
Efficient Processing of Narrow
Range Queries in the R-Tree

Michal Krátký1, Václav Snášel1, Jaroslav Pokorný2, Pavel Zezula3, Tomáš Skopal1

1VŠB–Technical University of Ostrava
17. listopadu 15, Ostrava-Poruba

{michal.kratky,vaclav.snasel,tomas.skopal}@vsb.cz
2Charles University Prague

pokorny@ksi.ms.mff.cuni.cz
3Masaryk University Brno

zezula@informatics.muni.cz

Czech Republic

Abstract

Multi-dimensional data structures are applied
in many real index applications, i.e. data min-
ing, indexing multimedia data, indexing non-
structured text documents and so on. Many
index structures and algorithms have been
proposed. There are two major approaches
to multi-dimensional indexing. These are,
data structures to indexing metric and vec-
tor spaces. The R-tree, R*-tree, and UB-tree
are representatives of the vector data struc-
tures. These data structures provide efficient
processing for many types of queries, i.e. point
queries, range queries and so on. As far as
the vector data structures are concerned the
range query retrieves all points in defined hy-
per box in an n-dimensional space. The nar-
row range query is a significant type of the
range query. Its processing is inefficient in
the vector data structures. Moreover, the ef-
ficiency decreases from increase dimension of
an indexed space. We depict an application
of the signature for more efficient processing
of narrow range queries. The approach puts
the signature into the R-tree but native func-
tionalities are preserved, i.e. the range query
algorithm for general range query. The novel
data structure is called the Signature R-tree.
This data structure is more resistant to the
curse of dimensionality.

ARG Technical Report, ARG-TR-01-2004, Amphora
Research Group, Department of Computer Science,
VSB–Technical University of Ostrava, Czech Republic,
http://www.cs.vsb.cz/arg
c© 2004

1 Introduction

During the last decade, multimedia databases have be-
come increasingly important in many application ar-
eas such as medicine, CAD, geography, and molecular
biology. An important research issue in the field of
multimedia databases is the content-based retrieval of
similar multimedia objects such as images, text, and
videos. However, in contrast to searching data in a
relational database, a content-based retrieval requires
the search for similar objects as a basic function of the
database system. Most of the approaches addressing
the similarity search use a so-called feature transfor-
mation which transforms important properties of mul-
timedia objects into high-dimensional points (feature
vectors). Thus, the similarity search is transformed
into a search of points in the feature space that are
close to a given query point in the high-dimensional
feature space. Query processing in high-dimensional
spaces has therefore been a very prominent research
area over the last few years. A number of new index
structures and algorithms have been proposed.

Managing multi-dimensional data is needed in
many application domains, from CAD, VLSI and ge-
ographical databases to multimedia and time series
management systems. In particular, indexing spa-
tial data is of foremost importance and has been
quite well researched as it is presented in excel-
lent surveys [15], [5] and, recently, [22]. There are
a lot of additional applications of multi-dimensional
data structures [24] e.g., data mining [18], indexing
terms [11, 21], XML documents [16, 20], text docu-
ments [25], and images [8].

We can divide these data structures into two
groups [30], data structures for indexing vector spaces

and metric spaces, respectively. The first group in-
cludes, for example, n-dimensional B-tree [14], R-
tree [17], R*-tree [2], X-tree [4], UB-tree [1], and BUB-
tree [13]. The second group includes M-tree [8], for ex-
ample. A multi-dimensional data structure supports
either one or both of the following query types [30]:

• range/window queries: ”find all objects whose at-
tribute values fall within certain ranges”,

• similarity queries:

– similarity range queries: ”find all objects in
the database which are within a given dis-
tance from a given object”,

– k-nearest neighbour (k-NN) queries: ”find
the k-most similar object in the database
with respect to a given object”.

Of course, the point query can be considered as a spe-
cial type of the queries. Now, the range query of a
vector data structure is defined.

Definition 1 (Range query).

Let Ω be an n-dimensional discrete space, Ω =
Dn, D = {0, 1, . . . , 2lD − 1}, and points (tuples)
T 1, T 2, . . . , Tm ∈ Ω. T i = (t1, t2, . . . , tn), lD is the
chosen length of a binary representation of a num-
ber ti from domain D. The range query RQ is de-
fined by a query hyper box (query window) QB which
is determined by two points QL = (ql1, . . . , qln) and
QH = (qh1, . . . , qhn), QL and QH ∈ Ω, qli and
qhi ∈ D, where ∀i ∈ {1, . . . , n} : qli ≤ qhi. This range
query retrieves all points T j(t1, t2, . . . , tn) in the set
T 1, T 2, . . . , Tm such as ∀i : qli ≤ ti ≤ qhi.

The range query may be written as pseudo SQL
statement:
SELECT * FROM T

WHERE ql1 ≤ t1 ≤ qh1 AND . . . AND qln ≤ tn ≤ qhn
The narrow range query is a significant type of the
range query.

Definition 2 (Narrow range query).

Let Ω be an n-dimensional discrete space, Ω =
Dn. The query hyper box is defined by two points
QL = (ql1, . . . , qln) and QH = (qh1, . . . , qhn), where
∀i : qli ≤ qhi. Let ψ and φ be constants: min(D) ≤
ψ � φ ≤ max(D). The range query is called the
narrow one if:

1. ∀i : qhi − qli ≤ ψ ∨ qhi − qli ≥ φ.

2. Let nψ and nφ be the number of dimensions for
which formulas qhi − qli ≤ ψ and qhi − qli ≥ φ,
respectively, hold. Furthermore, in the case of

the narrow range query it holds 1 < nψ < n ∧
1 < nφ < n.

From the first condition the equation turns out to
be nφ+nψ = n. In Figure 1 we see examples of query
boxes for the narrow range queries in spaces with the
dimensions n = 2 and n = 3.

Figure 1: Examples of the narrow range queries in
spaces with the dimensions n = 2 and n = 3.

As far as structures like n-dimensional B-tree, R-
tree, and BUB-tree are concerned, processing the nar-
row range query is inefficient. The efficiency decreases
with rising dimension – curse of dimensionality [30]
takes place. An efficient solution of this problem does
not seem to exist. In this work we describe an ap-
plication of the signature [23] for effective processing
of a narrow range query over point data index. This
approach enriches the existing multi-dimensional data
structure but native functionality is preserved. The
novel data structure is resistant to the curse of dimen-
sionality. This feature is grounded in better preser-
vation of data distribution achieved by a signature
method over multi-dimensional index. Due to the fact
that the R-tree is well-known data structure used in
many recent database management systems (DBMS),
we apply the signature extension to the R-tree.

In Section 2 we review existing multi-dimensional
indexes based on the R-tree. Section 3 briefly reviews
existing signature methods. In Section 5, we present
the newly proposed variant of R-tree with an appli-
cation of the signature. This variant of the R-tree
enables efficient processing of the narrow range query.
This novel data structure is called the Signature R-
tree. In Section 6, we put forward results of experi-
ments. Finally, we conclude with a summary of con-
tributions and a discussion about future work.

2 R-tree and its variants

Since 1984 when Guttman proposed his method [17],
R-trees have become the most cited and most used
as reference data structure in this area. As is required
and expected by applications, they support usual point
and range queries, and also some forms of spatial joins.

Another interesting query supported by R-trees, to
some extent, is the k-NN query.

R-tree can be thought of as an extension of B-trees
in a multi-dimensional space. It corresponds to a hi-
erarchy of nested n-dimensional minimum bounding
boxes (MBB). If N is an interior node, it contains cou-
ples of the form (Ri, Pi), where Pi is a pointer to a child
of the node N . If R is its MBB, then the boxes Ri cor-
responding to the children Ni of N are contained in
R. Boxes at the same tree level may overlap. If N is a
leaf node, it contains its couples of the form (Ri, Oi),
so called index records, where Ri contains a spatial ob-
ject Oi. Each node of the R-tree contains between m
and M entries unless it is the root and corresponds to
a disk page. Other properties of the R-tree include the
following:

• Whenever the number of a node’s children drops
below m, the node is deleted and its descendants
are distributed among the sibling nodes. The up-
per bound M depends on the size of the disk page.

• The root node has at least two entries, unless it
is a leaf.

• The R-tree is height-balanced; that is, all leaves
are at the same level. The height of an R-tree is at
most blogm(N)c−1 for N index records (N > 1).

As a dynamic data structure, most attention of pre-
vious works on R-trees has been devoted to the split
procedure during the adding of new index records into
an R-tree. It significantly affects the index perfor-
mance. Three split techniques (Linear, Quadratic, and
Exponential) proposed in [17] are based on a heuristic
optimization. The Quadratic algorithm has turned out
to be the most effective and other improved versions
of R-trees are based on this method. The algorithm
uses the following strategy:

• Given a set of M+1 entries, each entry is assigned
to one of the two produced nodes, according to the
criterion of minimum area, i.e., the selected node
is the one that will be enlarged the least in order
to include the new entry.

Unfortunately, this criterion is taken for granted
and not proved to be the best possible. The Quadratic
algorithm tends to prefer the group with the largest
size and higher population. In most cases this group
will be least enlarged. Hence, there is a high chance it
will need less area in order to accommodate the next
entry, so it will be enlarged again. Over time, this will
create a very uneven distribution, with most entries in
one node. Also, when one of the groups becomes full,
the rest of M −m+ 1 entries are assigned to the sec-
ond group without any geometric criteria. A minimum

node capacity constraint also exists; thus a number of
entries are assigned to the least populated node with-
out any control at the end of the split procedure. This
fact usually causes a significant overlap between the
two nodes.

R-tree performance is usually measured with re-
spect to the retrieval cost (in terms of disk ac-
cesses [24]) of queries. The majority of performance
studies concerns point, range, and k-NN queries. Con-
sidering the R-tree performance, the concepts of node
coverage and overlap between nodes are important.
Obviously, an efficient R-tree search requires that both
the overlap and coverage are minimized. Minimal cov-
erage reduces the amount of dead area covered by R-
tree nodes. The minimal overlap is even more critical
than the minimal coverage; searching objects falling in
the area of k overlapping nodes, up to k paths to the
leaf nodes may have to be executed in such a way.

Variants of R-trees differ in the way they perform
the split algorithm during insertions, i.e. which mini-
mization criteria are used. Literature has identified a
variety of criteria for the layout of keys on nodes that
affect retrieval performance. These criteria are: mini-
mal node area, minimal overlap between nodes, mini-
mal node margins or maximized node utilization. It is
impossible to optimize all of these parameters simul-
taneously. We will briefly put forward two well-known
approaches to the R-tree optimization - R∗-trees and
R+-trees. Authors of [22] put forward, in their recent
exhaustive overview, another six variants.

The main feature of R∗-trees [2] involves the node-
splitting policy. Therefore, the R∗-tree differs from the
R-trees mainly in the insertion algorithm. Although
original R-tree algorithms tried only to minimize the
area covered by MBBs, the R*-tree algorithms also
take the following objectives into account:

• The overlap between MBBs at the same (non-
leaf) tree level should be minimized. The lesser
overlap, the smaller the probability that one has
to follow multiple search paths.

• Perimeters (margins) of MBBs should be mini-
mized. For example, in 2D the preferred rectan-
gle is the square, since this is the most compact
rectangular representation.

• Storage utilization should be maximized. Nodes
should store as many entries as possible so that
the height of the tree is kept low.

According to the R∗-tree split algorithm, the split
axis is the one that minimizes a cost value S (S being
equal to the sum of all margin values of the different
distributions). Then the distribution which achieves
minimum overlap-value is selected to be the final one

along the chosen split axis. On the other hand, the dis-
tinction between the ”minimum margin” criterion to
select a split axis and the ”minimum overlap” criterion
to select a distribution along the split axis, followed by
the R∗-tree split algorithm, could cause the loss of a
”good” distribution if, for example, that distribution
belongs to the rejected axis. The design of the R∗-tree
also introduces a policy called forced reinsert : If a node
overflows, it is not split in the right away. Moreover,
p entries, p > 0, are removed from the node and rein-
serted into the tree. Authors of [2] suggest p should be
about 30% of the maximal number of entries per page.
Through all above mentioned techniques they reached
performance improvements of up to 50% compared to
the basic R-tree.

Clipping-based schemes do not allow any overlaps
between bucket regions; they have to be mutually dis-
joint. A typical access method of this kind is the
R+-tree [26], a variant of the R-tree which allows no
overlap between regions corresponding to nodes at the
same tree level and an object can be stored in more
than one leaf node. R+-trees are considered to be one
of the most efficient indexes for supporting point and
range queries.

Other approaches to an improvement of original R-
trees release some of their basic features. For example,
the MBBs have been replaced by minimum bounding
spheres or polygons. In [3] R+-trees are extended to
support k-NN queries. We do not mention the other
ones as they do not have a direct impact on ideas pre-
sented in this paper. Special attention should be de-
voted to the use of signatures in connection with R-
trees. The approach [9] offers an RS-tree that consists
of an R-tree and an S-tree [10], i.e. a well-know hi-
erarchical signature file. The main application of this
data structure is an improvement of incremental k-NN
query algorithm.

3 Signature methods

The signature file method has widely been advo-
cated as an efficient access method to deal with many
applications demanding a large volume of textual
databases, such as libraries, office information, and
medical information systems [6, 7]. Therefore, the sig-
nature file approach has become a well-known concept
for implementing associative retrieval on data files kept
in stable storage. Recently, the use of signature files
was extended to support multimedia data, such as im-
ages, voice, and video [2]. Many recent DBMS support
multimedia data and require a dynamic storage struc-
ture which performs not only retrieval operations, but
also insertion, deletion, and update operations in an
efficient manner. As a result, several dynamic signa-
ture files have been proposed, for example S-tree or
Quick filter [31].

The signature file is an abstraction which acts as a
filtering mechanism to reduce the number of block ac-
cesses and CPU time to execute a query. A signature
is a bit string formed from the terms which are used
to index a record in a data file. Signature files typi-
cally make use of the superimposed coding technique
in order to create a record signature [12]. When we
assume that a record consists of n terms, each term is
converted into a bit string, called the term signature,
using a hash function. The record signature is formed
by superimposing (inclusive ORing) the n term signa-
tures. The number of 1’s in the signature S is called
the weight γ(S). To answer a query, we first examine
the signature file rather than the data file, to imme-
diately discard non-qualifying records. For this, a set
of terms in a query is hashed to form a query signa-
ture in the same way used for the record signature.
If the record signature contains 1’s in the same posi-
tion as the query signature (i.e. the query signature
is included in the record signature), the record can be
considered as a potential match. However, there can
be a case where the record signature may qualify for a
query signature, but the record itself does not satisfy
the query. This is called the false drop.

4 Narrow range query processing in
multi-dimensional data structures

In general, multi-dimensional data structures divide
an n-dimensional space into sub-spaces (regions). In
the case of the R-tree and (B)UB-tree, the tuples are
clustered to MBBs and Z-regions, respectively. The
index is made by hierarchies of the regions (so called
super-regions). Consequently, the tuples of the region
are stored in one leaf node. The inner nodes contain a
definition of super-regions, MBBs in the case of R-tree
again. An algorithm of range query filters the irrel-
evant tree node (regions), only leaf nodes intersected
by the query box are searched.

Example 1 (Reason of inefficiency processing of the
narrow range query in R-tree).

Let us take a 2-dimension space which contains
points (4,1), (4,5), and (6,4). These points define MBB
(4,1):(6,5) (see Figure 2) and they are stored on a sin-
gle leaf node. Now, a range query is defined by the
query box (1, 2) : (5, 2). The region is intersected by
the query box and it will be searched. Consequently,
this region is relevant to the query box from the R-tree
point of view, but it contains no point from the query
box.

Definition 3 (intersect and relevant regions, rel-
evant ratio).

Let RQ be the range query defined by the box HQ.

T1

0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7

T2

T3

query box
(1,2):(5,2)

MBB
(4,1):(6,5)

Figure 2: Points T1, T2 a T3 in MBB (4, 1) : (6, 5) and
the narrow range query (1, 2) : (5, 2).

Regions intersecting a query box during the process-
ing of a range query are called intersect regions and
regions containing at least one point of the query box
are called relevant regions. We denote their number
by NI and NR, respectively. The relevance ratio is
cR = NR

NI
.

An experiments show (see Section 6), the ration cR
nears to zero and cR � 1 for a narrow range query in
the case of R-tree. The efficiency of the narrow range
query processing is not optimal. A lot of irrelevant
regions must be searched, therefore a lot of extra disk
accesses must be performed.

Definition 4 (quality ratio of a range query al-
gorithm).

Let us take a range query algorithm, which searches
NRQ regions for a query RQ. The quality ration of a
range query algorithm is cQ = NR

NRQ
.

In optimal case, cQ = 1. The value cQ decreases
sharply for increase dimension of indexed space in cur-
rent multi-dimensional data structures. Consequently,
the processing of a narrow range query is ineffective.
Note, the number of inner nodes � the number of leaf
nodes (the number of regions) in the case of tree data
structure. Since such ratios take hold of efficiency of
a range query algorithm rather precisely.

A probability that the irrelevant region is matched
decreases with downward region volume. The reduc-
ing of region volume is a way for an efficiency improve-
ment of processing the narrow range query. We need
to insert a piece of information into a data structure
for the reducing of region volume and, consequently,
for better filtration of irrelevant tree nodes (regions).
The result of increasing cQ is the decrease of disk ac-
cess cost and data structure overhead. In this case we
apply the n-dimensional signature as a piece of infor-
mation. In this work we describe such extension of
the R-tree and the novel data structure is called the
Signature R-tree.

5 Efficient processing of narrow range
queries in the R-tree

As far as the Signature R-tree is concerned the n-
dimensional signature helps to filter irrelevant parts of
an R-tree preferably during a narrow range query pro-
cessing. The n-dimensional signature can be applied
to various multi-dimensional data structures. Here, we
put forward the extension of well known R-tree.

Definition 5 (n-dimensional signature).

Let Ω be an n-dimensional discrete space, Ω = Dn,
|D| = 2lD . Let us take a set of m points (tuples)
T 1, T 2, . . . , Tm, where T i = (t1, t2, . . . , tn), T i ∈ Ω,
T ij = tj ∈ D, 1 ≤ i ≤ m, 1 ≤ j ≤ n. Let F be
a mapping creating a signature: {0, 1}lD → {0, 1}lS .
n-dimensional signature Sn(T 1, T 2, . . . , Tm) =
(S1, . . . , Sn) = (F (T 1

1) OR . . . OR F (Tm1), . . . , F (T 1
n)

OR . . . OR F (Tmn)), where Si is a signature ∈ {0, 1}lS ,
lS is the length of the signature, n × lS is the length
of the n-dimensional signature. The weight of the
n-dimensional signature γ(Sn) =

∑n
k=1 γ(Sk), where

γ(Sk) is the weight of the signature Sk.

We can discover the absence of relevant points (the
points belonging to a query box) using the AND oper-
ation for n-dimensional signature of a query and the
n-dimensional signature of points in a region during
the processing of a range query. Consequently, we ap-
ply the AND operation to elements of points how it is
usual in signature methods.

Definition 6 (Range query processing with the
n-dimensional signature).

Let us take the range query defined by two points
of an n-dimensional space QL = (ql1, . . . , qln) and
QH = (qh1, . . . , qhn). Let us create the n-dimensional
signature of the query box Snqb = (Sqb1 , . . . , Sqbn

):
if qli = qhi, or qli 6= qhi and qhi − qli ≤ ψ, then
Sqbi

= F (qli) = F (qhi) and Sqbi
= F (qli) OR F (qli+1)

OR . . . OR F (qhi), respectively. If qhi − qli ≥ φ then
Sqbi = 2lS − 1 (the number with only true bits). Let
us take the n-dimensional signature Sn = (S1, . . . , Sn)
of points T 1, T 2, . . . , Tm. The points generating the
n-dimensional signature can belong to the query box
if all partial signatures Si and Sqbi

, 1 ≤ i ≤ n, are
matched by the AND operation. A partial signatures
Si and Sqbi

are matched if:

• for qli = qhi and qhi − qli ≥ φ it holds Si AND
Sqbi

= Sqbi
.

• for qli 6= qhi and qhi − qli ≤ ψ it holds γ(Si AND
Sqbi

) ≥ 1.

Consequently, the n-dimensional signatures Sn and

Snqb are matched by the AND operation if all partial
signatures Si and Sqbi

, 1 ≤ i ≤ n, are matched.

Of course, if Sqbi
contains only true bits, the opera-

tion AND can be omitted. If γ(Sqbi) → lS a probability
of the false drop is close to one (see Chapter 5.2).
Consequently, this algorithm is possible to apply only
for small values of ψ.

Example 2 (Usage of the n-dimensional signature for
filtration of irrelevant tree pages).

Let us express the creation and application of a sim-
ple n-dimensional signature for better filtration of ir-
relevant tree nodes. Let us take points from Exam-
ple 1. The first coordinate of the n-dimensional sig-
nature contains superimposed first coordinates of the
points: 4 (100) OR 4 (100) OR 6 (110). The second
coordinate equals: 1 (001) OR 5 (101) OR 4 (100). In
this way, the n-dimensional signature (110,101) is cre-
ated. Since the second coordinates of both query box
points contain the same values (the number 2) then
all relevant points contain value 2 in the second coor-
dinate. Consequently, the n-dimensional signature of
the query hyper box is (111,010). The region (MBB
(4,1):(6,5)) is recognized as irrelevant by the signature
operation (111,010) AND (110,101). Since (010) AND
(101) 6= (010) then the region is irrelevant, in spite of
the query box intersecting the region is searched dur-
ing the narrow range query processing in the classical
R-tree.

5.1 The Signature R-Tree

The Signature R-Tree is the R-tree data structure with
added n-dimensional signature for better filtration of
irrelevant tree nodes. A general structure of the Sig-
nature R-tree is presented in Figure 3. Leaf nodes in-
clude indexed tuples, which are clustered into regions
– MBBs. The MBBs of leaf points can be hierachized
to MBBs again and, in this way, super-regions are cre-
ated. A definition of the regions and super-regions
(two points in n-dimensional space) is stored in inner
tree nodes. The n-dimensional signature is assigned to
each region. The node’s item with the definition of a
super-region holds an n-dimensional signature, super-
imposed with signatures of the direct node’s children.
Consequently, such a tree contains two hierarchies, the
hierarchy of MBBs and of n-dimensional signatures.

Operations of the R-tree are preserved, and of
course we apply the n-dimensional signature for bet-
ter filtration of irrelevant nodes upon processing a nar-
row range query. The signature helps to examine the
intersect algorithm of which the node is/is not rele-
vant to a user’s query box. Note, the number of inner
nodes � the number of leaf nodes in the case of tree
data structure. Since the n-dimensional signatures are

inserted into inner nodes only, enlargement of a data
structure is not enormous (see Section 6). Now, oper-
ations of the Signature R-tree shall be described.

T

B
l
:B

h
 S

indexed
tuples

index – hierarchy
of MBBs and
n-dimensional

signatures

B
l
:B

h
 S...

B
l
:B

h
 S B

l
:B

h
 S... B

l
:B

h
 S B

l
:B

h
 S...

T... T T......

...

T T... T T.........

... ...

n-dimensional
signature of tuples

in the region

super-region n-dimensional signature of
tuples in the super-region

region
(MBB)

 tuples in the region

...

Figure 3: Structure of the Signature R-Tree.

5.1.1 Operations of the Signature R-tree

Operations Insert, Delete, and Find (point query)
are handled by algorithms of the selected R-tree vari-
ant. Consequently, an arbitrary splitting algorithm or
an algorithm, with various complexity, can be chosen
for Insert operation, see [17, 26, 2]. Moreover, in the
case of the Signature R-tree’s Insert and Delete op-
erations, a change of tuples in a leaf node must be re-
flected by changes of n-dimensional signatures in all
inner nodes of a current path. The Hamming dis-
tance [10] is applied for measuring a similarity of sig-
natures. The propagation of the changes to the root
node is finished if the Hamming distance of old and
new n-dimensional signatures equals 0 in some nodes.

5.1.2 Range query operation for a narrow hy-
per box

An advantage of described approach is that the algo-
rithm of range query is not changed for a general range
query. Of course, for processing a narrow range query,
we apply the n-dimensional signature for a better fil-
tration of any irrelevant tree node. Let us suppose the
well-known Intersection operation, which ascertains
whether a MBB is intersected by a query box in linear
time.

Input: tuples T1,T2 which define the query box
Output: a set of tree tuples in the query box stored
in an array R
Variables: a node N, a stack Z which contains a cur-
rent path in the tree

begin
Z.Remove()
R.Remove()
N = the root node

Z.Push(N)
while Z is not empty do
begin
if N is not leaf
then begin
if there is the next MBB, mbb, in N with

non-empty MBB ∩ QB
then begin

determine whether mbb can be relevant
using AND operation on Snqb and Snmbb.
if it is matched
then begin
Z.Push(N)
read a child of region’s item into N

end
else N = Z.Pop()

end
else N = Z.Pop()

end
else begin
if N contains points of the query box
then add such points into R
N = Z.Pop()

end
end
end

The increase of the space after adding of n-
dimensional signatures is not enormous, but the time
complexity of the algorithm is improved (see Sec-
tion 6). The important issue is that the algorithm
stays without change for a general range query.

In general, the volume of a region is reduced us-
ing a signature by following of perfect distribution of
points. The n-dimensional signature forms a spatial
region as well. Let RS be a signature region formed
for a set of points with the MBB RMBB. The inter-
section and signature operations are applied to filtra-
tion of irrelevant regions. Consequently, regardless to
the shape of the signature region: RMBB ∩ RS 6= ∅,
RMBB ∩ RS ⊆ RMBB. The formula turns out to be
NRQ ≤ NI . The most important issue is that the ef-
ficiency of the signature extension is always better or
equal in comparison to the R-tree. Our experiments
(see Chapter 6) prove that the efficiency of the Signa-
ture R-tree is always better for real data.

5.2 Signature generating

Now, we shall describe a method for generating an n-
dimensional signature suitable for more effective pro-
cessing a narrow range query. In the case of the multi-
dimensional data structure, point clustering is con-
trolled by principles of appropriate structure. As far as
the R-tree is concerned, points are clustered into the
MBB. In the case of signature data structures (e.g.
S-tree [10]) signatures with a minimal Hamming dis-

tance are clustered. Of course, the signatures of points
clustered in a region of a multi-dimensional data struc-
ture do not have minimal Hamming distances. If the
signature of points would contain more true bits, then
the signature of region’s tuples would contain almost
only true bits. Consequently, such a signature does
not filter any irrelevant regions, because the proba-
bility of false drop is close to one. Evidently, the
weight of a signature must be the smallest. Therefore,
a hash function mapping each value to only one bit in
a signature is used. Of course, we can not thicken the
signature of a region by adding extra true bits for the
reduction of false drop probability, as it is known in
the S-tree. In this case, the n-dimensional signatures
of superior tree’s level would contain almost only true
bits again.

Let F : D → H be a hash function. Let us take a
domain to be D = {0, 1, . . . , 2lD − 1} and a range to
be H = {0, 1, . . . , 2lS −1} (see Definition 5). The hash
function F is created by a generator of pseudo-random
numbers (e.g. generator with a normal distribution).
If |D| = lS then the mapping is suitable to define F as
a simple one. If H = {20, 21, . . . , 2lS−1}, consequently
only one bit is generated for each value and γ(Sn) is
the smallest. If qli = qhi for a query box’s coordinate,
then γ(Si) = 1. For pure detection of irrelevant re-
gions it must hold γ(Si) = the number of node items.
Taken into consideration a hierarchy of n-dimensional
signatures, it must hold lS = |D| for pure detection of
irrelevant tree nodes. Such a length of a signature is
not possible in real cases (often |D| = 232). The suit-
able length of the n-dimensional signature is a subject
for experiments.

An n-dimensional signature is created by the super-
imposing of signatures independently for each dimen-
sion. Consequently, this case can arise, e.g., the re-
gion containing points (2, 3, 4) and (1, 5, 1) is relevant
to the query box QL = (2, 5, 0), QH = (2, 5,max(D))
from the signature filtering point of view. Experimen-
tal results show that this is not the case for the R-tree,
because the clustering does not work in this way. Of
course, it depends on data distribution.

5.3 Cost analysis

The complexity is not modified for basic operation
Find, Insert, and Delete in the case of the Signa-
ture R-tree. A policy of node splitting or complexity
of splitting algorithm depends on the chosen R-tree
variant or a selected splitting algorithm [17, 26, 2]. In
the case of the Signature R-tree, a change of tuples
in a leaf node must be propagated to changes of n-
dimensional signatures in all inner nodes of the current
path. Consequently, the complexity is preserved.

The complexity of the general range query algo-
rithm is O(NI × logcm), where NI is the number of
intersect regions, c is the node’s capacity. It holds
the value cR � 1 (see Definition 3) for a narrow
range query (particularly for increasing dimension of
indexed space). In the case of the Signature R-tree
the complexity is O(NRQ × logcm), where NRQ (see
Definition 4) is the number of searched regions (leaf
nodes). Our experiments show NI � NRQ ≥ NR, con-
sequently cQ → 1 in the case of the Signature R-tree.
In other words, the space complexity of the algorithm
is enhanced for reducing the time complexity. The R-
tree clusters points of n-dimensional space into regions
and follows an approximate distribution of data. The
properties of clustering weaken the curse of dimension-
ality. Since the signatures follow a perfect distribution
of data, the signatures eliminate the curse of dimen-
sionality explicitly.

6 Experimental results

In [19, 20] a multi-dimensional approach to index-
ing XML data [29] was depicted. In this approach
an XML document is represented as a set of paths.
The paths are modelled as points in an n-dimensional
space, where n is directly proportional to the maxi-
mal length of a path in an XML tree. Such points
are inserted into a multi-dimensional data structure
and XML queries are processed by the narrow range
queries.

Table 1: A characterization of the test data collection
and the size of index file

Dimension Number of Index size [MB]
n points R∗-tree
7 8,268,357 478.6
9 8,739,522 603.1

Dimen- Index size [MB]
sion Signature R∗-tree
n n× 32 n× 64 n× 128
7 493 [+3%] 512.2 [+7%] 536 [+12%]
9 651.4 [+8%] 680.7 [+13%] 711.7 [+18%]

The Protein Sequence Database XML docu-
ment [27] was used for the experiments1. The doc-
ument size is 683MB. It includes 21,305,818 ele-
ments and 1,290,647 attributes. Approximately 17mil.
paths were obtained from this document. With
respect to the frequency of the path lengths, two
multi-dimensional indices indexing spaces of dimen-
sion n = 7 and n = 9 (for detail see [21]) were cre-
ated to indexing XML data. Domain cardinalities of

1The experiments were executed on an Intel Pentium r4
2.4GHz, 512MB DDR333, under Windows XP.

the spaces |D| = 232. The R∗-tree and Signature R∗-
tree data structures were used for indexing the spaces.
The lengths of n-dimensional signatures were chosen
n×32, n×64, and n×128. Tables 1 and 2 summarize
a characterization of data collection, index size, and
index multi-dimensional data structures, respectively.
Square brackets include the increase of index volume
for Signature R∗-trees. An average utilisation of 62%
was reached in all cases.

Table 2: A characterization of index multi-dimensional
data structures

Dimen- Number of inner nodes
sion R∗ Signature R∗-tree
n tree n× 32 n× 64 n× 128
7 15,731 22,456 33,186 65,412
9 24,750 36,451 55,750 112,412

Dimen- Number of leaf nodes
sion R∗ Signature R∗-tree
n tree n× 32 n× 64 n× 128
7 256,520 257,124 258,187 260,741
9 318,370 320,741 331,474 335,846

Dimen- Height of tree
sion R∗ Signature R∗-tree
n tree n× 32 n× 64 n× 128
7 5 5 6 8
9 5 6 8 9

Inserted n-dimensional signatures enlarge the size
of inner node items and a capacity of the inner nodes
decreases (for equal node size) for the growing length
of the signature. Consequently, the tree height in-
creases. For more correct comparison, we chose the
same size of node 2048 B for all trees. Of course, the
node size can be extended and properties of the Signa-
ture R-tree can be improved (the height will be lower).
We can see that the index size of Signature R∗-trees
extends to 3–18% in comparison to the R∗-tree. An
overhead of a Signature R∗-tree escalates for growing
signature length. We must choose an appropriate rate
between the lesser number of searched regions during
range query processing and an accrual of data struc-
ture overhead. The consequential results show the in-
dex size magnifies by the units of percentage for the
signature length which filters the irrelevant tree nodes
very well.

Two set of queries were tested for each space. The
first set includes queries with a smaller result set
(< 10), the second set holds queries with a larger result
set (about 103). Each query processes a simple XPath
query [28] for values of elements and attributes of the
XML document like ProteinDatabase/ProteinEntry
[reference/refinfo/citation=’Nature’]. In Ta-

Table 3: A characterisation of narrow range query sets

Query Dimension nψ Result
set n (see Definition 2) size
1 7 2 5
2 7 2 3,397
3 9 2 8
4 9 2 2,794

Query set NI NR cR
1 828 1 0.0012
2 1,542 717 0.47
3 641 7 0.01
4 136 136 1

ble 3 a characterization of the narrow range query sets
is shown. Note, the results were given an average for
all tests. Values NI , NR, and cR are given for the
R∗-tree. Naturally, the relevance ratio cR (ratio of the
relevant and intersect regions) is approximately the
same for all data structures. We see that the ratio is
rather low (� 1) for the narrow range queries. Con-
sequently, efficiency of query processing is not optimal
for current multi-dimensional data structures.

Table 4: Experimental results of processing the narrow
range queries – NRQ

Query NRQ
set R∗ Signature R∗-tree

tree n× 32 n× 64 n× 128
1 828 162 16 10
2 1,542 1,142 792 761
3 641 258 44 36
4 171 165 136 136

The efficiency of narrow range query processing was
measured by the number of searched leaf nodes (re-
gions) NRQ, ratio cQ, disk access cost (DAC, number
of all tree nodes read during a query processing), and
time of query processing. In Table 4 the NRQ val-
ues are presented for R∗-tree and Signature R∗-tree
for more lengths of an n-dimensional signature. Ta-
ble 5 presents the ratio between NRQ to the number
of all leaf nodes. We can see the ratio is lesser in the
case of Signature R∗-tree. Of course, the percentage
is lesser for longer n-dimensional signatures. Another
view of the trend is the higher values of cQ ratio in
Table 6. We see the ratio is closer to one more than
in the case of R∗-tree. Consequently, the improvement
of the Signature R∗-tree (compare to the R∗-tree) is
1.2–83× (see the second table).

In Table 7 the DAC is presented for processing of
the test queries. The number of searched leaf nodes

Table 5: Experimental results of processing the narrow
range queries – the ratio of searched leaf nodes

Query Ratio of searched leaf nodes [%]
set R∗ Signature R∗-tree

tree n× 32 n× 64 n× 128
1 0.32 0.061 0.006 0.004
2 0.60 0.45 0.310 0.300
3 0.20 0.76 0.013 0.011
4 0.05 0.03 0.040 0.040

Table 6: Experimental results of processing the narrow
range queries – cQ ratio

Query cQ
set R∗ Signature R∗-tree

tree n× 32 n× 64 n× 128
1 0.0012 0.006 0.06 0.1
2 0.47 0.63 0.91 0.94
3 0.01 0.03 0.16 0.2
4 0.80 0.96 1 1

Query Improvement of cQ ratio
set Signature R∗-tree

n× 32 n× 64 n× 128
1 5× 53× 83×
2 1.3× 2× 2×
3 3× 16× 20×
4 1.2× 1.3× 1.3×

Average 2.6× 18× 27×

(inner nodes as well) is lower in the case of the Signa-
ture R∗-tree. In spite of the n-dimensional signature
escalates the data structure overhead, the DAC is de-
creased. We see that we must choose a compromise
between a better quality of longer signature and lower
data structure overhead. The optimal length of the
n-dimensional signature is n×64 in this case. Table 8,
which contains times of query processing supports the
conclusion. We see that the Signature R∗-tree pro-
vides a better efficiency of processing the narrow range
queries.

7 Conclusion

We have presented the application of the signature for
efficient processing the narrow range queries in multi-
dimensional data structures. The n-dimensional signa-
tures are inserted into well known R-tree data struc-
ture, the novel data structure is called the Signature
R-tree. The signature helps to filter the irrelevant tree
nodes better than simply the intersection algorithm.
Experimental results prove an efficiency of such ap-
proach. For example, the Signature R-tree proves an

Table 7: Experimental results of processing the narrow
range queries – the disk access cost

Query DAC
set R∗ Signature R∗-tree

tree n× 32 n× 64 n× 128
1 960 478 74 108
2 1,671 1,393 1,043 1,285
3 817 396 477 340
4 220 200 184 201

Query Improvement ratio of DAC
set Signature R∗-tree

n× 32 n× 64 n× 128
1 2× 13× 9×
2 1.2× 1.6× 1.3×
3 2× 1.7× 1.4×
4 1.1× 1.2× 1.1×

Average 1.6× 4.3× 3.2×

improvement of the disk access cost up to 4.3× in our
experiments. Moreover, the results prove resistance
to the curse of dimensionality. Due to the fact that
presently generated signatures do not allow for the
search of just the relevant nodes, we would like to im-
prove this approach in our future work as well.

References

[1] R. Bayer. The Universal B-Tree for multidimen-
sional indexing: General Concepts. In Proceedings
of WWCA’97, Tsukuba, Japan, 1997.

[2] N. Beckmann, H.-P. Kriegel, R. Schneider, and
B. Seeger. The R∗-tree: An efficient and robust
access method for points and rectangles. In Pro-
ceedings of the 1990 ACM SIGMOD International
Conference on Management of Data, pages 322–
331.

[3] A. Belussi, E. Bertino, and B. Cataniac. Using
spatial data access structures for filtering nearest
neighbor queries. Data & Knowledge Engineering,
40(1):1–31, 2002.

[4] S. Berchtold, D. A. Keim, and H.-P. Kriegel. The
X-tree: An index structure for high-dimensional
data. In T. M. Vijayaraman, A. P. Buchmann,
C. Mohan, and N. L. Sarda, editors, Proceed-
ings of the 22nd International Conference on Very
Large Databases, pages 28–39, San Francisco,
U.S.A., 1996. Morgan Kaufmann Publishers.

[5] C. Böhm, S. Berchtold, and D. Keim. Searching
in High-dimensional Spaces – Index Structures
for Improving the Performance Of Multimedia
Databases. ACM Computing Surveys, 3(3):322–
373, 2001.

Table 8: Experimental results of processing the narrow
range queries – time of query processing

Query Time of query processing [s]
set R∗ Signature R∗-tree

tree n× 32 n× 64 n× 128
1 0.08 0.05 0.015 0.03
3 0.19 0.17 0.094 0.16
2 0.20 0.14 0.140 0.15
3 0.017 0.015 0.015 0.015

Query Improvement ratio
set Signature R∗-tree

n× 32 n× 64 n× 128
1 1.7× 5× 3×
2 1.1× 2× 1.2×
3 1.5× 1.5× 1.3×
4 1.1× 1.1× 1.1×

Average 1.4× 2.4× 1.7×

[6] J. Chang, J. Lee, and Y. Lee. Multikey Access
Methods Based on Term Discrimination and Sig-
nature Clustering. In Proceedings of 12th ACM
SIGIR, USA, pages 176–185, June, 1989.

[7] W. Chang and H. Schek. A Signature Access
Method for the Starburst Database System. In
Proceedings of 15th VLDB Conference, Nether-
lands, pages 145–153, Aug. 1989.

[8] P. Ciaccia, M. Pattela, and P. Zezula. M-tree:
An Efficient Access Method for Similarity Search
in Metric Spaces. In Proceedings of 23rd Interna-
tional Conference on VLDB, pages 426–435, 1997.

[9] H.-J. K. D.-J. Park, S.Heu. The RS-tree: An effi-
cient data structure for distance browsing queries.
Information Processing Letters, 80:195–203, 2001.

[10] U. Deppisch. S-Tree: A dynamic balanced sig-
nature index for office retrieval. In Proceedings
ACM Conf. Research and Development Informa-
tion Retrieval, Pisa, Italy, pages 77–87, 1986.

[11] V. Dohnal, C. Gennaro, and P. Zezula. A Met-
ric Index for Approximate Text Management. In
Proceedings of IASTED International Conference
Information Systems and Database – ISDB 2002,
2002.

[12] C. Faloutsos and S. Christodooulakis. Signature
Files: An Access Method for Documents and its
Analytic Performance Evaluation. ACM Trans-
actions on Information Systems, 2(4):267–288,
1984.

[13] R. Fenk. The BUB-Tree. In Proceedings of
28rd VLDB International Conference on VLDB,
Hongkong, China, 2002.

[14] M. Freeston. A General Solution of the n-
dimensional B-tree Problem. In Proceedings of
SIGMOD International Conference, San Jose,
USA, 1995.

[15] V. Gaede and O. Günther. Multidimensional
Access Methods. ACM Computing Surveys,
30(2):170–231, 1998.

[16] T. Grust. Accelerating XPath Location Steps.
In Proceedings of ACM SIGMOD 2002, Madison,
USA, June 4-6, 2002.

[17] A. Guttman. R-Trees: A Dynamic Index Struc-
ture for Spatial Searching. In Proceedings of ACM
SIGMOD 1984, Annual Meeting, Boston, USA,
pages 47–57. ACM Press, June 1984.

[18] N. Karayannidis, A. Tsois, T. Sellis, R. Pieringer,
V. Markl, F. Ramsak, R. Fenk, K. Elhardt,
and R. Bayer. Processing Star Queries on
Hierarchically-Clustered Fact Tables. In Pro-
ceedings of VLDB Conf. 2002, Hongkong, China,
2002.

[19] M. Krátký, J. Pokorný, T. Skopal, and V. Snášel.
The Geometric Framework for Exact and Similar-
ity Querying XML Data. In Proceedings of First
EurAsian Conferences, EurAsia-ICT 2002, Shi-
raz, Iran. Springer–Verlag, LNCS 2510, 2002.

[20] M. Krátký, J. Pokorný, and V. Snášel. Implemen-
tation of XPath Axes in the Multi-dimensional
Approach to Indexing XML Data. In Accepted
at International Workshop on Database Technolo-
gies for Handling XML information on the Web,
DataX, Int’l Conference on Extending Database
Technology (EDBT 2004), Heraklion - Crete,
Greece, 2004.

[21] M. Krátký, T. Skopal, and V. Snášel. Multidi-
mensional Term Indexing for Efficient Processing
of Complex Queries. Kybernetika, Journal of the
Academy of Sciences of the Czech Republic, ac-
cepted, 2003.

[22] Y. Manolopoulos, A. Nanopoulos, A. N. Pa-
padopoulos, and Y. Theodoridis. R-trees Have
Grown Everywhere. Submitted to ACM Comput-
ing Surveys, 2003.

[23] Y. Manolopoulos, A. Nanopoulos, E. Tousidou,
and Y. Manopoulos. Advanced Signature In-
dexing for Multimedia and Web Applications.
The Kluwer International Series on Advances in
Database Systems, 2003.

[24] Y. Manolopoulos, Y. Theodoridis, and V. Tso-
tras. Advanced Database Indexing. Kluwer Aca-
demic Publisher, 2001.

[25] T. Skopal, P. Moravec, M. Krátký, V. Snášel, and
J. Pokorný. An Efficient Implementation of the
Vector Model in Information Retrieval. In Pro-
ceedings of the fifth National Russian Research
Conference, RCDL’2003, Digital Libraries: Ad-
vanced Methods and Technologies, Digital Col-
lections, Saint-Petersburg, Russia, pages 170–
179. Saint-Petersburg State University Published
Press, 2003.

[26] C. F. T. Sellis, N. Roussopoulos. The R+-Tree: A
Dynamic Index For Multi-Dimensional Objects.
In Proceedings of the 23. Int. VLDB Conference,
pages 507–518, 1997.

[27] University of Washington’s database
group. The XML Data Repository, 2002,
http://www.cs.washington.edu/research/
xmldatasets/.

[28] W3 Consortium. XML Path Language (XPath)
Version 2.0, W3C Working Draft, 15 November
2002, http://www.w3.org/TR/xpath20/.

[29] W3 Consortium. Extensible Markup Lan-
guage (XML) 1.0, 1998, http://www.w3.org
/TR/REC-xml.

[30] C. Yu. High-Dimensional Indexing. Springer–
Verlag, LNCS 2341, 2002.

[31] P. Zezula, F. Rabitti, and P. Tiberio. Dynamic
Partitioning of Signature Files. ACM Transac-
tions on Information Systems, 9(4):336–369, Oct.
1991.

