
Modified LSI Model for Efficient Search
by Metric Access Methods

Tomáš Skopal1 and Pavel Moravec2

1Charles University in Prague, FMP, Department of Software Engineering,
Malostranské nám. 25, 118 00 Prague, Czech Republic

tomas@skopal.net
2Technical University of Ostrava, FEECS, Department of Computer Science,

17. listopadu 15, 708 33 Ostrava, Czech Republic
pavel.moravec@vsb.cz

Abstract. Text collections represented in LSI model are hard to search
efficiently (i.e. quickly), since there exists no indexing method for the LSI
matrices. The inverted file, often used in both boolean and classic vector
model, cannot be effectively utilized, because query vectors in LSI model
are dense. A possible way for efficient search in LSI matrices could be
the usage of metric access methods (MAMs). Instead of cosine measure,
the MAMs can utilize the deviation metric for query processing as an
equivalent dissimilarity measure. However, the intrinsic dimensionality
of collections represented by LSI matrices is often large, which decreases
MAMs’ performance in searching. In this paper we introduce σ-LSI, a
modification of LSI in which we artificially decrease the intrinsic dimen-
sionality of LSI matrices. This is achieved by an adjustment of singular
values produced by SVD. We show that suitable adjustments could dra-
matically improve the efficiency when searching by MAMs, while the
precision/recall values remain preserved or get only slightly worse.

1 Introduction

Text collections represented in the classic vector model (CVM) can be efficiently
(i.e. quickly) searched using the inverted file. More precisely, the inverted file
provides a way for very efficient processing of queries, the vectors of which are
sparse (such a query contains only several terms). However, in case of LSI model
the query vectors are dense, and the usage of inverted file becomes useless, since
processing of any query deteriorates to sequential search over the entire concept-
by-document matrix.

In this paper we utilize a method of searching in LSI collections by metric
access methods (MAMs). The metric access methods are, however, sensitive to
the curse of dimensionality, i.e. they become inefficient for high dimensionalities.
Therefore, in this paper we propose σ-LSI, a modified LSI model in which we
artificially reduce the intrinsic dimensionality of the indexed collection. This is
achieved by an adjustment of singular values produced by SVD. We show that
suitable adjustments could dramatically improve the efficiency when searching

D.E. Losada and J.M. Fernández-Luna (Eds.): ECIR 2005, LNCS 3408, pp. 245–259, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

246 T. Skopal and P. Moravec

by MAMs, while the precision/recall values remain preserved or get only slightly
worse.

The paper is organized as follows: In the rest of this section we briefly
overview CVM, the LSI model, and formulate the problem of searching in LSI
model. In Section 3 we show how the classic similarity search in CVM (LSI model
respectively) can be turned into metric search. We also mention the principles
of metric access methods and the problem of high intrinsic dimensionality. In
Section 4 we propose σ-LSI model allowing a more efficient search by MAMs.
The effectiveness (the quality) and efficiency (the response time) of retrieval in
the σ-LSI model are evaluated in Section 5.

1.1 Classic Vector Model

In CVM, a given text collection (containing n documents consisting of m unique
terms) is represented by an m × n term-by-document matrix A, where each
column vector dj in A represents a single document Dj . Thus, the documents
are represented as points in m-dimensional vector space (the document-space).
Each dimension of the document-space is associated with a single term, while
each coordinate in a document vector dj represents a weight of the respective
term in the document. There are many ways how to compute the term weights
Aij – a popular weight construction is computed as tf · idf (see e.g. [3]).

The most important part of CVM is the query semantics for searching the
matrix A with respect to a query Q, and returning only the relevant document
vectors (appropriate documents respectively). The query Q is represented by a
vector q in the document space the same way as a document Dj is represented
by dj . The goal is to return the most similar documents to the query. For this
purpose a similarity measure must be defined, assessing a similarity score for each
pair of query and document vectors (q, dj). In many cases, the cosine measure

SIMcos(q, dj) =
∑m

i=1 qidji√∑m
i=1 qi

2 · ∑m
i=1 dji

2

is widely used. Besides the simple ranking to q (used for ranked lists), we also
distinguish bounded queries, in particular range queries and k-nearest neighbors
(k-NN) queries. A range query returns documents with similarity to the query

term \ doc. D1 D2 D3 D4 D5

database 0 0.48 0.05 0 0.70
vector 0.23 0 0.23 0 0
index 0.43 0 0 0 0
image 0 0 0.10 0 0.54

compression 0 0 0 0 0.21
multimedia 0.12 0.52 0.62 0 0

Fig. 1. Term-by-document matrix A

Modified LSI Model for Efficient Search by Metric Access Methods 247

higher than a given similarity threshold t. A k-NN query returns the k most
similar documents1.

2 Latent Semantic Indexing

Latent semantic indexing (LSI) [3, 4] is an algebraic extension of CVM. Its
benefits rely on discovering latent semantics hidden in the term-by-document
matrix A. Informally, LSI discovers significant groups of terms (called concepts)
and represents the documents as linear combinations of the concepts. Moreover,
the concepts are ordered according to their significance in the collection, which
allows us to consider only the first k concepts important (the remaining ones are
interpreted as “noise” and discarded). To name the advantages, LSI helps solve
problems with synonymy and homonymy. Furthermore, LSI is often referred to
as more successful in recall when compared to CVM [4], which was proved for
pure (only one topic per document) and style-free collections [17].

Formally, we decompose the term-by-document matrix A by singular value
decomposition (SVD), calculating singular values and singular vectors of A. SVD
is especially suitable in its variant for sparse matrices (Lanczos [13]). Several
approximate methods for faster SVD calculation were offered recently, such as
using random projection of document vectors into suitable subspace before LSI
calculation [17] or application of Monte-Carlo method [11].

There are several other methods for latent semantic indexing, such as ULV-
decomposition [5], random indexing [16] (and some other approaches achieving
similar goals, e.g. language modeling [19]), which we do not discuss in this paper.

Theorem 1 (Singular Value Decomposition [4]). Let A is an m × n rank-
r matrix. Be values σ1, . . . , σr calculated from eigenvalues of matrix AAT as
σi =

√
λi. Then there exist column-orthonormal matrices U = (u1, . . . , ur)

and V = (v1, . . . , vr), where UT U = Im a V T V = In, and a diagonal matrix
Σ = diag(σ1, . . . , σr), where σi > 0, σi ≥ σi+1. The decomposition

A = UΣV T

is called singular decomposition of matrix A and the numbers σ1, . . . , σr are
singular values of the matrix A. Columns of U (or V) are called left (or right)
singular vectors of matrix A.

Now we have a decomposition of the original term-by-document matrix A.
The left and right singular vectors (i.e. U and V matrices) are not sparse. We
get r nonzero singular numbers, where r is the rank of the original matrix A.
Because the singular values usually fall quickly, we can take only k greatest
singular values with the corresponding singular vector coordinates and create a
k-reduced singular decomposition of A.

1 In the next section we independently use k for another parameter (rank-k SVD),
but in either case the respective meaning of k is obvious from the actual context.

248 T. Skopal and P. Moravec

Fig. 2. k-reduced singular value decomposition

Definition 1. Let us have k (0 < k < r) and singular value decomposition of A

A = UΣV T ≈ Ak = (UkU0)
(

Σk 0
0 Σ0

) (
V T

k

V T
0

)

We call Ak = UkΣkV T
k a k-reduced singular value decomposition (rank-k SVD).

Instead of the Ak matrix, a concept-by-document matrix Dk = ΣkV T
k is

used in LSI as the representation of document collection. The document vec-
tors (columns in Dk) are now represented as points in k-dimensional space (the
pseudodocument-space). For an illustration of rank-k SVD see Figure 2.

The value of k was experimentally determined as several tens or hundreds
(e.g. 50–250), however, the optimal2 value of k is hard to choose; it is dependent
on the number of topics in collection. Rank-k SVD is the best rank-k approx-
imation of the original matrix A, regarding to Frobenius norm (see e.g. [12]).
This means, that any other decomposition will increase the sum of squares of
matrix A − Ak. However, this does not tell us that we could not obtain better
precision and recall values with a different approximation.

To execute a query Q in the pseudodocument-space, we create a reduced
query vector qk = UT

k q (another approach is to simply use a matrix D′
k = V T

k

instead of Dk, and q′
k = Σ−1

k UT
k q). Instead of A against q, the matrix Dk against

qk (or q′
k) is evaluated using the cosine measure. The crucial property is that,

due to the projection by dense matrix UT
k , qk is dense as well (even if q is sparse).

2.1 LSI Model and Inverted Files

In CVM, searching the term-by-document matrix A according to a query Q can
be provided using inverted file [15, 18, 1], which can be viewed as the matrix A
stored by rows. For a given matrix A the inverted file consists of m lists, each
list is associated with a single term. Each list stores entries, which are pairs
consisting of a document id and weight of the term in corresponding document
(obviously, entries with zero weights are not stored). When a query is processed,
only the lists representing terms from the query are sequentially searched.

2 optimal in sense of best achieved precision/recall values.

Modified LSI Model for Efficient Search by Metric Access Methods 249

The inverted file is very efficient for processing of sparse query vectors (few-
term queries respectively), because only several lists have to be processed. Un-
fortunately, in case of LSI the pseudo-query vector is dense and usage of inverted
file for indexing Dk would deteriorate to sequential search over the entire file and
thus, over the entire matrix Dk.

3 Metric Indexing

Recently, there has been introduced an approach to searching in LSI model,
based on metric indexing [20]. Instead of inverted file, the M-tree [9] was used
for indexing the matrix Dk. Before we discuss benefits of the metric approach,
we must turn the cosine measure (similarity) into metric (distance).

3.1 Turning Vector Model into Metric Model

The cosine measure SIMcos(di, dj) itself is not a metric, since it does not satisfy
three metric properties (reflexivity, positivity and triangular inequality). Even
1−SIMcos(di, dj) is not a metric, since it does not satisfy the triangular inequal-
ity. As an appropriate metric, we use the deviation metric (or angular distance)
ddev(di, dj), defined as

ddev(di, dj) = arccos(SIMcos(di, dj))

Instead of cosine, the deviation metric measures directly the angle between
two vectors3. Since arccos is strictly decreasing on 〈−1, 1〉, the deviation met-
ric preserves the semantic meaning of cosine measure. There is only a differ-
ence in terminology – cosine measure is similarity function (similar documents
have a high score), while the deviation metric is dissimilarity function (simi-
lar documents have a lower score, i.e. they are close). Hence, the k-dimensional
pseudodocument-space R

k together with the deviation metric ddev can be re-
garded as a metric space M = (Rk, ddev).

The queries in metric model are evaluated in similar way as in CVM; the
difference is that range queries select objects within a query radius rQ (which
equals to arccos of the desired similarity threshold t), while k-NN queries select
the k closest objects.

3.2 Metric Access Methods

The metric access methods [8] organize (or index) a given metric dataset S ⊂ M
in a way that metric queries (e.g. range or k-NN queries) can be processed
efficiently – without a need of processing the entire dataset S. The main principle
behind all MAMs is the triangular inequality property satisfied by every metric.
Due to the triangular inequality, MAMs can organize the objects in equivalence

3 Actually, we can view the deviation metric ddev as a kind of Euclidean (L2) distance,
defined just on the surface of unitary hyper-sphere.

250 T. Skopal and P. Moravec

Fig. 3. DDHs indicating (a) low (b) high intrinsic dimensionality

classes (the classes are some regions in the metric space). When a query is
processed, many irrelevant equivalence classes are filtered (those with metric
regions not overlapping the query region), and so the searching becomes more
efficient. Another advantage is that MAMs use solely the metric function for
indexing, no information about the indexed objects representation is necessary.
This feature allows to index/search non-vectorial datasets, too.

There has been developed a plenty of MAMs, varying in applicability to
different problems. Besides others, we name M-tree [9], vp-tree [22], LAESA
[14], D-index [10], etc.

3.3 Intrinsic Dimensionality

The metric indexing itself (as was presented in [20]) could be quite beneficial
for searching in the LSI model. However, searching in a collection of high-
dimensional document vectors is negatively affected by a phenomenon called the
curse of dimensionality [6, 7]. For MAMs the curse of dimensionality causes al-
most all equivalence classes to be overlapped by nearly every “reasonable” query
region, so that searching deteriorates to sequential scan over all the classes.

In the context of metric indexing, the curse of dimensionality can be gener-
alized for general metric spaces. The major condition determining the efficiency
limits of any metric access method is the intrinsic dimensionality of the indexed
dataset, defined as (proposed in [7]):

ρ(S, d) =
µ2

2σ2

where µ and σ2 are the mean and the variance of the dataset’s distance distri-
bution (according to a metric d). In other words, the intrinsic dimensionality
is low if there exist tight clusters of objects. Conversely, if all pairs of the in-
dexed objects are almost equally distant, the intrinsic dimensionality is high

Modified LSI Model for Efficient Search by Metric Access Methods 251

Fig. 4. (a) DDH for D′
k (b) DDH for Dk

(i.e. the mean is high and/or the variance is low), which means the dataset is
poorly intrinsically structured. In Figure 3 see an example of distance distribu-
tion histograms (DDHs) indicating lower (ρ ≈ 2) and higher (ρ ≈ 30) intrinsic
dimensionalities.

In case of vector datasets, the intrinsic dimensionality can reach up to (or
even beyond) the value of the classic (embedding) dimensionality. For example,
for uniformly distributed n-dimensional vectors (i.e. not clustered) ρ ≈ n.

So far, for datasets of high intrinsic dimensionality there still does not exist
an efficient MAM for exact4 metric search.

4 The σ-LSI Model

In case of LSI, we are concerned by intrinsic dimensionality of the pseudodoc-
ument vectors (columns in Dk), with respect to the deviation metric ddev. The
smaller ρ, the greater search efficiency can be achieved for the MAMs.

In this section we propose the σ-LSI model, a modification of LSI in which
we are able to artificially decrease the intrinsic dimensionality of Dk.

4.1 Motivation

In order to understand the intrinsic dimensionality of Dk, we first consider the
simpler approach of LSI, where the pseudodocument matrix is just D′

k = V T
k

(instead of Dk = ΣkV T
k). This is equivalent to D′

k = Σ0
kV T

k , where Σ0
k is unitary

matrix (the singular values σi are powered by 0). To illustrate the situation on an
example, we use a term-by-document matrix A (closely described in Section 5)
decomposed using rank-k SVD, k = 100.

4 Nevertheless, efficient searching in high-dimensional datasets can be realized by ap-
proximate or probabilistic MAMs, but such methods often suffer from lower preci-
sion/recall values [23, 7].

252 T. Skopal and P. Moravec

In Figure 4a see the DDH for columns in D′
k with respect to ddev. The

intrinsic dimensionality is ρ = 98.1, so we can claim that in this case k ≈ ρ. This
interesting observation arises from the fact that rows in V T

k are orthonormal and
columns in V T

k (the pseudodocument vectors) are (almost) uniformly distributed.
Second, we consider the pseudodocument matrix Dk = ΣkV T

k (the clas-
sic LSI). In Figure 4b see the DDH for columns in Dk with respect to ddev,
the intrinsic dimensionality is now ρ = 52.6. Obviously, the difference between
ρ(D′

k, ddev) and ρ(Dk, ddev) is in the multiplication of V T
k by Σk. Since the sin-

gular values σi fall with increasing i, the uniformly distributed columns of V T
k

(i.e. D′
k) turn into non-uniformly distributed columns of ΣkV T

k (i.e. Dk). Fur-
thermore, multiplication with greater σi makes the i-th dimension (i-th concept
resp.) more significant and vice versa. In consequence, only the most significant
dimensions can affect the spatial distribution of pseudodocument vectors; the
small values in insignificant dimensions can “shift” the vectors only fractionally.
Hence, the quicker falling of σi, the smaller number of significant dimensions
and, in turn, the smaller intrinsic dimensionality of Dk.

4.2 Singular Values Modification

To decrease the intrinsic dimensionality of Dk, we can adjust the singular values
σi such that they fall more quickly (with increasing i). This can be achieved by
a suitable modifying function f .

Σk = diag(σ1, . . . , σk) =⇒ Σf
k = diag(f(σ1), . . . , f(σk))

The function f must be increasing in order to preserve the ordering of singular
values (they are ordered by values). Moreover, f must be convex, because we
need to make the falling of σi faster (concave functions do the opposite).

Finally, we apply the modified values in Σf
k instead of the original Σk, i.e.

we use Df
k = Σf

k V T
k instead of Dk and qf

k = Σf
k Σ−1

k UT
k q instead of qk.

In the following we have chosen functions f(x) = xε (ε ≥ 1), so we will denote
Σf

k as Σε
k, Df

k as Dε
k, and qf

k as qε
k = Σε−1

k UT
k q. Note the notation is consistent

with the simple LSI (i.e. usage of Σ0
k). In Figure 5 see a normed visualization of

the singular values modified by several functions f(x) = xε. The greater ε, the
more quick falling of σε

i .
From the semantic point of view, a convex modification of singular values

means that we even more emphasize the significant concepts and even more
inhibit the less significant ones. It seems that we perform a kind of an additional
dimensionality reduction.

On the other side, any modification of singular values surely must increase
the approximation error mentioned in Section 2. However, this kind of error is
algebraical; the human-dependent effectiveness measures (e.g. the precision and
the recall) are something else. We present an experimental evaluation of the
σ-LSI model effectiveness in Section 5.1.

Modified LSI Model for Efficient Search by Metric Access Methods 253

Fig. 5. Visualization of modified singular numbers σε
i (for different ε)

Fig. 6. DDHs for D1.5
k and D3

kDDHs for D1.5
k and D3

k

4.3 Intrinsic Dimensionality Reduction

In Figure 6 see distance distribution histograms for Dε
k, ε = 1.5 and ε = 3. The

intrinsic dimensionality for D1.5
k (or D3

k) is ρ = 21.22 (ρ = 1.72 respectively).
In Figure 7 the intrinsic dimensionality ρ of Dε

k is presented in dependence
on ε. As we have assumed, ρ is decreasing with growing ε, which should be
reflected by a more efficient searching by MAMs. The search efficiency achieved
by the M-tree is presented in Section 5.2.

5 Experimental Query Evaluation

For testing of our approach, we used a subset of TREC collection [21], consisting
of 30,000 Los Angeles Times articles (years 1989 and 1990), from which 16,889
articles were assessed in TREC-8 ad-hoc queries (see below). The remaining arti-

254 T. Skopal and P. Moravec

Fig. 7. Dependence of ρ(Dε
k, ddev) on ε

cles were added chronologically (from January to April 1989) and should provide
finer LSI concepts. We indexed this collection, removing well-known stop-words
and terms appearing in more than 25% of documents, thus obtaining 49,689
terms. Rank-100 SVD of the term-by-document matrix A was then calculated.

5.1 Effectiveness

For the evaluation of σ-LSI model, we need some qualitative measures for evalu-
ating query results. We used precision (P) and recall (R), which are calculated
from set Rel of objects relevant to the query (usually determined by manual an-
notation of the collection, giving us subjective human assessment of documents’
relevance) and a set Ret of retrieved objects. Based on these sets, we define
precision and recall as:

P =
|Rel ∩ Ret|

|Ret| , R =
|Rel ∩ Ret|

|Rel|
For the overall comparison of precision and recall across different methods, we

can use rank lists and evaluate precision on 11 standard recall levels (0.0, 0.1, 0.2,
. . . , 0.9, 1.0). Since the queries may have different number of relevant documents,
we can use interpolated values for each query. For complete description of this
method, see e.g. [2].

Unfortunately, it was observed that with the increase of recall, the precision
usually decreases. This means that when it is necessary to retrieve more relevant
objects, a higher percentage of irrelevant will be probably retrieved, too. To
obtain a single ratio for evaluation of the retrieval performance, we can employ
a measure called F -score – harmonic mean of recall and precision. Determination
of the maximum value for F can be interpreted as an attempt to find the best
possible compromise between recall and precision.

The universal version of F -score employs a coefficient β, by which can be the
precision-recall ratio tuned. We will use the basic form of F score with β = 1:

Modified LSI Model for Efficient Search by Metric Access Methods 255

Fig. 8. Precision for 11 standard recall levels calculated from rank lists

Fβ =
(1 + β2) · P · R

β2P + R
, F = F1 =

2 · P · R

P + R

To measure the effectiveness of σ-LSI, we must know the values of precision
and recall for both the original method (LSI) and the modification (σ-LSI).
Since we use a subset of TREC collection, we have a baseline for the effectiveness
measurement via a set of predefined topics and assessed documents, called TREC
Queries. TREC topics (written in SGML) contain at least the following tags:

<top>
<num> Number: 401
<title> foreign minorities, Germany
<desc> Description:

What language and cultural differences impede the
integration of foreign minorities in Germany?

<narr> Narrative:
A relevant document will focus on ...

</top>

For every topic, there is a set of relevance assessments for selected docu-
ments, which indicates, whether the particular assessed document was relevant
or irrelevant. The remaining unassessed documents were assumed irrelevant.

We used TREC-8 Ad-hoc topics 401-450 with their relevance assessments for
Los Angeles Times subcollection for our task. Term weights in query vectors
were calculated from term frequency (tf) component, the query vectors were
then projected to pseudodocument space for given ε. The values of ε have been
chosen from {0} ∪ < 1, 9 >5. The cosine measure SIMcos (deviation metric ddev

respectively) values were calculated for both k-NN queries and rank lists for each
TREC Query in the pseudodocument spaces.

5 For ε = 1, we obtain classic LSI model with Dk = ΣkV T
k , which we used as a

baseline; for ε = 0 we get simple LSI with D′
k = V T

k .

RAN SK LIST

interpolated precision

0 20 40 60 80 100

0
1
0

2
0

3
0

4
0

recall [%]

p
re

c
is

io
n

 [
%

]

e=0

e=1

e=1.25

e=1.5

e=1.75

RAN SK LIST

interpolated precision (cont.)

0 20 40 60 80 100

0
1

0
2

0
3
0

4
0

recall [%]

p
re

c
is

io
n

 [
%

]

e=1

e=2

e=2.5

e=3

e=4

256 T. Skopal and P. Moravec

Fig. 9. (a) Mean average precision of σ-LSI for all relevant documents for different
values of ε with CVM baseline (b) F -score of k-NN queries for different values of ε

Firstly, we used rank lists and measured interpolated average precision of the
above mentioned TREC Queries for 11 standard recall levels. The comparison
for different values of ε and original LSI (ε = 1) is addressed in Figure 8. The
precision-recall curves for reasonably small values of ε are very similar to classic
LSI, thus the method yields similar results even with much smaller intrinsic
dimensionality, which is suitable for MAMs.

Additionally, we calculated the mean average precision for all relevant docu-
ments in rank lists. The results for σ-LSI are shown in Figure 9a together with
the mean average precision of corresponding CVM representation.

Secondly, we executed TREC Queries as k-NN queries for several values of
k, ranging from 10 to 1000 and compared the F -score for different values of ε.
Some of the results are shown in Figure 9b. We can observe, for the values of
ε < 3 the precision and F-score seem to be well-preserved.

5.2 Efficiency

The motivation and main reason for introduction of the σ-LSI model is an im-
provement of query evaluation efficiency, when using MAMs. Among the many
metric access methods, we have chosen the M-tree [9] as a “database-friendly”
MAM (M-tree is a balanced, paged and dynamic structure), which we employed
to index several Dε

k matrices. The matrices were stored externally (the M-tree
index contained just pointers to the respective vectors in Dε

k) and size of each
matrix was about 12 MB. The size of each M-tree index was quite small, about
600 kB.

As search costs of k-NN queries, we measured the I/O costs (disk accesses)
and also the realtimes. Each k-NN query was executed 1000 times, every time for
a (new) randomly selected vector from Dε

k (i.e. as query vectors we have reused

2 4 6 8

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

k-NN QUERIES

F-score

e (log. scale)

F
-s

c
o

r
e
 r

e
la

ti
v
e
ly

 t
o

 L
S

I
[%

]

10-NN Query

100-NN Query

1000-NN Query

31.510 5

(b)(a)

RA

precision

NK LISTS
mean average

0 1 2 3 4 5

0
1

2
3

4
5

e

m
e
a
n

 a
v
e
ra

g
e
 p

re
c
is

io
n

 [
%

]

CVM

s-LSI

Modified LSI Model for Efficient Search by Metric Access Methods 257

Fig. 10. (a) k-NN queries costs (b) 50-NN query costs, depending on ε

the pseudodocument vectors). The results were averaged. To have an efficiency
baseline, we also present results for searching by simple sequential scanning of
the entire matrix Dε

k.
In Figure 10a see the costs of k-NN queries evaluation for several values of ε.

With growing ε the query evaluation is more efficient, up to 8 times for ε = 6
and k = 100, when related to ε = 1 (the classic LSI). Even in case when ε = 3
(for which the F -score is still well-preserved) the efficiency is improved more
than twice, when compared to ε = 1.

The dependence of efficiency on ε is presented in Figure 10b. For 50-NN
queries, both I/O costs and realtimes decrease with growing ε. However, had we
compared Figures 10b and 7, the intrinsic dimensionality drops much faster than
the costs needed for processing a 50-NN query by the M-tree. This observation
indicates that an “ideal” MAM should perform even better than the M-tree.

6 Conclusions

In this paper we have proposed σ-LSI – a novel modification of LSI model for
efficient searching in document collections by metric access methods. To battle
high intrinsic dimensionality, a convex modification of singular values σi by cal-
culating σε

i , ε ≥ 1 was proposed. We have shown that for reasonable values of ε
the intrinsic dimensionality drops quickly, while the similarity of documents is
still well-preserved. In fact, we have observed that our collection seemed to yield
almost the same results for ε ≤ 2.5, while the search efficiency was doubled.

In future, we would like to apply other convex functions on singular values,
testing whether they yield better global results for precision, recall and intrinsic
dimensionality than the currently proposed approach. We would like test the

258 T. Skopal and P. Moravec

approach on a greater collection, too, using some probabilistic methods of LSI
calculation, if needed.

Because rank-k SVD is also often used on other types of data, especially im-
ages, it would be interesting to evaluate the impact of our method on other met-
rics (e.g. L2), query results and intrinsic dimensionality in these collections, too.

Additionally, with the techniques of local dimension reduction, approximate
LSI, and σ-LSI modification for better metric indexing, we may be able to build
a really viable LSI index.

Acknowledgement

This research has been partially supported by Czech Science Foundation (GAČR)
grants Nr. 201/05/P036 and Nr. 201/03/1318.

References

1. V. N. Anh, O. de Kretser, and A. Moffat. Vector-space ranking with effective
early termination. In Proceedings of the 24th annual international ACM SIGIR
conference on Research and development in information retrieval, pages 35–42.
ACM Press, 2001.

2. R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison
Wesley, New York, 1999.

3. M. Berry and M. Browne. Understanding Search Engines, Mathematical Modeling
and Text Retrieval. Siam, 1999.

4. M. Berry, S. Dumais, and T. Letsche. Computation Methods for Intelligent Infor-
mation Access. In Proceedings of the 1995 ACM/IEEE Supercomputing Conference,
1995.

5. M. W. Berry and R. D. Fierro. Low-Rank Orthogonal Decomposition for Infor-
mation Retrieval Applications. Numerical Algebra with Applications, 1(1):1–27,
1996.

6. C. Böhm, S. Berchtold, and D. Keim. Searching in High-Dimensional Spaces –
Index Structures for Improving the Performance of Multimedia Databases. ACM
Computing Surveys, 33(3):322–373, 2001.

7. E. Chávez and G. Navarro. A probabilistic spell for the curse of dimensionality. In
Proc. 3rd Workshop on Algorithm Engineering and Experiments (ALENEX’01),
LNCS 2153. Springer-Verlag, 2001.

8. E. Chávez, G. Navarro, R. Baeza-Yates, and J. L. Marroqúin. Searching in metric
spaces. ACM Compututing Surveys, 33(3):273–321, 2001.

9. P. Ciaccia, M. Patella, and P. Zezula. M-tree: An Efficient Access Method for
Similarity Search in Metric Spaces. In Proceedings of the 23rd Athens Intern.
Conf. on VLDB, pages 426–435. Morgan Kaufmann, 1997.

10. V. Dohnal, C. Gennaro, P. Savino, and P. Zezula. D-index: Distance searching
index for metric data sets. Multimedia Tools Applications, 21(1):9–33, 2003.

11. A. Frieze, R. Kannan, and S. Vempala. Fast Monte-Carlo Algorithms for Finding
Low Rank Approximations. In Proceedings of 1998 FOCS, pages 370–378, 1998.

12. G. H. Golub and C. F. V. Loan. Matrix computations (3rd ed.). Johns Hopkins
University Press, 1996.

Modified LSI Model for Efficient Search by Metric Access Methods 259

13. R. M. Larsen. Lanczos bidiagonalization with partial reorthogonalization. Techni-
cal report, University of Aarhus, 1998.

14. M. L. Micó, J. Oncina, and E. Vidal. An algorithm for finding nearest neighbour in
constant average time with a linear space complexity. In International Conference
on Pattern Recognition, pages 557–560, 1992.

15. A. Moffat and J. Zobel. Fast ranking in limited space. In Proceedings of the Tenth
International Conference on Data Engineering, pages 428–437. IEEE Computer
Society, 1994.

16. J. K. P. Kanerva and A. Holst. Random Indexing of Text Samples for Latent
Semantic Analysis. In Proceedings of the 22nd Annual Conference of the Cognitive
Science Society, page 1036, 2000.

17. C. H. Papadimitriou, H. Tamaki, P. Raghavan, and S. Vempala. Latent seman-
tic indexing: A probabilistic analysis. In Proocedings of the ACM Conference on
Principles of Database Systems (PODS), pages 159–168, 1998.

18. M. Persin. Document filtering for fast ranking. In Proceedings of the 17th annual
international ACM SIGIR conference on Research and development in information
retrieval, pages 339–348. Springer-Verlag New York, Inc., 1994.

19. J. Ponte and W. Croft. A language modelling approach to IR. In Proceedings of
the 21 st ACM SIGIR Conference, pages 275–281, 1998.

20. T. Skopal, P. Moravec, J. Pokorný, and V. Snášel. Metric Indexing for the Vector
Model in Text Retrieval. In Proceedings of the 11th Symposium on String Pro-
cessing and Information Retrieval (SPIRE), Padova, Italy, LNCS 3246, Springer-
Verlag, pages 183–195, 2004.

21. E. M. Voorhees and D. Harman. Overview of the sixth text REtrieval conference
(TREC-6). Information Processing and Management, 36(1):3–35, 2000.

22. P. N. Yanilos. Data Structures and Algorithms for Nearest Neighbor Search in
General Metric Spaces. In Proceedings of Fourth Annual ACM/SIGACT-SIAM
Symposium on Discrete Algorithms - SODA, pages 311–321, 1993.

23. P. Zezula, P. Savino, G. Amato, and F. Rabitti. Approximate Similarity Retrieval
with M-Trees. VLDB Journal, 7(4):275–293, 1998.

	Introduction
	Classic Vector Model

	Latent Semantic Indexing
	LSI Model and Inverted Files

	Metric Indexing
	Turning Vector Model into Metric Model
	Metric Access Methods
	Intrinsic Dimensionality

	The -LSI Model
	Motivation
	Singular Values Modification
	Intrinsic Dimensionality Reduction

	Experimental Query Evaluation
	Effectiveness
	Efficiency

	Conclusions
	References

