimental spectrum is preprocessed before inter-
pretation. The p peaks with highest intensity I from the
experimental spectrum are selected and they form a query
corresponding to a vector of their m

z
values.

5) A kNN query is processed by the MAM, while the cor-
rect peptide sequence corresponding to the spectrum could
be obtained as the first neighbor in many cases. However,
in real-world applications we need to provide more nearest
neighbors, because an additional scoring algorithm could se-
lect a different peptide as the correct one from the kNN set.
Such refining algorithm could be, e.g., SPC, spectral align-
ment, SEQUEST-like scoring (Sec. 2).

In the experimental results we suppose that a mass spec-
trum is successfully interpreted if the correct peptide se-
quence is among the k nearest neighbors (regardless of its
position in the kNN result). Such an approach is often em-
ployed and the scoring is then handled separately. Hence,
the overall setup of our method can be utilized as a coarse
filter by any other database approach for mass spectra in-
terpretation.

5. EXPERIMENTS
In our experiments, we used mass spectra from [10], which

was obtained from 14 mass spectrometer runs on protein
mixture A and 8 runs on protein mixture B. We used two
query sets in our experiments. The first set Q1 contained 119
spectra from the first run on mixture A and the second query
set Q2 contained 1941 spectra from all runs on both mix-
tures. The spectra split by trypsin were selected, interpreted
by SEQUEST [27] and the results were manually checked
by domain experts. Hence, we consider the SEQUEST-
interpreted results as the confirmed ground truth.

The databases DB1 and DB2 were extensions of the file
with correct protein sequences assigned to the mass spectra
in [10]. The databases were extended with protein sequences
from MSDB (release 08-31-2006) [17]. The DB1 contained
100,000 protein sequences (5,600,747 peptide sequences) and
DB2 contained 500,000 protein sequences (29,460,880 pep-
tide sequences).



In the experiments, the following values were measured:
a) The correctness of interpretation as a ratio of correctly
assigned peptide sequences to all spectra from a query set.
b) The distance computations as the ratio of average number
of distance computations per one mass spectrum interpreta-
tion to the cost of sequential scan.
c) The average query time per one mass spectrum interpre-
tation.

All experiments were carried out on a machine with 2
processors Intel Xeon E5450 (8 cores × 3GHz) with 8 GB
RAM and 64-bit OS Windows Server 2008 R2. We used a
C++ parallel implementation of the M-tree and the Pivot
tables for indexing and querying [13]. We have also imple-
mented parallel version of the sequential scan, as a baseline
access method. Our implementation was based on Intel’s
Threading Building Blocks (TBB) [30]. By default, the av-
erage query time per one mass spectrum interpretation was
measured on 8 processor cores.

The following settings were used unless otherwise specified
– the dHP was computed with n = 50, the splitting enzyme
was trypsin, the maximum missed cleavage sites (maxcs) was
set to 1, the mass error tolerance (ξ) was 0.4 Da, the pre-
cursor mass error tolerance (ξ′) was 2 Da, 100 peaks with
the highest intensity were selected from experimental spec-
tra. The average length of indexed vectors (the compact
representation) was about 28.8 and it could be halved if just
y-ions were generated instead of both y- and b-ions, however,
the correctness of interpretation would be much worse.

5.1 Sequential Scan
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Figure 4: a) Correctness of interpretation (sequen-
tial scan), b) Distance distributions for different n.

First, the sequential scan was employed for the dHP and
dA, while the correctness of interpretation and average query
time were measured on DB2 and Q2. The correctness of
interpretation is higher with increasing index of the root n
(Fig. 4a). A comparison with the angle distance dA is shown
for different k in kNN queries (Fig 4a on the right). The
dHP has shown better correctness of interpretation than dA.
The application of the nth root function in the dHP has two
main advantages. First, the similarity among mass spectra
is modeled very well and second, the dHP becomes almost
a metric distance. In particular, the T-error for dHP was
about 0.83 for n = 1, but less than 0.01 for n ≥ 2.

5.2 Improving the Indexability
A disadvantage of the nth root function is that intrinsic

dimensionality ρ increases with the increasing n, hence the
difference between MAMs and sequential scan disappears
for high n. In Fig. 4b see the distance distributions under

dHP (not modified by TriGen) for various n. The more the
distribution is pushed to the right, the higher the intrinsic
dimensionality.
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Figure 5: Distance distrib. of dHP + a) FP, b) RBQ
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In Fig. 5 observe the impact of T-error tolerance on the
distance distributions obtained using the TriGen-modified
dHP , considering either FP-base or RBQ-bases. Obviously,
a higher T-error tolerance leads to more convex T-modifier,
and so to lower intrinsic dimensionality (distance distribu-
tion pushed to the left). In Fig. 6a, see the same for angle
distance dA, which shows its poor indexability by MAMs.
In fact, about 35% of all pairwise distances are maximal
dA = 1 (not shown for all T-error tolerances in Fig. 6a for
better readability). Note that these 35% distances cannot
be fixed by the TriGen algorithm, as they are indistinguish-
able. In Fig. 5a and Fig. 6a, the distances d′HP and d′A (c1=1,
c2=1) are shown for comparison (TriGen was not employed).
Although theirs indexability is good, an extension of these
distances for search of chemical modifications in the mass
spectra may be too complicated to practical use.

The dHP was compared with dA on DB2 indexed by M-
tree, where 1000NN queries from Q2 were used (Fig. 6b).
While the dA was 2.5× slower than sequential scan, the dHP

was 1.6× faster. The correctness of interpretation was 1.4×
better for the dHP than for dA (compare with Fig. 7a). The
average query time for d′A and d′HP was 0.4 s. The correctness
of interpretation was 89.6% for d′A and 85.7% for d′HP .

5.3 Correctness of Interpretation
The following experiments were carried out on DB2 and

Q2, while the M-tree was employed. The correctness of mass
spectra interpretation is worse with increasing T-error tol-
erance. The kNN queries with higher k can be used to avoid
this problem (Fig. 7a). The correct peptide sequences are
not spread uniformly over all interval 〈1..k〉 of a kNN query



result set but they are cumulated among a few nearest neigh-
bors in many cases. As shown in Fig. 7b, the first nearest
neighbor taken from the 100NN result was more likely to
be correct than when taking the first nearest neighbor from
10NN result. The average query time of a kNN query and its
distance computations ratio (wrt. sequential scan) increases
with k (Fig. 8). The best results were obtained at T-error
0.06, while the correctness of interpretation was 75%, speed-
up of the M-tree with respect to sequential scan was 1.7×
and the distance computations ratio was 9.7%.
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Figure 7: Correctness of interpretation (dHP)
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5.4 Comparison of M-tree and Pivot Table
We compared the efficiency of the dHP (FP) indexed by

M-tree and Pivot tables with the sequential scan. The ex-
periments were made on DB1 and Q1, 2000NN queries were
used, and 8 processor cores were employed. The Pivot ta-
ble was constructed for 40 randomly selected pivots. The
distance computations ratio is smaller (wrt. seq. scan) if
the T-error tolerance is higher. The best results were ob-
tained using the Pivot table for the T-error tolerance 0.04
and higher (Fig. 9b). However, the best average query time
was obtained for the M-tree (Fig. 9a). Since the Pivot table
was stored in the main memory, it was also fast, but the size
of the Pivot table was almost 2 GB. The correctness of in-
terpretation decreases with increasing T-error tolerance for
both the M-tree and the Pivot table. (Fig. 10a).

We made comparison of the M-tree and Pivot tables on
different number of processor cores (Fig. 10b) with the same
settings. The M-tree on 8 cores was about 6.6× faster than
M-tree on 1 core, the Pivot table was 4.9× faster and the
sequential scan was 6.3× faster. If the mass spectra interpre-
tation ran using the M-tree on 8 cores, the speed-up would
be 40.1× against the sequential interpretation on 1 core.

The performance of the M-tree and Pivot tables (50 piv-
ots) using dHP was also examined on differently sized da-
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Figure 9: a) average query time, b) distance com-
putations ratio
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0

2

4

6

8

10

1.3 2.4 3.7 4.5 5.6
Database size [millions of peptides]

A
v
e
ra

g
e

q
u
e
ry

ti
m

e
[s

]

Pivot table
M-tree
sequential

0

5

10

15

20

25

1.3 2.4 3.7 4.5 5.6
Database size [millions of peptides]

D
is

ta
n
c
e

c
o
m

p
u
ta

ti
o
n
s

ra
ti
o

[%
]

Pivot table
M-tree

Figure 11: Database size - a) average query time, b)
distance computations ratio

tabases of proteins from DB1 (from 10 to 100 thousands of
proteins; from 650 thousands to 5.6 millions of peptides or
indexed vectors). The Fig. 11a shows the impact of database
size on average query time, while the T-error tolerance was
set to 0.1. The Pivot table is faster than M-tree as long as
all its blocks are stored in main memory. If the main mem-
ory size is exceeded then Pivot table becomes inefficient.
We had allocated 600 MB buffer in main memory and it
was exceeded by Pivot table after 25 thousands of protein
sequences (1.5 millions of peptides) were indexed. More-
over, for more than 40 thousands of protein sequences (2.4
millions of peptides) the sequential scan outperformed the
Pivot tables. Fig. 11b shows that distance computations are
misleading for Pivot tables when the size of main memory
is exceeded.

6. CONCLUSIONS
The best way how to interpret the tandem mass spectra

of peptides is to search a database of already known or pre-
dicted protein sequences. We have shown that M-tree and



parametrized Hausdorff distance (dHP ) is a powerful com-
bination for tandem mass spectra interpretation. The dHP

models the similarity among spectra very well and it can be
utilized by MAMs when TriGen algorithm is employed. In
general, if the T-error is higher, then indexability of the dHP

by MAMs is much better, the search is faster and correctness
of interpretation is a little lower.

The dHP models the similarity among mass spectra bet-
ter than angle distance, which is commonly mentioned in
mass spectrometry literature. We verified the conclusions
presented in [25] that the angle distance has its limitations
for utilization by MAMs in terms of mass spectra interpre-
tation and that the angle distance in combination with the
precursor mass filter is indexable very well. Moreover, we
have shown that the precursor mass filter can be easily joined
with dHP as well as with the angle distance. A disadvantage
is that combination of the angle distance or dHP with the
precursor mass filter might not be applicable for the query
mass spectra containing chemical modifications, which is in
practice a relatively frequent phenomenon. In our future
work we plan to use the PM-tree for mass spectra interpre-
tation, which could speed-up the whole task by an order of
magnitude and we plan to deal with chemical modifications
in the query mass spectra.
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