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Abstract An important research issue in multimedia databases is the retrieval of
similar objects. For most applications in multimedia databases, an exact search is not
meaningful. Thus, much effort has been devoted to develop efficient and effective
similarity search techniques. A recent approach that has been shown to improve
the effectiveness of similarity search in multimedia databases resorts to the usage
of combinations of metrics (i.e., a search on a multi-metric space). In this approach,
the desirable contribution (weight) of each metric is chosen at query time. It follows
that standard metric indexes cannot be directly used to improve the efficiency of
dynamically weighted queries, because they assume that there is only one fixed
distance function at indexing and query time. This paper presents a methodology for
adapting metric indexes to multi-metric indexes, that is, to support similarity queries
with dynamic combinations of metric functions. The adapted indexes are built with
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a single distance function and store partial distances to estimate the dynamically
weighed distances. We present two novel indexes for multimetric space indexing,
which are the result of the application of the proposed methodology.

Keywords Information storage and retrieval - Content analysis
and indexing methods

1 Introduction

Similarity search in multimedia database systems is becoming increasingly important.
This is due to a rapidly growing amount of available multimedia data like images,
audio files, video clips, 3D objects, time series, and text documents. As we see
progress in the fields of acquisition, storage, and dissemination of various multimedia
formats, the application of effective and efficient database management systems
becomes indispensable to handle these formats. Application domains for multimedia
databases include molecular biology, medicine, geographical information systems,
Computer Aided Design/Computer Aided Manufacturing (CAD/CAM), virtual
reality, and many others.

a) In medicine, the detection of similar organ deformations can be used for
diagnostic purposes [17].

b) Biometric devices (e.g., fingerprint scanners) read a physical characteristic from
an individual and then search in a database to verify if the individual is registered
or not. The search cannot be exact, as the probability that two fingerprint scans,
even from the same person, are exactly equal (bit-to-bit) is very low.

c) A 3D object database can be used to support CAD tools. For example, standard
parts in a manufacturing company can be modeled as 3D objects. When a new
product is designed, it can be composed of many small parts that fit together
to form the product. If some of these parts are similar to one of the standard
parts already designed, then the possible replacement of the original part with
the standard part can lead to a reduction of production costs.

d) In text databases, a typical query consists of a set of keywords or a whole
document. The search system looks in the database for documents that are
relevant to the given keywords or that are similar to the query document. A
certain tolerance on the search may be allowed in case, e.g., that some of the
given keywords were mistyped or an optical character recognition (OCR) system
was used to scan the documents (thus they may contain some misspelled words).

e) In bioinformatics, the protein classification or prediction requires complex
similarity measuring that mimics the functional similarity of proteins [16, 19].

Many of these applications have in common that the objects of the database
are modeled in a metric space [10, 20]. That is, it is possible to define a posi-
tive real-valued function § among the objects, called metric distance, that satisfies
the properties of strict positiveness (§(x, y) > 0 and §(x, y) =0 & x = y), symmetry
(8(x, y) = 8(y, x)), and the triangle inequality (8(x, z) < 8(x, y) + 8(y, z)). The main
motivation for using metric spaces is the fact that they are easily indexable by metric
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access methods [10]. An important particular case of metric spaces are vector spaces,
where the objects are tuples of D real values, i.e., they are vectors in R?.

A recent proposal to improve the effectiveness (i.e., the quality of the retrieved
answer) of similarity search resorts to the use of combinations of metrics [6, 7].
Instead of using a single metric to compare two objects, the search system uses a
linear combination of metrics to compute the (dis)similarity between two objects.
The weights of the linear combination can be either static (they are a parameter of
the search system) or dynamic (they are selected at query time). A static combination
of metrics has the problem that usually not all metrics are well-suited for performing
similarity search with all query objects. Moreover, a bad-suited metric may “spoil”
the final result of the query. Thus, to further improve the effectiveness of the search
system, methods for dynamic combinations of metrics have been proposed, where the
query processor weighs the contribution of each metric depending on the query object
(i.e., higher weights are assigned to the “good” metrics for that query object, and
lower weights are assigned to the “bad metrics”, according to some quality criteria).
This means that, instead of a single metric, the system uses a dynamic metric function
or multimetric. Thus, in multi-metric spaces a different metric function is used to
perform each similarity query.

This paper presents a methodology to adapt metric indexes for supporting multi-
metric similarity queries. We first describe the proposed methodology, explaining
how this methodology can be used to adapt two different metric indexes, GNAT and
List of Clusters. Next, we explain how previously proposed multi-metric indexes,
like the M3-tree, fit into this methodology. Finally, we show experimentally that the
efficiency of the adapted indexes is very close to the lower bound of each method (the
optimal achievable efficiency regarding to each index structure), which corresponds
to the efficiency achieved when having one metric index per query object. Note that
having one index per query is not a practical solution, since the construction cost of
each index would be more costly than processing the query with a sequential scan.
Also note that in this paper we only deal with the efficiency issues of similarity
search in multi-metric spaces. For a discussion on the effectiveness of the multi-
metric approach see Bustos et al. [6, 7].

2 Similarity search in metric and multi-metric spaces

Let (X, §) be a metric space and let U C X be a set of objects (i.e., an instance of a
database). There are two typical similarity queries in metric spaces:

—  Range query. A range query (q,7), q € X, r € R, reports all database objects
that are within a tolerance distance r to g, that is (¢,r) = {u € U, 8(u, q) < r}.
(g, r) is called the query ball.

—  k nearest neighbors query (k-NN). It reports the k objects from U closest to
g. That is, it returns the set C C U such that |C|=k and Vx € C, ye U—-C,
3(x,q) <8y, @)

Usually, a single metric function is used to compute the similarity between two
objects in the metric space. However, a recent trend to improve the effectiveness
of the similarity search resorts to use several metric functions. The (dis)similarity
function is computed as a linear combination of some selected metrics.
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Definition 1 Multi-metric space

Let M = {(X;, &), 1 <i < n} be a set of metric spaces. We define the correspond-
ing Multi-metric space as the pair ([T, X;, Aw), where Ay is a linear multimetric
distance, which means

Aw(x,y) = Z w;di (X, i) (1)
i_1

In the above definition, the vector of weights W = (w;) is not fixed, and it is a
parameter of A. When Viw; € [0, 1] A i w; > 0, Aw is also a metric.

If the weights of the combination are fixed, the multi-metric space becomes an
ordinary metric space and one could use any standard metric index structure. In
our framework, however, the weights are dynamic—computed at query time—and
therefore the metric distance function is dynamic and depends on the query objects.
This has been shown to provide better effectiveness results [6, 7]. Thus, the problem
is to develop a metric index structure that returns the correct answer to the similarity
query, even if the query distance function is not the same as the distance function used
to build the index (index distance function). The naive (but optimal in terms of search
cost) solution would be to have an index structure for each “fixed multi-metric”, but
this would not be practical because it would imply to build an index for each query
object.

Note that for the particular case of vector spaces, Spatial Access Methods (SAMs)
can be used to index the data collection (good surveys on this topic are Berchtold
et al. [1] and Samet [18]). However, the focus of this paper is the case of combining
general metric spaces, thus we will only present examples of metric access methods
adapted for multi-metric spaces.

In the following, we describe a few metric access methods (MAMs). It is worth
noticing that the methods here explained are the relevant ones to our work and that
this section is by no means a survey on MAM indexing techniques. We refer the
reader to Chavez et al. [10], Samet [18], or Zezula et al. [20] for excellent surveys on
this topic.

2.1 GNAT

Geometric Nearest-Neighbor Access Tree or GNAT [2] tries to represent the “intrin-
sic geometry” of the space using a hierarchic structure based on Dirichlet domains
(or Voronoi-like partitioning).

Construction Given £ objects py, ..., p, (the split points) from the dataset (U), the
Dirichlet domain (Voronoi zone) corresponding to p; is composed of all the objects
that are closer to p; than any other p;. In the root of GNAT, the dataset is partitioned
in the different Dirichlet domains corresponding to each split point. Then, the
maximum and minimum distance from each split point to each zone is computed.
Figure 2 shows the split points p and s, the Dirichlet domain D, corresponding to s
and the minimum (mins(p, D;)) and maximum (maxs(p, D;)) distances of the range
defined by p and D;. Finally, each domain is recursively partitioned in the same way.
The partition of the dataset into Dirichlet domains is used just for constructing the
index, and not for querying it. Figure 1 shows the pseudocode of this construction
algorithm.
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Fig.1 GNAT build algorithm function Build(U)

let P= py,..., pe,setof £ split points
forallx e U— Pdo
associate x with closest split point
let D, = associated set of p;
forall (p;, pj)) € P x Pdo
range(p;, Dp,) = [mins(pi, Dp,), maxs(pi, Dp,)]
for all p; € Pdo
Build(D,,)
10 end function

O 0 NN NN R W

Range query The range query algorithm (see Fig. 3) computes the distances from
the query object to each one of the split points. With these distances, the search
algorithm verifies whether the query ball overlaps a zone. If not, the corresponding
branch of the tree is pruned. The pruning is performed in line 8 of Fig. 3, where the
condition holds because of the triangular inequality (see Figs. 2 and 3).

k-nearest neighbors To perform a k-NN search, we developed an algorithm using
the technique presented by Hjaltason and Samet [15]. As far as we know, this
algorithm has not been presented before in the literature. The algorithm needs an
estimation of the distance from the query object to each of the Voronoi zones. To
get this estimation, we use the ranges computed for each pair of split points. Indeed,
to estimate the distance between the zone defined by the split point p and the query
object ¢ we use the ranges of each split point to D,. Given another split point s,
g may be located: (1) inside zone D, in which case the distance is 0; (2) outside
the ring defined by s and D; (3) between s and D,. Figure 4 shows Cases (2) and
(3). A lower bound distance for Case (2) is 8(s, g) — maxs(s, D)), and for Case (3)
is mins(s, D) — 8(s, g). Finally, the estimation of the distance is set as the maximum
of all the computed estimations with each of the split points. Figure 5 shows the
proposed k-NN algorithm.

Fig. 2 Branch pruning in
GNAT using ranges

mazsp, D)
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1 function Search(N, g, r)
2 let P = split points(N)
3 forall p € Pdo
compute §(p, q)

5 if5(p,q) <rthen

6 add p to query result
7 foralls € Pdo
8
9

~

if [8(q, p) — 1, 8(q, p) +r] Nrange(p, Dy) = @ then
remove s from P
10 for all p € P do
11 Search(D,,q,r)
12 end function

Fig. 3 GNAT range query algorithm

2.2 List of clusters

List of clusters [9] is a metric index based on compact partitions. It shows good
performance in spaces with high dimensionality, and it is also well suited for
secondary memory.

Construction To build the index, the algorithm selects an object ¢ from the dataset
and a radius r.. Then, it groups all objects that are within distance r, from c are in [,
and the remaining objects in E.. The construction process is continued recursively in
E. until all objects are indexed. Figure 6 shows the pseudocode of this algorithm.

Figure 7 shows an example of how the structure is organized in R? and how the
structure can be seen as a list. This figure also shows a fundamental characteristic of
List of Clusters: an object belongs necessarily to the first partition (or bucket) that
can hold it. That is, if two or more partitions overlap, the objects in the intersection
will belong to the partition that was created first. For example, in Fig. 7 u belongs to
c1, even though it is also located in the zone of c;.

Range query Figure 8 depicts the range query algorithm. The algorithm computes
the distance from the query object to the center c of the first cluster, and c is added

Fig. 4 Distance from an object
to a zone in GNAT
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1 function Knn(N, ¢, k)

2 let Q = priorityQueue()
3 enqueue((N, 0), Q)

4 while O # ¢ do

5 let object = dequeue(Q)
6 if object is spatial object then
7 report object
8 if size(query result) = k then
9 return
10 else
11 let P = split points(object)
12 forall p € Pdo
13 compute §(p, q)
14 enqueue((p. 8(p. 9)), Q)
15 let dist = max,ep{8(s, q) — maxs(s, Dp), mins(s, D) — 8(s, q), 0}
16 enqueue((D,, dist),Q)

17 end function

Fig.5 GNAT k-NN algorithm

Fig. 6 List of clusters build function Build(U)
algorithm if U = ¢ then
return empty list
Selectc € U

Select radius r,

I. < {uelU-—/{c}, 6(c,u) <r.
E.«~U-1.

return (c,r., I.) :Build(E,)
end function

O 0 1 O i AW N~

Fig. 7 Example of list of
cluster in R?
E E E
(cl,rl) —= (c2,r2) —= (c3,r3) —=

1 1 1

Fig.8 List of clusters range

- function Search(L, g, r)
query algorithm

let (c,re.,I): E=L

compute §(c, q)

if §(c, q) < r then
add c to query result

if §(c, q) < r.+r then
search exhaustively in /

if §(c, q) > r. — r then
Search(E, q,r)

10 end function

O 00 N N kAW~
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Fig.9 List of clusters range
query search cases

to the result if it intersects the query ball. Then, three different cases may occur,
which are presented in Fig. 9. The first case () is when the query ball intersects the
bucket /.. In this case, the algorithms needs to search the whole bucket. The second
case (q,) is when the query ball is completely contained in /.. In this case, the search
can be pruned after searching /.. The last case (g3) is when the query ball does not
intersect the bucket, thus /. can be pruned from the search. In the first and last cases
the search must continue recursively in E..

k-nearest neighbors The idea behind this algorithm! is to first check the buckets
with higher possibilities to hold the nearest neighbors. This is done by keeping a list
with the k nearest objects found so far. This allows the algorithm to skip some of the
buckets while searching those that intersects with the query object. The algorithm
is presented in Fig. 10. Function searchBucketKnn searches exhaustively a bucket,
updating the query result list with the nearest objects found and storing at most k&
objects in the list.

2.3 Pivot-based indexing

There are many similarity search indexes based on pivots [10], which are selected
objects from the dataset. Here, we describe the canonical index structure based on
pivots and the algorithm for performing range queries using this index.

Given a range query (q,r) and a set of k pivots P = {p,, ..., px}, pi € U, by the
triangle inequality it follows that 8 (p;, x) < §(pi, q) + 3(q, x), and also that §(p;, q) <
8(pi, x) + 8(x, q) for any x € X. From both inequalities, it follows that a lower bound
on8(q, x) is 8(q, x) > |8(pi, x) — 8(pi, q)|. The objects u € U of interest are those that
satisfy 8(q, u) <r, so all the objects that satisfy the exclusion condition (2) can be
discarded, without actually evaluating §(g, u).

|8(pi, u) — 8(pi, q)| > r for some pivot p;. (2)

IThis algorithm was taken from the SISAP library http://www.sisap.org
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1 function Knn(L, ¢, k)

2 let(c,r.,I): E=L

3 compute §(c, q)

4 if §(c, q) < r. then

5  searchBucketKnn(/, ¢, k)
6 ifsize(query result) < k or §(c, q) + maxs(query result) > r. then
7 Knn(E, g, k)

8 else

9 Knn(E,q,k)

10  if size(query result) < k or 8(c, g) — maxs(query result) < r. then
11 searchBucketKnn(Z, g, k)

12 end function

Fig. 10 List of clusters k-NN algorithm

The canonical pivot-based index consists of the kn precomputed distances §(p;, u)
between every pivot and every object of the database. Therefore, at query time it
is only necessary to compute the k distances between the pivots and the query g,
3(pi, q), in order to apply the exclusion condition (2). The list of candidate objects
{uy, ..., u,} € U that cannot be discarded with the exclusion condition (2) must be
directly checked against the query object.

The way how pivots are selected affects the efficiency of the search algorithms [4].

2.4 M-Tree

The M-tree [12] is a dynamic (meaning easily updatable) index structure that provides
good performance in secondary memory. The M-tree is a hierarchical index, where
some of the data objects are selected as centers (local pivots) of regions and the rest
of the objects are assigned to suitable regions. This builds up a balanced and compact
hierarchy of data regions. Each region (branch of the tree) is indexed recursively. The
data are stored in the leaves of the M-tree, where each leaf contains ground entries
(grnd(x), x € U). The internal nodes store routing entries (rout(y), y € U).

Starting at the root level, a new object x is recursively inserted into the best subtree
T(y), which is defined as the one where the covering radius r, must increase the least
to cover the new object. In case of ties, the subtree whose center is closest to x is
selected. The insertion algorithm proceeds recursively until a leaf is reached and x is
inserted into that leaf, storing at each level the distance to the routing object of its
parent node (so-called to-parent distance). Node overflows are managed in a similar
way as in the B-tree. If an insertion produces an overflow, two objects from the node
are selected as new centers, the node is split, and the two new centers are promoted to
the parent node. If the parent node overflows, the same split procedure is applied. If
the root overflows, it is split and a new root is created. Thus, the M-tree is a balanced
tree (see Fig. 11).

To correctly bound the data in the respective subtree 7(R), the routing entry
rout(R) must satisfy the nesting condition: VO; € T(R),rr > §(R, O;).

Range queries are implemented by traversing the tree, starting from the root.
The nodes which parent region (described by the routing entry) is overlapped by
the query ball are accessed (this requires a distance computation). As each node in
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Fig. 11 Example of an M-tree et

rout,(A)

rout,(C)
rout,(B)
rout,(A)

¥

} ;/ t t grnd(D) : égmd(E)
)

grnd(A)grnd(F) grnd(B

the tree (except for the root) contains the distances from the routing/ground entries
to the center of its parent node (the to-parent distances), some of the non-relevant
branches can be further filtered out, without the need of a distance computation, thus
avoiding the “more expensive” basic overlap check.

3 Proposed methodology

In this section, we propose a standard methodology for adapting metric indexes to
multi-metric indexes. The main idea of our proposed methodology is to build the
multi-metric index with a fixed multimetric, and then estimate the distances when
the weights are defined at query time. When estimating the distances, we need also
to assure that any index-specific invariant is preserved when changing the weights.
To estimate the distances, we categorize them in three different types and show how
to bound them. We also show how to change the conditionals and statements used in
query algorithms to ensure that they always return the correct answer.

3.1 Index-specific invariant

An index-specific invariant is any qualitative property of the indexing model which
must be preserved under all circumstances, and that is later relevant for the cor-
rectness of the query results. For example, the nesting condition defined for M-tree
routing entries or the property of List of Clusters (by which each object belong to the
first cluster that can hold it) are such an invariant. If the index-specific invariant is
just a definition of a distance stored by the structure, we will call it implicit, because
they are implicitly adapted when changing to multimetrics. Thus, the first presented
example will be an implicit-index-specific invariant and the second one an index-
specific invariant.
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Note that a property that balances the index or improves compactness/efficiency is
not considered as an index-specific invariant. The invariant of GNAT by which each
object is associated with the closest split point, is an example of an invariant that is
not an index-specific invariant.

3.2 Distance bounds

The indexing structures for metric spaces, either pivot based or compact partitioning
algorithms [10], store distances between objects. These distances are used later to
test if an object belongs to the query ball.

The stored distances can be classified into the following types (further in text
denoted as Type 1, 2, 3):

1. Distance between two objects, d = 8(x, y) x,y € U
2. Maximal distance from an object to a set, d = maxyeccy d(x,y) y € U
3. Minimal distance from an object to a set, d = minycccy §(x, y) y € U

It is important to note that Type 1 is a particular case of both Types 2 and 3.

When working with multi-metric spaces, the distance function Aw is not known
when building the index; it is just known at query time—at the moment when the
weights W are defined. For that reason, a multi-metric index must estimate the
distances. If the distance is of Type 1, it can be computed exactly. To do this, it
is necessary to store the components of the distance between each pair of objects,
which later are weighed and summed into Aw. If the distance is of Type 2 or 3, it
cannot be computed exactly. Later, we will show two lemmas that will allow us to
estimate the distances.

Let X be a multi-metric space, C C X a set, y € X an object of the space, and let

P = max Aw(x, y) = max Z w;d; (X, yi) (3)
T = I)Pelg Ayy(x,y) = fxnelél Z w;d; (i, yi) 4)

where W is a vector of weights, whose values are in the range [0.0, 1.0] and at least
one weight is not zero. From now on we are using also the notation W = 1.0, which
means that all weights are equal to 1.0. Also, the subscript or upperscript /b stands
for lower bound and ub for upper bound.

In the following, we propose two complementary constructions of lower and upper
bounds.

Lemma 1 Bound based on weights

A% W 10

T max = Fypy = MaxX w; I,y (5)
W wo_ .10

T min z Tipy = MINW; Fryipy (6)
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Proof

w
Fmax = Max Z w;8i (%, yi) < MaXyec Y max w; 6;(x;, yi)

= max w; maxyec Y 8i(xi, yi)

1.0
max

= maxw; r
Fmin = TN E w;8i (X, i) = minyec Y minw; 8;(x;, y;)

= minw; mineec Y 8;(X;, yi)

= minw; rkd
i
Lemma 2 Bound based on distance components
W W
Foax < Tuba = Z w; max §;(x;, yi) (7)
xeC
W W .
Tain = Tlpy = Y w;min&;(x;, yi) (8)
xeC
Proof
W
Tmax = Max Z w;di(2i, yi) < MaXzec ) w; MaXyec 6 (Xi, Vi)
Zz
= D w; maxyec 8i(x;, yi)
Fmin = N Z w;di(zi, yi) = Mingec Y w; Mingec 8;(x;i, i)
= D w; minyec &;(xi, yi)
o

In the above proof max;cc Y w; maxyec 8;(X;, yi) = > w; max,cc 8i(x;, v;), because
the term inside the sum is constant respect to z.

Corollary 1 Using Lemmas 1 and 2 we have

A% wo_ A% W

T max = ryp = min (rubl’ rubZ) (9)
W W __ w W

Tmin = 7jp = Max (rlblvrlbz) (10)

In conclusion, to estimate a distance of Type 2 or 3 it is necessary to store the value
of the distance for the metric A o and also the maximum or minimum components of
the distance. Finally, we note that Lemma 1 has been already considered in Ciaccia
and Patella [11] for answering queries with user-defined distance functions. While
this approach may be used to answer queries in multi-metric spaces, it requires
the definition of lower and upper bounding distances of the query distances. Our
approach does not require to define such bounding distances (see Section 3.3), as it
relies on preserving the index-specific invariants of the original metric index.
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3.3 Adaptation process

The steps needed to convert a metric index into a multi-metric index are the
following:

1)
2)

3)

4)

Identify which types of distances are involved in the index.

Analyze if structure-specific index invariants are preserved in case the weights
are changed.

At this step we do not deal with implicit-index-specific invariants because those
are implicitly adapted in Step 4. At this point, one has to check if, given an index
built with a fixed multimetric (i.e., weights are fixed), the index preserves the
specific invariants of the structure when changing the weights. This step is crucial
to ensure that the query results are correct, because if the index-specific invariant
does not hold, the result could contain irrelevant objects or lack some relevant
ones.

Modify the construction of the structure.

The index is built with the multimetric A}, and each time a distance is stored
we also store the distance by components. At this step, it could be necessary
to store new distances to preserve the structure invariants. See Section 4.2.1 to
see an example of how a new distance is added to an index-specific invariant to
preserve it when changing weights.

Modify query algorithms using bounds. Here the conditions and statements of
the query algorithms of the metric index are adapted. The only conditions and
statements that must be changed are those which use distances.

— Type 1 distance: the distance is computed exactly, preserving the condition
or the statement.

— Type 2 distance: in this case, the way how a condition changes depends on
the action taken when the condition is true.
There are two basic actions that can be done. The first is to keep searching
in the structure, and the second is to prune the search. In the first case, we
need to ensure that all the relevant “branches” are going to be visited, thus
we must assure that every time the condition is held with the new weights,
it is also held with the estimated distance (i.e., cond(d) = cond(d,p)). In
the second case, we need to guarantee that the search is not being ended
without reason, thus we must have that every time the condition is held with
the estimated distance, it is also held for the exact distance (i.e., cond(d,,) =
cond(d)).
Generally, distances of Type 2 with a search action are of the form d > a, and
those of Type 2 with a prune action are of the form d < a. These conditions
satisfy the properties stated above to ensure the correctness of the result.
This is true because d > a = d,, > a (search) and d,, < a = d < a (prune).
If these are conditions of the algorithm, one can use directly the bounds
obtained in the Corollary 1. That is, the search condition is changed to
d,» > a and the pruning condition to d,;, < a. When the conditions in the
algorithm are not like the ones stated above one should find a custom way
to adapt these particular conditions. However, in all the four methods we
studied the conditions are like those previously explained, thus they can be
adapted using this method.
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Statements generally use distances to estimate other distances (see Sec-
tion 2.1 for an example). In this case, one must check if the distance being
estimated is a lower or upper bound, and then verify if the bounds of the
involved distances (lower bound for a Type 2 distance) maintain the bound
being estimated (see Section 4.1.3). As a matter of fact, we only found
statements in the k-NN algorithms of GNAT and M-Tree, and those were
estimating distances.

— Type 3 distance: it can be handled similarly as the case for distances of
Type 2.

4 Multi-metric indexes

In this section, we describe how we adapted the metric indexes GNAT and List of
Clusters, and how the previously proposed multi-metric indexes [3, 5] can be seen as
a direct application of our proposed methodology.

4.1 Multi-metric GNAT (MMGNAT)

The distances stored by GNAT are the ranges of each split point to the zones.
The range is of the form [ming(p, Dy), maxy(p, D,;)], where the minimum distance
is of Type 2 and the maximum distance of Type 3. It is important to realize that
in the construction of GNAT each point is paired with the closest split point, but
this condition is never used in the search algorithms. For this reason, GNAT has no
index-specific invariant, thus it can be modified directly to index multi-metric spaces.

4.1.1 Construction

Because the structure has no index-specific invariants, the new construction al-
gorithm is quite similar to the original one. The construction is done with the
multimetric A; . Each time a maximum distance of a range is stored, the maximum
distance of each component to the zone is also stored. The same is done for the
minimum distance of the range. This is because the involved distances are of Type 2
and 3.

4.1.2 Range query

It can be seen in Fig. 3 that the only condition that depends on the stored distances
is the one in line 8. This condition is equivalent to:

if max,(p, D,) < dist(x, p) —r or ming(p, D,) > dist(x, p) + r then
remove g from P

In the condition shown above, the maximum distances are involved in conditions of
type d < a, the minimum distances are involved in conditions of type d > a, and the
action performed corresponds to a prune. Thus, we can replace directly the distances
by the bounds, according to the reasoning explained in Section 3.3. Figure 12 shows
the algorithm. In line 8, we use Corollary 1 to estimate the maximum and minimum
distance of the range.
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1 function Search(N, q, r)
2 let P = split points(N)
3 forall p € Pdo
compute Aw(p, q)

5 if Aw(p,q) <rthen

6 add p to query result
7 foralls € Pdo
8
9

~

let range.(p, D) = estimate range(p, Dy)
if [Aw(q, p) —r, Aw(q, p) +rlNrange.(p, Dy) = ¥ then
10 remove s from P
11 for all p € P do
12 Search(D,,q,r)
13 end function

Fig. 12 MMGNAT range query algorithm

4.1.3 k-nearest neighbors

The stored distances are only used to estimate the distance from the query object to a
zone (see line 15 of Fig. 5). If the distances of a range are replaced by the bounds, we
only get an estimation of the real range. Thus, the estimation of the distance from the
query object to a zone may produce a different ordering, but this can only affect the
efficiency of the pruning, not the effectiveness of the search. The resulting algorithm
is shown in Fig. 13.

4.2 Multi-metric list of clusters (MMLCluster)

List of Clusters stores the radius of each cluster. This corresponds to a distance of
Type 3, because this distance is computed as the maximum distance from the center
of the cluster to each object of the cluster.

4.2.1 Index-specific invariant

The invariant of List of Clusters ensures that if an object could be in two different
clusters, it will belong necessarily to the one that was created first. This allows the
index to prune earlier the range query search, decreasing the number of distance
computations. If the structure is built with a fixed multimetric, let say A, and then
the weights are changed, the invariant (with the new weights) will not necessarily
hold in the previously built structure, because the objects may now belong to a
new cluster. Figure 14 shows how an object could belong to a different cluster after
changing weights. In the example, the multi-metric space combines two vector spaces
of dimension 1. The left figure shows the cluster defined by g, when the multimetric
is A1 (note that g4 does not belong to the cluster defined by ¢, ), and the right figure
shows the new cluster when the multimetric is changed to A .1.0; (now g4 do belong
to the cluster defined by ¢).

In the original List of Clusters, the pruning is made every time the query ball is
completely contained in any cluster. This pruning can be made because the invariant
assures that all the objects that remain in the list cannot belong to the current cluster.
To maintain this invariant when the weights are changed, we reinterpret the way
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Fig. 13 MMGNAT k-NN 1 function Knn(N, g, k)
algorithm 2 let Q = priorityQueue()

3 enqueue((N, 0), Q)

4 while Q # ¢ do

5 let object = dequeue(Q)

6 if object is spatial object then
7 report object
8 if size(query result) = k then
9 return
10  else
11 let P = split points(object)
12 for all p € Pdo
13 compute Aw(p, q)
14 enqueue((p, Aw(p, q)), O)
15 forall p e Pdo
16 let dist =0
17 foralls € Pdo
18 let range.(p, D,) = estimate range(p, D,)
19 if ming, (s, Dp) — Aw(s, q) > dist then
20 dist = ming, (s, Dp) — Aw (s, q)
21 if Aw(s, q) — max,, (s, D,) > dist then
22 dist = Aw(s, q) — maxy, (s, Dp)
23 enqueue((D,, dist), Q)

24 end function

the pruning is performed. If we introduce a new radius reyeral, Where all objects
remaining in the list are at distance d > rexiernal from the center of the cluster, the
pruning can be stated in a way that the invariant is preserved when changing the
weights. Now, the pruning will be made every time the query ball is completely
contained in the ball defined by the center of the cluster and rexierna- This way of
pruning does not contradict with the original invariant, because when the weights
are fixed the radius of the cluster is lower or equal tO Fexternal- The added distance is
of Type 2, so we can get a lower bound of it. Thus, we can keep the invariant when
changing the weights. This radius will depend on the weights being used and it is
given by the following formula:
Texternal = xglUlElC Aw(c, x) (11)
where c is the center of the last created cluster, the one for which we are computing
Fexternal, and C is the set of all objects added to any cluster. It is important to realize

Fig. 14 Objects belong to o5 o5
different clusters when i
changing weights . N
/o3 N eu4 03 o4
< oql S Peh
\ 7
\ 7
\'id - — _— 2 _
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Fig. 15 New distances in r
MMLCluster

r_external

[ )

.

that C is defined when building the index with weights A and that it does not
change when the weights are changed.

Figure 15 depicts the structure of the Multi-Metric List of Clusters. The objects 0,
to o4 belong to the cluster defined by c; and the objects o5 to o7 to the cluster defined
by ¢,. Notice that objects 05 and o7 are in cluster ¢, even though its distance to ¢y is
lower than r. This is because its distance is greater than rexternal, SO the invariant does
not ensure that they belong to the first created cluster.

Figure 16 presents the criterion for searching or pruning a range query search.
For the query ball g, it is not necessary to search in the current cluster. For ¢, as
the query ball is completely contained in the ball defined by rexiernal, the search ends
after searching in the cluster, and for g3 and g, it is necessary to search the cluster and
keep searching in the rest of the list. It is important to notice that for g, in the original
List of Clusters the search would end because the query ball is completely contained
in the cluster, but the new invariant does not allow to prune the search at this point.

Lemma 3 The new invariant is preserved when changing weights.

Fig. 16 Range query in r
MMLCluster

r_external
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Let C be the set of all objects already added to any previously created cluster and c
the last cluster created, then the invariant is stated as follows

W
Pp¢C = Aw(p,c) = Texternal (12)
that means that every object not yet added to the cluster is at distance greater or equal
than rleemal from c.

Proof This invariant holds trivially for all sets of weights, because by definition,

W — W
Texternal = MilyeU—c Aw(c, x) and as p ¢ C, thenr, . . < Aw(c, p). O

4.2.2 Construction

To build the new index, the space is indexed using the multimetric A; . Every time a
cluster is created, we store the radius and the maximum distance by component from
the center to each object in the bucket. We need also to store rexiernas and the mini-
mum distance by component from the center to each object not yet added to the list.

4.2.3 Range query

The range query search should use now the new invariant and distances. That is, the
conditions involved are of the form r, > a and rexiernal < @ (cf. Section 3.3, Step 4).
Also, both conditions have an action of keep searching, so we can directly replace
these distances by their bounds: lower bound for reyierna and upper bound for r.. The
new range query search algorithm is depicted in Fig. 17.

4.2.4 k-nearest neighbors

The conditions in lines 6 and 10 in the k-NN algorithm of List of Clusters (see Fig. 10)
are the same conditions found in lines 6 and 8 of the range query algorithm of List
of Clusters (see Fig. 8), thus the transformations are the same as the ones made for
Range Query search. The k-NN algorithm is shown in Fig. 18.

4.3 M3-Tree
The M3-Tree [3] results of applying the proposed methodology to the M-Tree. Two

distances are involved in the M-Tree: the to-parent distance, which is a distance of
Type 1; and the maximum distance from a node to each one of its descendants, which

Fig. 17 MMLCluster range 1 function Search(L, g, r)
query algorithm 2 let (¢, 7o, Foxternats ) : E= L
3 compute Aw(c, q)
4 let r'> = estimate r.
5 let rlb = estimate Fexernal
6 if Aw(c, q) <r then
7  add c to result list
8 if Aw(c,q) <r** +rthen
9  search exhaustively in /

—_
o

if Aw(c,q) > r’> —r then
Search(E, g, )
end function

U
N =
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1 function Knn(L, ¢, k)

2 let (Cv Tey Fexternal » I) cE=L

3 compute Aw(c, q)

if Aw(c, q) <r. then

5  searchBucketKnn(/, ¢, k)

6 letr’ = estimate 7oyerna

7 if size(query result) < k or Aw(c, q) + maxn,, (query result) > r* then
8

9

~

Knn(E, q, k)
else
10  Knn(E, g, k)
11 letr’ = estimate cluster.r,
12 ifsize(query result) < k or Aw(c, q) — maxn,, (query result) < r“> then
13 searchBucketKnn(1, g, k)

14 end function

Fig. 18 MMLclusters k-NN algorithm

is of Type 2. When creating the M>-tree, the space is indexed with the multimetric
A1, storing distances and also the components for each distance. No further changes
are needed because there are only implicit index-specific invariants.

Adapting the search algorithms is similar to the cases of GNAT and List of
Clusters. Figure 19 depicts the range query algorithm for the adapted M-tree. As
the to-parent distance is of Type 1, it can be computed exactly using the previously
stored components (see lines 6 and 14) and the conditions need no further changes.

1 function Search(N, g, r)

2 //if Nisroot then A (R, P) = Ay (P,q) =0
3 let P be the parent routing object of N

4 if N is not a leaf then

5 forall rout(R) in N do

6 compute Aw(R, P) with previously computed components
(weigh components)
7 let r.(R) be the estimated covering radius of R
8 if |Aw(P, q) — Aw(R, P)| < r.(R) + r then
9 compute Aw(R, q)
10 if Aw(R, q) <r+r, then
11 Search(ptr(T(R)), q.r)
12 else
13 for all grnd(R) in N do
14 compute Aw(R, P) with previously computed components

(weigh components)
15 if |Aw(P, q) — Aw(R, P)| <rthen

16 compute Aw(R, q)
17 if Aw(R, q) <r then
18 add R to the query result

19 end function

Fig. 19 Adapted M-tree range query algorithm
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The covering radius must be estimated, as it is of Type 2. When N is not a leaf, the
condition is of the form d > a with a search action (cf. Section 3.3, Step 4), so we
can directly replace it by its upper bound (see line 7). When N is a leaf, the covering
radius has no role, so the condition remains the same.

The only difference between the original implementation of M3-Tree and the
directly adapted M-tree is the fact that, instead of storing all the components of the
distances, M°>-tree stores an estimation of each component (i.e, it uses fewer bits).
This decreases the amount of memory needed to store the structure and also changes
the range query algorithm, because it cannot compute exactly the distance Aw(R, P).
Thus, it has to use lower and upper bounds of this distance to adapt the conditions in
line 8 and 15 of Fig. 19.

4.4 Pivot-based index for multimetrics

The pivot-based multi-metric index [5] can also be derived as a direct application
of the proposed methodology. Indeed, a pivot-based index stores the distance from
each point of the database to each one of the pivots. This means that the distances
are of Type 1. Thus, to convert this index into a multi-metric index one it only needs
to store the components for all distances.

5 Experimental evaluation

We performed an experimental evaluation of the efficiency of the adapted indexes
using three real datasets. The first dataset is a 3D models database collected by the
University of Konstanz [8], which has 16 features ranging from 32D to 510D. This
database has 1,838 objects, where 1,654 were indexed and the remaining 184 (10%)
were used as query objects. The second database is the collection of Corel image
features, available at the UCI KDD Archive [14]. This database has 4 features vectors
giving a combined feature vector of 89D. Of the 65,615 objects, 1,312 (2%) were
used as query objects and the remaining ones were indexed. The last dataset is also
a collection of images; these images were taken from Flickr and processed by the
CoPhIR group [13], giving 5 MPEGT7 features from 12D to 80D. This database has
over 100 million images, but in our tests we used only a subset of it, where 199,000
images were indexed and 1,000 (0.5%) were used as query objects.

Before indexing the dataset, we processed the data in order to have meaningful
results. The first step was to reduce the dimensionality of the features using PCA.
For the 3D Objects database, we chose six different features (namely: 3DDFT, CPX,
GRAY, H3D, SIL, and VOX [8]) and then we reduced each feature to 16D. The sec-
ond step was to normalize the database, that is, that the maximum distance between
any two objects is 1.0. Finally, we extracted from the dataset the query objects.

In the tests, we used for each metric space the metric § = L; (Manhattan distance),
defined as L, (x, y) = (ZKKD |x; — yil). The performed tests were the following:

1. 10-NN queries with weights in range [w, w + 0.1].

2. k-NN queries with weights in range [0, 0.1], ranging k from 1 to 10.

3. k-NN queries with a weight equal to 1.0 and the remaining weights equal to 0.0,
ranging k from 1 to 10 .
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In Tests 1 and 2, the weights are uniformly distributed in ranges of the form
[w, w+ 0.1], with w € [0, 1]. We chose such weights because in a k-NN query the
result does not change when all the weights are equally scaled. For this reason,
range [w, w + 0.1] is equivalent to [ -5, 1.0]. Thus, the “complexity” of the query
increases when w decreases. It is important to notice that a query with weights in the
range [0.0, 0.1] (i.e., w = 0) is equivalent to one with weights in [0.0, 1.0], which is the
more general case. Note that Test 3 is the more “pathological” one, as it is the same
as selecting only one metric to perform the search.

Additionally, we show the efficiency of the proposed indexes with other kinds
of weight distributions. We used a normal distribution centered in 0.5 and standard
deviation between 0.05 and 0.40. We also used a Zipf distribution to generate the
weights. The first distribution is (Z (p) — 1)/10 and the second is 1 — (Z (p) — 1)/10,
with p between 1.5 and 2.5. The first Zipf distribution gives weights clustered close
to 0.0, and the second one gives weights clustered close to 1.0. We chose the above
mentioned values for parameter of the distribution in order to have most of them in
interval [0.0, 1.0]. However, sometimes the weights were outside of the interval. In
that case, we set them as the closest extreme (either 0.0 or 1.0).

We tested the proposed adapted indexes (MMGNAT, MMLCluster) and the
M3-tree (note that we used the adapted M-tree index, which should have a better
performance than M3-tree because it stores the real distance components, not a
few bit approximation). We also created one specific metric index for each of our
query objects (i.e., indexed using ordinary metric Ay, with fixed W). These query-
dependent indexes served us as the baseline, i.e., they show the optimal query
processing regarding each correspondent index. Remember that this is an unpractical
solution (to have one index per query), and it is only used to show how far/close are
the multi-metric indexes to its optimum performance. These lower-baseline indexes
are represented in the graphics as “Index;,”.

5.1 Experimental results

Figures 20, 21, and 22 show the experimental results of each of the three test for the
three datasets, comparing the average number of distances computations required
for the respective similarity query. The results clearly show that a single multi-metric
index is almost as good as if we have infinitely many metric indexes at our disposal
(one metric index built for every possible vector of query weights) if the weights are
similar. For the most complex case (weights in the range [0, 0.1]) there is a hit in the
performance of the multi-metric index, but they still are able to discard a large part
of the dataset while performing similarity queries.

Figure 23 shows the result of the test using the Corel dataset, but now measuring
the average time used for the similarity queries. For this experiment, the MML-
Clusters is competitive, but note that we are using a metric function that is cheap
to compute. If we have used a more expensive distance (e.g., Mahalanobis), the
MMGNAT would outperform the other indexes also in time.

The results presented in Figs. 20, 21, 22, 23, 24, and 25 show that the most efficient
multi-metric index is MMGNAT. Although the lower bound of MMLCluster is
almost as good as the lower bound of MMGNAT, MMLCluster does not behave
as well as MMGNAT. This is because MMLCluster stores less information, only two
distances for each cluster. As these distances are estimated, it has less chances to
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Fig. 20 Corel results
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discard objects. Also, Fig. 24 shows that other distribution of weights gives similar
results, being MMGNAT consistently the best multi-metric index.

In case all weights are equal to 1.0, the multi-metric index should behave as
the original index, because the multi-metric index is built with those weights (see
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Fig. 21 CoPhlIR results
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Section 3.3). However, Fig. 22 shows that MMGNAT compute slightly less distances
than GNAT. This may be explained because in the construction of MMGNAT the
split points are chosen randomly, and this can affect the efficiency of the index. The
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Fig. 22 3D models (16D)
results
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obtained results also show that in the extreme case where just one weight is non-
zero, the performance of the multi-metric indexes is far from their lower bound.
In this scenario, it would be probably better to build one index for each metric

distance.
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Fig. 23 Corel results %om
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Figure 25 shows that there is an increasing in the number of distances computed
when more metrics are combined. This is the expected result, because if more
distance functions are combined, it is more difficult to correctly estimate the distance
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Fig. 24 Corel results with
different weight distributions
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values of the objects stored in the index structure using Lemmata 1 and 2. Thus, it
becomes more difficult to discard objects during the query processing.

Figure 26 shows how the performance of the proposed multi-metric indexes (with
the Corel dataset) if only the bound based on weights (Lemma 1) or the bound
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Fig. 25 Corel results with
different number of metrics
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based on distance components (Lemma 2) is used for estimating distances. The figure
shows that for 10-NN queries the only case where it is better to use Lemma 2 is when
the weights are in the range [0, 0.1]. However, the other chart shows that Lemma 2

Fig. 26 Comparison of the
bounds computed by Lemmas
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produces the better results, which is because in this chart the weights were in the
range [0, 0.1]. For all other cases, the bound produced by Lemma 1 was better. Thus,
given that no bound outperforms the other one in all situation, our recommendation
to use the best between both values is the most efficient approach.

In summary, the experimental evaluation shows that the proposed methodology
is robust with respect to different weights and data distributions, and even in the
complex cases the efficiency of the proposed algorithms is not so far from the lower
bound. In our methodology, the distances are estimated according to the data stored
by the index. Thus, when the index stores few distances the estimation may be not
very tight. This is the reason why MMLCluster did not perform as well as the other
tested indexes.

6 Conclusions

In this paper, we presented a methodology to adapt metric indexes to be used as a
multi-metric index. The great advantage of this methodology is that it is general and
it may be used to adapt any metric index. This gives us the flexibility to choose the
most appropriate index depending on data distribution, intrinsic dimensionality, and
any other user-defined parameter or requirement.

We showed how the methodology can be applied to two different metric indexes,
yielding two novel indexing methods for multi-metric spaces, and how previously
proposed multi-metric indexes fit into this approach. Additionally, we proposed
a k-NN algorithm for GNAT. Although this algorithm was developed using the
technique presented by Hjaltason and Samet, as far as we know, it has not been
presented before in the literature.

In the experimental evaluation, the proposed methodology shows good perfor-
mance. We also showed that MMGNAT outperforms the M>-tree, thus obtaining
better results than the state-of-the-art.
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