
ARTICLE IN PRESS
0306-4379/$ - se

doi:10.1016/j.is.

$Recommen
�Correspondi
E-mail addre

michal.kratky@

cuni.cz (J. Poko
Information Systems 31 (2006) 489–511

www.elsevier.com/locate/infosys
A new range query algorithm for Universal B-trees$

Tomáš Skopala,�, Michal Krátkýb, Jaroslav Pokornýa, Václav Snášelb

aDepartment of Software Engineering, Charles University in Prague, Malostranské nám. 25, 118 00 Prague, Czech Republic
bVŠB—Technical University of Ostrava, Department of Computer Science, 17. listopadu 15, 708 33 Ostrava, Czech Republic

Received 1 March 2004; received in revised form 12 November 2004; accepted 8 December 2004
Abstract

In multi-dimensional databases the essential tool for accessing data is the range query (or window query). In this

paper we introduce a new algorithm of processing range query in universal B-tree (UB-tree), which is an index structure

for searching in multi-dimensional databases. The new range query algorithm (called the DRU algorithm) works

efficiently, even for processing high-dimensional databases. In particular, using the DRU algorithm many of the UB-

tree inner nodes need not to be accessed. We explain the DRU algorithm using a simple geometric model, providing a

clear insight into the problem. More specifically, the model exploits an interesting relation between the Z-curve and

generalized quad-trees. We also present experimental results for the DRU algorithm implementation.

r 2005 Elsevier B.V. All rights reserved.

Keywords: Spatial access methods; Multi-dimensional indexing; Range query; UB-tree; DRU algorithm; Z-region; Space filling curves
1. Introduction

In the area of database systems, the emergence
of new database forms requires a development of
appropriate access methods. Unlike single-dimen-
sional databases, which are indexed/searched
according to a simple key (e.g. using B-trees), we
often intend to access data according to a
composite key (according to several attributes
e front matter r 2005 Elsevier B.V. All rights reserv

2004.12.001

ded by Patrick O’Neil, Area Editor.

ng author. Fax: +420221 914 323.

sses: tomas@skopal.net (T. Skopal),

vsb.cz (M. Krátký), jaroslav.pokorny@mff.

rný), vaclav.snasel@vsb.cz (V. Snášel).
generally). We call such databases multi-dimen-

sional, since data instance is represented by a
vector of simple values. A collection of data
vectors (data tuples) can be interpreted as set of
points in a multi-dimensional vector space.

1.1. Preliminaries

Let us specify several necessary notations
needed for further discussion:

Definition 1 (vector space). A discrete vector space

O is defined as the cartesian product of finite
domains Di; i.e. O ¼ D1 �D2 � � � � �Dn: The
vector space O has n dimensions, while each
ed.

www.elsevier.com/locate/infosys

ARTICLE IN PRESS

QBlow=[a1,a2]D2

D1

T. Skopal et al. / Information Systems 31 (2006) 489–511490
particular domain Di is associated with the ith
dimension of the space. Each point (in the universe
O) or data tuple (in the database) is represented by
a vector o ¼ ½o1; o2; . . . ; on�; oi 2 Di:

For the sake of simplicity, we assume that the
vector space O is a hyper-cube determined as the
nth power of a single domain D, i.e. O ¼ Dn; where
D is a linearly ordered interval of integers D ¼

h0; 2p � 1i: The cardinality of D is jDj ¼ 2p for
some integer p.
QBup=[b1,b2]

Fig. 1. 2D query box QB specified with lower bound QBlow and

upper bound QBup:
1.2. Range query

One of the most popular queries required for
access to multi-dimensional databases is the range

query (also called window query or rectangular
query), by which the user specifies an interval of
values hai; bii (for each attribute Ai), which the
retrieved data tuples have to match. The range
query can be represented by a hyper-box QB in the
space O: The ranges of query box QB are defined
by two boundary points, the lower bound QBlow ¼

½a1; a2; . . . ; an� and the upper bound QBup ¼

½b1; b2; . . . ; bn�; where a1pb1; a2pb2; . . . ; anpbn:
The purpose of range query is to select all data
tuples inside the query box QB, i.e. to select all
such tuples o satisfying aipoipbi; for 1pipn (see
Fig. 1).

However, for range queries the classic indexing
methods, maintaining n single-dimensional indices,
are inefficient. For that reason, a class of indexing
methods has been developed, called spatial access

methods1 (SAMs), allowing to efficiently index and
query multi-dimensional data.

In this paper we introduce a new range query
algorithm for the universal B-tree (UB-tree), which
is a spatial access method based on the Bþ-tree and
the Z-ordering. With the new algorithm (called the
DRU algorithm), we address two issues. First, the
existing algorithms are either inefficient or vaguely
described. Our approach, on the other side, is
deeply described in the geometric as well as in the
algorithmic way. Second, the DRU algorithm
works more efficiently in high-dimensional indices.
1For a general survey over various SAMs we refer to Gaede

and Günther [1] or to Böhm et al. [2].
The paper is organized as follows. In Section 2
we overview the basic concepts of UB-tree. The
problem of range query processing and some
related work is discussed in Section 3. The
description of the DRU algorithm is presented in
Section 4, while the geometric principles behind
the algorithm are explained in Section 5. In
Sections 6, 7 the experimental results are analysed
and concluded.
2. UB-tree

In Bayer [4], the Universal B-tree2 has been
introduced as a data structure for indexing multi-
dimensional databases. In simple words, the UB-
tree can be characterized as a combination of the
well-known Bþ-tree with the Z-ordering. Using the
Z-ordering, each multi-dimensional data tuple is
transformed into an integer (called Z-address),
which is inserted into the Bþ-tree. That is,
the problem of searching in multi-dimensional
2A modification called bounding UB-tree (BUB-tree) has been

recently introduced [3], allowing to avoid indexing of the ‘‘dead

space’’ (uselessly indexed empty space).

ARTICLE IN PRESS

T. Skopal et al. / Information Systems 31 (2006) 489–511 491
database is turned into the problem of searching in
ordered set (indexed by the Bþ-tree).

2.1. Motivation

The ideas of indexing multi-dimensional data-
bases as single-dimensional databases have been
appeared long ago [5–8], while the motivation was
to reuse the power of existing linear index
structures (like B-tree, AVL-tree, or simple sorted
array) in order to answer range queries (or spatial
queries, in general). To provide this functionality,
each multi-dimensional data tuple is transformed
(possibly in a reversible way) into a single integer
and inserted into the respective linear index
structure. The transformation is provided using a
discrete space filling curve (SFC) [9], which defines
a linear ordering of all the points of the multi-
dimensional vector space. In other words, to each
point in the space an address is assigned, defining a
global order of the point in space. This address is a
unique number defining position of the point on
curve. In case of Z-ordering (Z-curve, respec-
tively), the address of a point is called Z-address.

2.2. Z-regions

In addition to the simple combination of the
Bþ-tree and the Z-ordering, the concept of
UB-tree gives an interpretation to the nodes of
Bþ-tree. Each node represents, in fact, an interval
½a : b� (a is the lower bound, b is the upper bound)
on the Z-curve (in the Z-ordering, respectively),
(a) (b)

Fig. 2. (a) Two-dimensional space 8� 8 filled by the Z-curve, partitio

Z-regions and super-Z-regions.
called the Z-region. Since Z-address represents a
point in the space, Z-region represents an area in
the space. Finally, the inner nodes of UB-tree
recursively partition the space, such that we obtain
a hierarchy of nested Z-regions. The balanced
hierarchy of Z-regions is similar to some other
spatial structures (e.g. the R-tree), however, a
particular advantage of UB-tree is that Z-regions
are formed implicitly by the Bþ-tree behaviour, i.e.
no heuristics is needed as in case of splitting
R-tree’s minimum bounding rectangles. Another
property is that all Z-regions at a given UB-tree
level do not overlap. An example of the two-
dimensional Z-curve and several Z-regions is
presented in Fig. 2a (the numbers represent
Z-addresses).
Each Z-region in the UB-tree is mapped into a

single node (disk page) in the underlying Bþ-tree
hierarchy. The UB-tree leaves represent the Z-
regions containing the indexed data tuples them-
selves, while the inner nodes represent the super-Z-
regions. A super-Z-region spatially bounds all the
(super-)Z-regions present in the appropriate sub-
tree. An example of UB-tree for the collection of
data tuples from Fig. 2a is depicted in Fig. 2b.

2.3. Evaluation of range query in UB-tree

The implementation of basic operations on UB-
tree (i.e. insertion, deletion, point query) is
analogous to the implementation of operations
on the ‘‘ordinary’’ Bþ-tree. The main difference is
that in UB-tree we must first compute Z-address of
ned into six Z-regions. (b) The UB-tree nodes correspond to the

ARTICLE IN PRESS

T. Skopal et al. / Information Systems 31 (2006) 489–511492
the inserted/deleted/queried tuple, in order to
obtain a simple key for the subsequent operation
on the underlying Bþ-tree.

On the other side, a range query cannot be
so simply forwarded to the Bþ-tree. This arises
from the exclusivity of range query, which is
intended to be used on multi-dimensional data
structures only.
Fig. 3. Space O partitioned into Z-regions. The query box

intersects four Z-regions.

(a) (b

Fig. 4. Query box decomposition: (a) rec
In the context of UB-trees, the range query
evaluation can be reformulated as a search over all
such leaf pages, the Z-regions of which intersect
the query box QB (see Fig. 3).
3. Related work

Although there has been already proposed a
range query algorithm together with the introduc-
tion of UB-tree, in the following subsection we
begin the discussion with an earlier and more
general approach.

3.1. Query box decomposition

According to several early works, the problem
of range query evaluation can be turned into the
problem of decomposition of the query box into a
set of virtual Z-regions, which exactly match the
space of the query box. Using the set of Z-regions,
the range query is evaluated either as a complex
interval query, or as many simple interval queries.
In Orenstein and Merrett [5] the authors

propose a recursive decomposition algorithm, in
which a minimal set of rectangular Z-regions is
formed, spatially matching the query box (see an
example in Fig. 4a).
In another approach (as referred e.g. in [10]) the

query box is decomposed into a subtree of multi-
dimensional quad-tree. Since each (sub)quadrant
)

tangular Z-regions; (b) quadrants.

ARTICLE IN PRESS

T. Skopal et al. / Information Systems 31 (2006) 489–511 493
in the quad-tree is a special case of Z-region,3 the
subtree represents a set of Z-regions matching the
query box (see Fig. 4b).

The idea of query box decomposition is general
in sense, that it is data-independent and structure-
independent. In other words, the query box is
decomposed regardless of the database being
queried. Moreover, it does not matter which index
structure is chosen for the query evaluation; the
only requirement is that the structure must be able
to maintain linear order of keys.

On the other side, there is a serious disadvantage
of the query decomposition approach; the number
of Z-regions forming the query box is exponen-
tially dependent on the dimensionality which, in
turn, means exponential time complexity of the
query evaluation. This property is not so critical
for small dimensionalities (e.g. up to 5), however,
for high-dimensional databases this becomes a
serious limitation. In Orenstein and Merrett [5] the
total costs of query evaluation have been heur-
istically reduced, nevertheless, the time complexity
remained exponential.

3.2. Query box touching

In this subsection we present a more detailed
description of the original UB-tree range query
algorithm (denoted as Bayer–Markl’s algorithm),
which has been introduced in Bayer [4] and
improved in Markl [11]. The algorithm is data-
dependent and also structure-dependent—it se-
quentially examines all UB-tree leaves, the Z-
regions of which intersect the query box. The
query-intersected leaves are consecutively retrieved
by a sequence of point queries. Each point query is
specified by the smallest Z-address lying inside the
query box and being greater than b of the
previously processed Z-region. Since the point
queries ‘‘touch sides’’ of the query box, we call the
approach ‘‘query box touching’’.

Algorithm 1 (Bayer–Markl’s range query algo-

rithm).

Input: UB-tree, query box QB
3This property is reflected also in our approach, as we explain

in Section 5.
Output: data tuples inside QB

(1)
 Z-address of the query box lower bound is

computed, i.e. Zval ¼ ZaddrðQBlowÞ:

(2)
 The following steps are repeated as long as the

Zval is lower or equal than Z-address of
the query box upper bound, i.e. while
ZvalpZaddrðQBupÞ

(a) At the deepest UB-tree level a page P is
retrieved, the Z-region of which contains
Zval; i.e. apZvalpb:

(b) Page P is searched for all data tuples lying
inside QB. These tuples go to the output as
a part of the result.

(c) The next intersected Z-region must be
determined. The smallest Z-address
greater than b and intersecting the query
box must be found—an operation
GetNextZaddress(b; QB) is per-
formed—and the result is stored in Zval:
In Fig. 5, a running of the Bayer–Markl’s
algorithm is shown. At first, Z-address of the
query box lower bound is computed. Using this
value, a leaf page of the UB-tree is retrieved and
searched for relevant data tuples. Next, the
following query-intersected leaf is retrieved and
so on. The algorithm will finish as soon as the b of
the actual Z-region gets greater than Z-address of
the query box upper bound, i.e. when
b4ZaddrðQBupÞ:
So far, the algorithm description was quite clear.

A problem arises if we look deeper into the
operation GetNextZaddress. The computation
of the smallest Z-address inside the query box is
not trivial, since this procedure is obviously
dependent on the shape of Z-region. The algo-
rithm for GetNextZaddress proposed by Bayer
[4] is of exponential time complexity (according to
the dimensionality). Later [11,12], the authors
presented a version that is of linear time complex-
ity, according to the Z-address bit-length (i.e. to
jZaddrj ¼ n log2ðjDjÞ).
Unfortunately, all descriptions of the linear

GetNextZaddress published so far have been
mentioned very briefly and can be hardly used as a
guide for real implementation of the GetNext-
Zaddress algorithm. Moreover, the explanations

ARTICLE IN PRESS

QBlow

QBup

β

β

β

next β

Fig. 5. Processing of the Bayer–Markl’s range query algorithm. The b bounds of the consecutively retrieved intersected Z-regions are

computed as long as QBlowpbpQBup:

T. Skopal et al. / Information Systems 31 (2006) 489–511494
have always been based on a pure algorithmic
basis using ‘‘handling with bits’’, hence lacking a
geometric model providing a deeper abstract view.
The unclearness about the linear GetNextZad-
dress algorithm is perhaps intentional, since
original algorithms on UB-trees are protected by
international patents.4

3.2.1. Time complexity

Let h be the height of UB-tree, m be the number
of data tuples stored in UB-tree leaves, and cX2
be a fixed node capacity (arity of the UB-tree), i.e.
logcðmÞ � 1phplog2ðmÞ � 1: Let k be the number
of Z-regions intersected by the query box. The
time complexity of the GetNextZaddress op-
eration is linear according to the Z-address bit-
length, i.e. it is Oðn logðjDjÞÞ: In each step, the
4Deutsches Patentamt Nos. 197 09 041.9 and 196 35 429.3.
algorithm retrieves the next of the k intersected
Z-regions. This operation consists of one calcula-
tion of the GetNextZaddress and of one
UB-tree downward traversal (point query respec-
tively) required for the query-intersected leaf
retrieval. Thus, the overall time complexity of the
range query is Oðk � h � n logðcÞ logðjDjÞÞ:
3.2.2. I/O costs

The number of I/O operations spent by any
database-oriented algorithm has an important
impact on the overall efficiency. In case of the
range query algorithm, the I/O operation is
represented as a single disk page retrieval. During
the presented algorithm running, each query-
intersected leaf is retrieved by h disk page
retrievals. The leaf search is performed k times,
thus the overall I/O costs are I=Os ¼ k � h:

ARTICLE IN PRESS

T. Skopal et al. / Information Systems 31 (2006) 489–511 495
3.2.3. Other related work

Almost the same algorithm as the Bayer–
Markl’s one was presented in Lawder and King
[13,14], but the authors have not used the UB-tree
as a framework. They have applied two types of
space filling curves to their algorithm. In addition
to the Z-curve, they have mainly studied the
Hilbert curve. In consequence, only the particular
algorithm of appropriate GetNextCurveAd-
dress operation was modified for the Hilbert
curve. Alas, the problem of GetNextZAddress
still remains, because also these works explain it
very vaguely.
4. The down-right-up algorithm

In our approach, we have focused on the basic
straightforward idea that range query must search
only such leaves, the Z-regions of which intersect
the query box. This can be performed via a single
UB-tree downward traversal. The UB-tree is
traversed in LIFO (last-in-first-out) fashion,
while each visited node is examined whether the
Z-regions of its child nodes intersect the query
box. Only the intersected nodes are further
processed. At the leaf level, all data tuples located
Fig. 6. Single-pass range query processing. Only the intersected Z-reg

are greyed. The bold branches are the only paths traversed down.
inside the query box are returned as the query
result. The idea is outlined in Fig. 6.
Like the original algorithm, also our idea is

conditioned by a specific crucial operation. This
particular operation (denoted as TestZRegio-
nIntersection) examines, whether a given
Z-region does intersect the query box or does
not. We analyze this operation closely in Section 5.
More specifically, the algorithm, called the

Down-Right-Up (DRU) algorithm, exploits two
types of leaf optimizations reducing unnecessary
disk accesses as well as the Z-region intersection
computations. The first optimization, called neigh-

bour first point, is used for testing whether a of the
right-neighbour-leaf’s Z-region lies inside the
query box. If it does, the algorithm simply ‘‘jumps
right’’ (the leaves are linked) to the neighbour leaf
and the processing goes on. This kind of optimiza-
tion was already utilized by the Bayer–Markl’s
algorithm.
The second optimization, called neighbour

region, is specific to the DRU algorithm (to the
TestZregionIntersection operation respec-
tively). It is used for testing whether the right-
neighbour-leaf’s Z-region is intersected by the
query box. If it is, the algorithm ‘‘jumps right’’
similarly like by the first optimization. It should be
ions (nodes respectively) are processed. These Z-regions (nodes)

ARTICLE IN PRESS

T. Skopal et al. / Information Systems 31 (2006) 489–511496
remarked, that an optimization similar to the
neighbour region could be possibly utilized,
in principle, also by the original Bayer–
Markl’s algorithm, but this fact has never been
mentioned in previous works, so we do not cope
with such an optimized version of the original
algorithm.

Algorithm 2 (The DRU algorithm). In order to
keep the actual UB-tree path being processed, the
algorithm uses the path stack. The path stack
allows us to avoid accesses to the nodes (and to the
entries in nodes) already processed.
Input: UB-tree, query box QB
Output: data tuples inside QB

(1) Find a leaf the Z-region of which contains
ZaddrðQBlow). Store the path on path stack and
set the retrieved leaf as the actual leaf.

(2) Search the actual leaf for data tuples lying
inside QB5 and return the tuples as a part of
the result.

(3) If a of the right-neighbour-leaf’s Z-region lies
inside QB, then retrieve the right neighbour
leaf, set it as the actual leaf and goto step 2.
This is the neighbour first point optimization.

(4) If the right-neighbour-leaf’s Z-region intersects
QB, then retrieve the right neighbour leaf, set it
as the actual leaf and goto step 2. This is the
neighbour region optimization.

(5) The stack must be recovered after the ‘‘opti-
mization jumps’’. The UB-tree is traversed to
the next query-intersected node (along the path
on the stack). After the recovery, the top of
stack contains parent node of the last leaf
reached by the preceding optimization(s).

(6) Peek node N on the top of stack and try to find
an entry in N, pointing to the next query-
intersected node R. The entry is tried to find
(using halving the interval) as the first right-
hand entry, the Z-region of which intersects
QB. If no such entry is found, remove node
N from the stack and repeat step 6 (the
Up-Phase). If such an entry is found, retrieve
the node R (the Right-Phase) and push it onto
5C

cart
onversions of data tuples (stored as Z-addresses) to the

esian system are not necessary, see [11].
the stack (the Down-Phase). If R is leaf, then
goto step 2 otherwise repeat step 6.
6M

two
The algorithm terminates as soon as a Z-region is
found, such that aXZaddrðQBup).

The neighbour first point and neighbour region

optimizations additionally reduce the total I/O
costs, since some of the ‘‘intersected’’ inner nodes
need not to be retrieved. Moreover, the optimiza-
tions use only the information stored on the path
stack, so they do not bring another kind of I/O
overhead.
4.1. Time complexity

Complexity of the TestZRegionIntersec-
tion is linear according to Z-address bit-length
(see Section 5.3), i.e. it is Oðn logðjDjÞÞ: Had we
compared the TestZRegionIntersection
and, as declared, the GetNextZaddress opera-
tions, it is important to realize that they are both
of the same complexity.6 In other words, they are
very cheap.
The algorithm retrieves k query-intersected

Z-regions by single LIFO traversal. In each visited
node, the TestZRegionIntersection is
called at most log2ðcÞ-times (using halving the
interval). The overall time complexity is the same
as the one of Bayer–Markl’s algorithm, i.e. it is
Oðk � h � n logðcÞ logðjDjÞÞ:
4.2. I/O costs

During the DRU algorithm running, each
query-intersected node is retrieved only once,
which is a consequence of single traversal through
the UB-tree. Moreover, some inner nodes (which
have to be accessed by simple UB-tree traversal)
are even not retrieved due to the introduced
optimizations performing ‘‘right-jumping’’ (steps
4 and 5 in the algorithm). The I/O costs are thus
I=Ospk � h:
oreover, their complexity is the same as an equality test of

Z-addresses.

ARTICLE IN PRESS

C-curve Z-curve Hilbert curve

Fig. 7. Space filling curves.

T. Skopal et al. / Information Systems 31 (2006) 489–511 497
5. Z-region intersection

In this section we discuss some properties of the
Z-curve, which will help us in understanding the
shape of Z-region. Using such information, we can
design an algorithm for testing intersection be-
tween Z-region and query box.

5.1. Geometric properties of the Z-curve

In the vector space O a space filling curve (SFC)
defines linear order for all the points in the space.
In Fig. 7 three SFCs are depicted. Note that dis-
crete SFC is just a geometric interpretation for
linear ordering of points in the space and vice
versa. For more details about SFCs we refer to
Sagan [9].

For implementation of the basic UB-tree
operations (i.e. insertion, deletion, point query)
there is no qualitative reason why to choose just
the Z-curve or another specific SFC. A particular
reason for utilizing the Z-curve is the cheap
algorithm of Z-address construction.

The important property of Z-curve is its high
locality. The locality concept (for SFC) says that
points that are ‘‘close’’ in the space (using some
metric) are also ‘‘close’’ on the SFC (using the
order). In other words, the Z-curve partially carries
a topological information about the space; it locally
preserves metric (we refer to Gotsman and Linden-
baum [15]). Alternatively, Markl [11] classifies the
SFCs according to their symmetry—a self-similarity
concept taken from fractal geometry.7
7For key retrieval using fractals see Faloutsos and Roseman

[7].
5.1.1. Z-address construction

The simplest analytic description of the
Z-address function is the following definition:

Definition 2 (Z-address). Let us have an n-dimen-
sional point o 2 O; where binary representation of
each coordinate oi is denoted as oi ¼

oi;s�1oi;s�2 . . . oi;0: Then

ZaddrðoÞ ¼
Xs�1

j¼0

Xn

i¼1

oi;j2
jnþi�1

is called the Z-address of o.

The understanding value of the above formula
seems to be quite low. Somewhat more informa-
tion about the Z-address construction is provided
by the bit interleaving algorithm. Using this
algorithm, the Z-address is constructed from the
coordinates oi: In each step of the algorithm, the
bits are ‘‘sliced’’ from the coordinates (one bit
from each coordinate in each step) and ‘‘glued
together’’ into a single bit-string. The algorithm of
bit interleaving is depicted in Fig. 8.
However, we tried to investigate even more

characteristics about the Z-curve’s shape, espe-
cially those usable for the range query purposes.
As a geometric framework, we took advantage of
generalized quad-trees.
5.1.2. Hyper-quad trees

Generalized quad-trees and their modifications
have been applied many times in the areas of CAD
and GIS as well as in the area of SAM (see Samet
[16]). However, in our approach we consider the
generalized quad-tree a bit more abstractly, since

ARTICLE IN PRESS

Z-address=27

o2=3 o1=5

Fig. 8. Bit interleaving algorithm for two-dimensional point o ¼ ½5; 3�: ZaddrðoÞ ¼ 27:

T. Skopal et al. / Information Systems 31 (2006) 489–511498
we use it just as a formal tool for studying the
Z-curve.

In geometry, the term quadrant reflects an
exactly defined quarter of two-dimensional space.
Similarly, we can divide single-dimensional space
into two halves, and in three-dimensional space we
distinguish eight octants of space. Common to all
these geometric constructs is a need to partition the
space. Moreover, the partition is always performed
using halving the space in all existing dimensions.
We can generalize such information by definition
of the hyper-quadrant of n-dimensional space.

Definition 3 (hyper-quadrant). Let us have a vec-
tor space O ¼ Dn: The hyper-quadrant (hquad) HQ
is a subspace in O; i.e. HQ � O; such that HQ ¼
HD1 �HD2 � � � � �HDn; where each domain
HDi is the lower or the upper half of the domain
D, i.e. HDi ¼ lowðDÞ or HDi ¼ upðDÞ:

Corollary 1. Each n-dimensional vector space O is

formed by its 2n disjunct hquads.

The previous set-based definition does not cope
with an identification of hquad according to
location in the space. Actually, we can establish
up to ð2nÞ! orderings on the set of all hquads.
Fortunately, there exists one suitable hquad
numbering (ordering actually) that helps us to
discover a relation between the hyper-quad trees
and the Z-curve. Such hquad number—we call it
hquad code—is constructed using successive halv-
ing of each dimension and testing whether the
hquad is located either in the lower or in the upper
half.

Definition 4 (hquad code). The hquad code is
represented by a binary string, where each bit
indicates the hquad’s location according to one
dimension. The ith bit is set to 0 if the hquad is
located (according to the ith dimension) in the
lower half of domain D, i.e. if HDi ¼ lowðDÞ: The
second case is dual, i.e. the ith bit is set to 1 if
HDi ¼ upðDÞ:

The most significant bit (the left-most) indicates
the location within the nth dimension, while the
less significant bit (the right-most) indicates the
location according to the first dimension. If we
sort all the hquad codes lexicographically (i.e.
left-to-right), we obtain an ordering of hquads. In
Fig. 9 hquads and their codes are depicted. The
bit-length of each hquad code is n, which is
obvious from the code construction.

Definition 5 (HQ-tree). The hyper-quad tree

(HQ-tree) is generalized quad-tree, representing a
complete recursive partition of the n-dimensional
vector space O: Each inner node of the HQ-tree
contains a covering hquad and 2n links to all its
sub-hquads. The covering hquad of the root node
is the whole space O; while the HQ-tree leaves
represent all the points of O: The links to the sub-
hquads are stored in ascending order, according to
their hquad codes.

Corollary 2. Since the domain D is a finite set, the

height h of HQ-tree is h ¼ log2ðjDjÞ: Hquads in the

leaves of HQ-tree are points, i.e. the domains of the

deepest hquads contain single element. An arbitrary

point of the space O is always hquad located in a leaf

of the HQ-tree.

Examples for 1D, 2D and 3D spaces are the
binary tree, the quad-tree, and the octant-tree, see
Fig. 10.

ARTICLE IN PRESS

T. Skopal et al. / Information Systems 31 (2006) 489–511 499
Finally, we need to establish unique identifica-
tion of hquad within the HQ-tree hierarchy. This
can be managed using the downward navigation

traversal through the HQ-tree. The HQ-tree is
traversed along a single path, while the hquad

navigation code is constructed by concatenation of
codes belonging to the hquads on the path. The
navigation code (of variable length) uniquely
determines the hquad position in HQ-tree.
Definition 6 (hquad navigation code). Let us have
an hquad HQ. The binary string naviðHQÞ ¼ c0 �

c1 � � � cl�1 is called the hquad navigation code of
HQ, if each substring ci is code of such hquad at
the ith HQ-tree level, that spatially contains HQ.
Corollary 3. The larger hquads have shorter

navigation codes and vice versa. The bit-length of
1D 3D

2D

D1

D1

D1

D2

D3

D2

Fig. 9. Hyper-quadrants and their codes.

1D

2D

Fig. 10. HQ-trees—binary tree
navigation code for a point pt is jnaviðptÞj ¼

n log2ðjDjÞ:

In Fig. 11 the navigation code construction in
shown.
In the following we discuss the relation between

the HQ-tree and the Z-curve.

Theorem 1. The navigation code naviðoÞ of o 2 O is

equivalent to the Z-address ZaddrðoÞ of o, i.e.

naviðoÞ ¼ ZaddrðoÞ:

Proof. If we realize, both of the Z-address
construction algorithms, i.e. the navigation code
construction and the bit interleaving, combine the
bits of the source coordinates exactly the same way
(see Figs. 8 and 11). &

Another relation between the Z-curve and the
HQ-tree is hidden in the LIFO HQ-tree traversal.
This traversal visits the HQ-tree leaves (points
in space) in the same order as the Z-curve fills
the space. Hence, we might sketch a simple
recursive algorithm for drawing the Z-curve using
HQ-tree traversal. As a side effect, such a drawing
algorithm might be utilized as an efficient tool
for Z-ordering of the whole universe O: This
could be useful in various computer science
disciplines, where every point of space carries
some information (e.g. in image processing or
pattern recognition).
3D

, quad-tree, and oct-tree.

ARTICLE IN PRESS

Fig. 11. Navigation code construction for point hquad located at coordinates [6,2].

T. Skopal et al. / Information Systems 31 (2006) 489–511500
5.1.3. Important consequences

Let us summarize several consequences that are
important for further analysis. The consequences
can be also observed in Fig. 12, where the
Z-ordering of hquads at the first and the third
HQ-tree level is depicted.
�
 The hquads define Z-regions which exactly fit
the hquads.

�
 The hquads at a given HQ-tree level are
Z-ordered according to their navigation codes.

�
 Consider a hquad at kth level of an HQ-tree.
The Z-curve visits its sub-hquads at the ðk þ 1Þth
level one-by-one, so that the hquad is entirely
filled before the Z-curve enters the next hquad at
the kth level.
�
 If the space O (a hquad generally) is halved into
two half-spaces according to the last (nth)
dimension, the Z-curve visits all points of the
first half-space before it enters the second
half-space. Thus, the half-spaces themselves are
Z-ordered.

5.2. Minimal Z-region Hquad Envelope

Before we describe the linear algorithm for
testing intersection between the query box and
the Z-region, we have to introduce concept of
so-called minimal Z-region hquad envelope.

Definition 7 (minimal Z-region hquad envelo-

pe). Every Z-region can be assembled by hquads

ARTICLE IN PRESS

Fig. 12. Relationship between Z-curve and HQ-tree.

phase 1 (HQ-tree level 1)

phase 3 Cont. (HQ-tree level 4) phase 3 Cont. (HQ-

phase 2 (HQ-tre

α

β

lower groups

upper groups for α

Fig. 13. Construction of the minimal Z-region hquad envelope. The

and b; the border hquads hqa and hqb are constructed in each step o

T. Skopal et al. / Information Systems 31 (2006) 489–511 501
located at various levels of the HQ-tree. We call
the set of hquads forming a given Z-region as
Z-region hquad envelope. The envelope formed by
the smallest number of hquads we call the minimal

Z-region hquad envelope.

The minimal Z-region hquad envelope can be
constructed by the following three-phase algo-
rithm (see also an example in Fig. 13):

Algorithm 3 (minimal Z-region hquad envelope).

Input: Z-region ½a : b�
Output: set of hquads (minimal Z-region hquad
envelope)
(1)
tree

e lev

 for β

Z-reg

f the
Find the smallest hquad hqmin containing both

Z-region bounds a and b:

(2)
 Send to the output all sub-hquads of hqmin;

which are located (according to hquad codes)
 level 5)

el 2) phase 3 (HQ-tree level 3)

Z-region envelope

ion ½a : b� is formed by 13 hquads. For Z-region bounds a
third phase.

ARTICLE IN PRESS

T. Skopal et al. / Information Systems 31 (2006) 489–511502
entirely between the ‘‘border hquads’’ (which are
two sub-hquads of hqmin containing a and b).
Let us denote the border hquads as hqa
and hqb:
(3)
 Process the following for both border hquads
hqa and hqb: The hquad hqa (hqb) is decom-
posed into sub-hquads. The sub-hquad which
contains the a (b) is set as the new border
hquad hqa (hqb; respectively). Among the
remaining sub-hquads, the lower group is
formed by such sub-hquads, the codes of
which are lower than code of hqa (hqb).
Similarly, the upper group is formed by sub-
hquads having their codes greater than code of
hqa (hqb). In case of hqa (hqb) processing, the
upper group (lower group respectively) is sent
to the output. The steps of the third phase are
repeated until hqa and hqb become points.
In the presented construction, we have assumed
(a) (b)

Fig. 15. Intersection of two hyper-boxes.
that every minimal Z-region envelope must con-
tain at least two point hquads. However, there also
exist Z-regions the minimal envelopes of which
consist of hquads located at higher HQ-tree levels
only. For example, envelope of the whole space O
is single hquad. Such ‘‘rough’’ Z-regions can be
handled in the second and the third phase of the
algorithm but, for the sake of simplicity, we can
omit such cases.

If we replace the ‘‘send hquad to the output’’
operation with the ‘‘test hquad and query box
intersection’’ operation, we obtain the desired
phase 1

phase 2

phase 3
processing

the α bound

Fig. 14. The hquad en
functionality of testing intersection between the
Z-region and the query box.
From another point of view, we can imagine the

envelope as a subtree in the HQ-tree. The Fig. 14
presents such a subtree for the envelope from
Fig. 13. In the 3rd phase (levels 2–4), left branch
(for the a bound) and right branch (for the b
bound) are traversed down. In the left branch, the
upper groups of sub-hquads are sent to the output
(the greyed parts), while in the right branch, the
lower groups of sub-hquads are greyed and thus
sent to the output.

5.2.1. Intersection of Hyper-boxes

The ‘‘test hquad and query box intersection’’
operation is evaluated as an intersection of two
hyper-boxes. As we can see in Fig. 15a, two hyper-
boxes are intersected just in case that their ranges
intersect in all dimensions. For ranges of a
phase 3
processing
the β bound

velope subtree.

ARTICLE IN PRESS

T. Skopal et al. / Information Systems 31 (2006) 489–511 503
particular dimension three cases may happen, see
Fig. 15b.

If we denote the first hyper-box range of the ith
dimension as an interval hlowi

1; upi
1i and range of

the other hyper-box as an interval hlowi
2; upi

2i; we
can formulate a single condition indicating
whether two ranges are intersected:

jlowi
1 � lowi

2j þ jupi
1 � upi

2j

pjlowi
1 � upi

1j þ jlowi
2 � upi

2j

Finally, two hyper-boxes are intersected if the
statement holds for all i.

5.2.2. Time complexity

The first two phases of the envelope construc-
tion we can omit, since their complexities are lower
than complexity of the third phase.

In the third phase, there are four nested loops.
In the first loop, the HQ-tree is traversed down;
the height of HQ-tree is h ¼ log2ðjDjÞ: In the
second loop, there is up to 2n � 1 sub-hquads sent
to the output (at each HQ-tree level). Finally, third
loop and fourth loop are hidden in the intersection
test of two hyper-boxes (testing n coordinates,
each consisting of log2ðjDjÞ bits); i.e. it is
Oðn logðjDjÞÞ: The overall time complexity is Oðn �

2n log2ðjDjÞÞ:
Had we used vector space of a small dimension-

ality, say no10; such complexity (exponential with
n) would be acceptable. However, for high-
dimensional spaces this algorithm is inefficient.
Fortunately, there exists a solution reducing the
complexity to linear according to Z-address bit-
length, as we propose in the next section.

5.3. Linear intersection algorithm

The greatest component of the envelope con-
struction/intersection complexity is the exponen-
tial dependence on n. This fact arises from the
observation that the lower or the upper group sent
to the output can consist of up to 2n � 1 hquads.

However, the lower group (upper group, respec-
tively) can be spatially represented by at maximum
n general hyper-boxes (not by hquads anymore).
The idea is based on elimination of all dimensions
during processing of the border hquad code. We
present the idea for construction of the reduced

upper group; the reduced lower group is constructed
similarly.

Algorithm 4 (reduced upper group construction).
(1)
 The parent hquad is set as the actual hyper-
box. Determine the border sub-hquad (with
respect to the Z-region bound).
(2)
 The bits of the border sub-hquad code are
iteratively read from the most significant to the
less significant. We already know that each bit
of the code determines location of the hquad
according to the appropriate dimension.
In each step, we process the next bit of the
border hquad code. For each bit value, two
cases may occur:
(a) If the bit is set to 0, it means that the

border hquad is located in the lower half of
the appropriate dimension. Since we con-
struct the upper group, we send the upper
half (according to the dimension) of the
actual hyper-box to the output. The
actual hyper-box is then set to its own
lower half.

(b) If the bit is set to 1, it means that the
border hquad is located in the upper half of
the appropriate dimension. Since we con-
struct the upper group, we ignore the lower
half. The actual hyper-box is set to its own
upper half.
The steps are repeated until all bits, i.e.
dimensions, are processed.
See examples in Fig. 16.

Corollary 4. The algorithm constructs maximally n

hyper-boxes for the reduced upper/lower group.

In consequence, each hyper-box in the reduced

group covers up to 2n�1 hquads (present in the

appropriate unreduced group of hquads). Moreover,
each hyper-box in the reduced upper/lower group is

equal to union of all the remaining hquads located in

upper/lower half of the divided dimension (remem-

ber the consequences summarized in Section 5.1.3),
thus the hyper-box itself is a hyper-rectangular

Z-region.

ARTICLE IN PRESS

(a)

(b)

Fig. 16. (a) 2D example of reduced lower group construction. (b) 3D example of reduced upper group construction.

T. Skopal et al. / Information Systems 31 (2006) 489–511504
We use the particular reduced lower/upper
group constructions for the linear, two-phase
version of the intersection algorithm. As in the
exponential case, we can interpret the inter-
section algorithm as a construction of Z-region
envelope.

Algorithm 5 (Z-region hyper-box envelope).

Input: Z-region ½a : b�
Output: set of hyper-boxes (hyper-box envel-
ope)
(1)
 The first phase is the same as by the
exponential algorithm. The smallest hquad
entirely containing the Z-region is determined.
Further processing is restricted to this hquad.
(2)
 The second phase constructs the so-called
lower and upper Z-region half-envelopes. The
lower half-envelope is created for the upper
bound b; while the upper half-envelope is
created for the lower bound a: At each level
of HQ-tree, the half-envelopes are consecu-
tively constructed using the above described
reduced upper/lower group construction. In
order to keep the half-envelopes disjunct, only
such hyper-boxes are added to the lower
(upper) half-envelope, which do not contain b
(a; respectively).
The geometric union of the two half-envelopes
produces a ‘‘hyper-box envelope’’ spatially match-
ing the ‘‘hquad envelope’’ (see proof at the end of
this section). This fact also states that if the query
box intersects a Z-region, then it must also
intersect at least one of its half-envelopes, and
vice versa.
As by the exponential algorithm, to obtain

the intersection algorithm, we replace the ‘‘send
hyper-box to the output’’ operation with the
‘‘test hyper-box and query box intersection’’
operation. Since the linear version of the intersec-
tion algorithm is a bit more complicated, we
present it in a more explicit (C++-like) pseudo-
code:

ARTICLE IN PRESS

T. Skopal et al. / Information Systems 31 (2006) 489–511 505
Algorithm 6 (linear intersection algorithm).

bool TestZRegionIntersection(Zaddress alpha, Zaddress beta, Hbox spaceBox, Hbox queryBox)
{

// phase 1 - reduce the spaceBox to the smallest hquad entirely containing the Z-region

i ¼ 0
While(alpha[i] ¼ beta[i]) {

spaceBox ¼ spaceBox.GetSubHquad(alpha[i])
i ¼ i+1

}

// phase 2 - intersection of half-envelopes

If (TestUpperHalfEnvelope(spaceBox, queryBox, alpha, beta) Or
TestLowerHalfEnvelope(spaceBox, queryBox, alpha, beta)) Then

return true
Else

return false
}

bool TestLowerHalfEnvelope(Hbox actualHBox, Hbox queryBox, Zaddress alpha, Zaddress beta)
{

flag ¼ false // keeps both half-envelopes disjunct
// HQ-tree downward traversal

For i ¼ 0 To log2ðjDjÞ � 1 {

For j ¼ n-1 To 0 { // process all dimensions

If(alpha[i].GetBit(j)) Then {

// set the actualHBox to its upper half

actualHBox ¼ actualHBox.GetUpperHalf(j)
}

Else {

// test the intersection with the querybox

If (flag And TestQueryBox(queryBox, actualHBox.GetUpperHalf(j))) Then return true
If (TupleInsideBox(beta, actualHBox.GetUpperHalf(j)) Then flag ¼ true
actualHBox ¼ actualHBox.GetLowerHalf(j)

}

}

}

// test the last point (alpha)

return TestQueryBox(queryBox, actualHBox)
}

Notes to the pseudo-code:
�
 TestUpperHalfEnvelope is dual to Tes-
tLowerHalfEnvelope.

�
 TupleInsideBox(Zaddress, qb) exam-
ines whether the Zaddress lies inside the query
box qb.

�
 TestQueryBox(hbox, qb) examines
whether the hbox intersects qb.
�
 alpha[i], beta[i] returns the ith hquad
code of a Z-address.

�
 topHquad.GetSubHquad(i) returns the
sub-hquad of topHquad identified by the
hquad code i.
The linear algorithm (hyper-box envelope con-
struction respectively) is depicted in Fig. 17. Note
that hyper-boxes containing the opposite Z-region

ARTICLE IN PRESS

T. Skopal et al. / Information Systems 31 (2006) 489–511506
bound cannot be sent to the output (see the light-
grey boxes). This restriction (in the pseudo-code
provided using the boolean flag variable) ensures
that both constructed envelopes are disjunct.

Theorem 2. For a given Z-region Z ¼ ½a : b�; the

two following statements hold:
(a)
 The minimal hquad envelope of Z exactly

matches Z, i.e. the envelope determines the

same set of points in vector space as the

Z-region.

(b)
 The hyper-box envelope of Z exactly matches

the minimal hquad envelope of Z (and thus

matches Z).
8A comparison of UB-tree against other multi-dimensional

structures was out of scope of this paper, we refer to [4,11]

where the superiority of UB-tree (over R-tree, Grid-files, etc.)

was already verified.
Proof. (a) The minimal hquad envelope is created
by recursive decomposition of the space, such that
hquads (their navigation codes) lie inside Z (within
interval ha;bi; respectively). Due to recursion the
decomposition of Z’s space is complete.

(b) According to Corollary 4, the hyper-boxes in
reduced upper/lower groups are hyper-rectangular
Z-regions, thus the half-spaces decomposed into
lower and upper half-envelopes are, mutually,
Z-ordered. More specifically, there exists a ‘‘bor-
der Z-address’’ g separating the two half-spaces.
Simultaneously, the lower half-envelope is con-
structed for Z-region ½a : g�; while the upper half-
envelope is constructed for Z-region ½gþ 1 : b�: In
other words, the half-envelopes are disjunct and,
simultaneously, there is no ‘‘room’’ between the
upper and lower half-envelopes. Thus, union of
the half-envelopes exactly matches the minimal
hquad envelope and, in turn, the Z-region. &

5.3.1. Time complexity

The complexity of the linear intersection algo-
rithm is Oðn logðjDjÞÞ: There are only two nested
loops. The first one is the HQ-tree downward
traversal, while in the second one all dimensions of
a border hquad code are processed. Note that
operations TupleInsideBox and TestQuery-
Box can be performed in Oð1Þ time, since the
actual hyper-box is always halved in a single
dimension in each step. Consequently, whether a
tuple is inside the query box (whether a hyper-box
is intersected by the query box, respectively) can be
checked with respect to the respective dimension
only. Hence, the overall time complexity of the
algorithm is linear with the Z-address bit-length.
5.3.2. Relationship with the query box

decomposition

The construction of the hyper-box envelope is
an inverse technique to the query box decomposi-
tion approach, presented in Section 3.1. Instead of
a set of Z-regions representing an envelope for the
query box, we create sets of hyper-boxes repre-
senting envelopes for multiple Z-regions.
The query box decomposition is performed only

once, while the set of interval queries can be
processed by any indexing structure providing
linear ordering of keys. Unfortunately, the size of
the set of intervals is exponentially large (accord-
ing to the dimensionality).
On the other side, the DRU algorithm computes

the Z-region envelope (the Z-region intersection
respectively) multiple times—for Z-regions ‘‘po-
tentially’’ intersected by the query. However, the
Z-region intersection is of linear complexity, so
that the DRU algorithm is applicable, unlike the
query box decomposition, also for high-dimen-
sional spaces.
6. Experimental results

We made a set of experiments8 with synthetic
datasets of increasing dimensionality. The data
tuples were generated into uniformly distributed
clusters of a fixed radius (using the L2 metric, see
Fig. 18 for the 2D case) and indexed using the
UB-tree. The number of tuples was increasing with
the number of dimensions. We have examined the
DRU algorithm and the Bayer–Markl’s algorithm
in the experiments.
In the table below see some statistics about the

datasets as well as the created UB-tree indices.

ARTICLE IN PRESS

α

α

β

β

lower half-envelope

upper half-envelope

Z-region hyper-box envelope

union

reduced lower groups for β

reduced lower groups for α

Fig. 17. The linear intersection algorithm (construction of Z-region hyper-box envelope). The envelope consists of 9 hyper-boxes, i.e.

max. 9 hyper-boxes are tested for an intersection with the query box.

UB-tree statistics:

jDj 232 Dimensionality 2–30

Inserted tuples 524,288–7,864,320 Tree height (h) 4
Nodes 22,400–321,885 Z-regions (leaves) 21,475–321,885
Node capacity 35 Node utilization 69.7–69.8%
Node size 580–4612 bytes Index file size 12.4MB–1.44GB

T. Skopal et al. / Information Systems 31 (2006) 489–511 507

ARTICLE IN PRESS

Fig. 18. Two-dimensional data set distribution.

T. Skopal et al. / Information Systems 31 (2006) 489–511508
We have generated from 24 to 120 query boxes
for the experiments (the number of queries
was increasing with the number of dimensions).
The query boxes (of various shapes) were
distributed randomly with respect to the
distribution of data tuples. With the growing
dimensionality the ranges of query boxes
were fixed, thus the query box volumes were
increasing, but the query box volume/space
volume ratio was decreasing. Such a query box
construction is typical for multi-dimensional ap-
plications. The results of range query experiments
were averaged.

In Fig. 19a the range query selectivity is
presented. The number of returned tuples is
approximately constant, but the number of ac-
cessed Z-regions (retrieved leaves respectively)
rapidly grows with the increasing dimensionality.
The Fig. 19b shows real times of the DRU
algorithm running.9

In Fig. 20 the original Bayer–Markl’s algorithm
(denoted as B–M algorithm) and the DRU
algorithm are compared. Fig. 20a shows the
9Performed on an Intel Pentium s4 2.4GHz, 512MB

DDR333, Windows XP.
number of disk page retrievals10 (I/O costs),
while Fig. 20b shows the number of computations
spent by range query processing. As a single
computation we generally consider each per-
formed operation, which is of linear complexity
according to the Z-address bit-length. Such
operations are:
(1)
10

cons
comparison of two Z-addresses, testing
Z-address inside Z-region, testing Z-address
or tuple inside the query box,
� utilized in both range query algorithms; for
the neighbour first point optimization, for
filtering tuples in leaves, for traversing the
UB-tree, etc.
In

id
(2)
 computation of the TestZRegionInter-
section operation,
� utilized only in the DRU algorithm for the

neighbour region optimization and for testing
Z-region intersection while traversing the
UB-tree,
(3)
 computation of the GetNextZAddress op-
eration,
� utilized only in the Bayer–Markl’s algorithm
for determination of the next intersecting
Z-region.
Since all the operations are of the same
complexity, we can use them as a computational
unit, in order to compare both range query
algorithms.
The results demonstrate that DRU algorithm

works more efficiently, since the I/O costs and the
computation costs are several times smaller than
the costs spent by the Bayer–Markl’s algorithm.
The reason can be observed in Fig. 21, where the
power of leaf optimizations is presented.
In Fig. 21a the successful optimization attempts

are shown. A successful attempt of an optimiza-
tion means that the respective Z-region was
positively checked as query-intersected. The line
labeled as ‘‘total attempts’’ denotes the total
number of optimization attempts (successful as
well as unsuccessful) for both leaf optimizations.
The Fig. 21b shows the optimization effectiveness,
order to eliminate the influence of disk caching, we have

ered only the logical disk accesses.

ARTICLE IN PRESS

(a) (b)

QUERY SELECTIVITY REALTIME COSTS

dimensionalitydimensionality

Fig. 19. (a) Query selectivity. (b) Realtime costs.

(a) (b)

Fig. 20. (a) I/O costs. (b) Computations.

(a) (b)

Fig. 21. (a) Leaf optimizations (successful attempts). (b) Leaf optimizations (effectiveness).

T. Skopal et al. / Information Systems 31 (2006) 489–511 509
i.e. ratio of the number of successful attempts to
the number of total attempts.

We can observe that for dimensionality n ¼ 2
the neighbour first point optimization (used also in
the Bayer–Markl’s algorithm) has detected major-
ity of the query-intersected neighbour regions.
However, for n44 the neighbour first point
optimization became almost useless. This was
expectable, since the shape of Z-region is much
more complicated for higher dimensionalities, so
that the first point of a query-intersected Z-region
is (almost) always outside the query box. However,
the neighbour region optimization is more power-
ful, it works well even for high dimensionalities. In

ARTICLE IN PRESS

T. Skopal et al. / Information Systems 31 (2006) 489–511510
fact, the effectiveness of the neighbour region

optimization means that over 80% of right-
neighbour-leaf’s Z-regions were intersected by the
query box.

As it has been mentioned in Section 4, a single
successful optimization attempt saves up to h disk
page retrievals needed for UB-tree traversal
(a point query in case of Bayer–Markl’s algo-
rithm), it is sufficient to ‘‘jump’’ to the right
neighbouring leaf. Consequently, from Fig. 21 we
can reason out, that majority of the UB-tree inner
nodes was not accessed due to the neighbour region

optimization.
The above presented results bring us to the

discussion about the influence of the curse of

dimensionality [2,17] on range query processing in
the UB-tree. With the growing dimensionality the
costs grow as well, however, less than exponen-
tially. In Fig. 22a we see a ratio of tuples inside the
query box to the number of intersected Z-regions.
The Fig. 22b shows a ratio of the relevant Z-

regions to all of the query-intersected Z-regions
accessed by the DRU algorithm. As a relevant
Z-region we consider such Z-region, that contains
at least one data tuple contained also by the query
box. The ratio says that for higher dimensional-
ities, more than 95% of the query-intersected
Z-regions ‘‘give’’ no tuples to the result. The
reason is obvious—topological properties of the
Z-curve become worse for higher dimensionalities,
and the Z-region volumes become larger.

On the other side, the Fig. 22b shows also a
ratio of query-intersected Z-regions (accessed by
the DRU algorithm) to the Z-regions contained in
(a) (b)

QUERY SELECTIVITY RATIO

dimensionality

Fig. 22. (a) Query selectivity r
the interval ½ZaddrðQBlowÞ : ZaddrðQBupÞ� (i.e. in
interval of the minimal Z-region bounding the
entire query box). One could expect that negative
effects of the curse of dimensionality will raise this
ratio up to 100%, which would be the same as a
traversal over majority of the UB-tree nodes.
However, this experiment shows that (even for
high dimensionalities) the number of accessed
Z-regions intersected by the query box is much
smaller than the number of Z-regions within the
above mentioned interval. This particular result
indicates that UB-tree together with the DRU
algorithm is quite resistant to the curse of
dimensionality. For a comparison, the well-known
R-tree [19](but also the R�-tree [18]) used in many
applications is highly affected by the curse of
dimensionality and its usage for high-dimensional
indexing is nearly impossible.
7. Conclusions and outlook

In this paper we have proposed a new algorithm
(called DRU algorithm) for range query proces-
sing in the Universal B-tree (UB-tree). The DRU
algorithm utilizes an operation detecting intersec-
tion between Z-region and query box, which is
used for a more efficient query processing. The
Z-region intersection operation is of linear time
complexity according to the Z-address bit-length.
The experimental results have shown that DRU

algorithm makes the UB-tree suitable for efficient
search in high-dimensional vector spaces. In
particular, using DRU algorithm almost all of
Z-REGION RATIO

dimensionality

l

l

atio. (b) Z-region ratio.

ARTICLE IN PRESS

T. Skopal et al. / Information Systems 31 (2006) 489–511 511
the UB-tree inner nodes need not to be accessed,
which is a significant improvement when com-
pared to the original UB-tree range query algo-
rithm. Moreover, the DRU algorithm is fully
applicable to the BUB-tree [3], a recent modifica-
tion of the UB-tree.

In the future we would like to develop algo-
rithms for (B)UB-trees, based on the Z-region
intersection algorithm, e.g. algorithms for dis-
tance-based queries (spherical range queries and
k-NN queries, in particular).
Acknowledgements

This research has been partially supported by
grant No. GAČR 201/03/0912 of the Grant
Agency of the Czech Republic.
References

[1] V. Gaede, O. Günther, Multidimensional access methods,

ACM Comput. Surv. 30 (2) (1998) 170–231.

[2] C. Böhm, S. Berchtold, D.A. Keim, Searching in high-

dimensional spaces: index structures for improving the

performance of multimedia databases, ACM Comput.

Surv. 33 (3) (2001) 322–373.

[3] R. Fenk, The BUB-tree, in: Proceedings of the 28th

Conference VLDB, Morgan Kaufmann Publishers Inc.,

Los Altos CA, 2002.

[4] R. Bayer, The universal B-tree for multidimensional

indexing: general concepts, in: Proceedings of the Interna-

tional Conference on Worldwide Computing and Its

Applications, Springer, Berlin, 1997, pp. 198–209.

[5] J.A. Orenstein, T.H. Merrett, A class of data structures for

associative searching, in: Proceedings of the 3rd ACM

SIGACT-SIGMOD Symposium on Principles of Database

Systems, ACM Press, New York, 1984, pp. 181–190.

[6] C. Faloutsos, Gray codes for partial match and range

queries, IEEE Trans. Softw. Eng. 14 (10) (1988)

1381–1393.

[7] C. Faloutsos, S. Roseman, Fractals for secondary key

retrieval, in: Proceedings of the Eighth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database

Systems, ACM Press, New York, 1989, pp. 247–252.

[8] J. Orenstein, A comparison of spatial query processing

techniques for native and parameter spaces, in: Proceed-

ings of the 1990 ACM SIGMOD International Conference

on Management of Data, ACM Press, New York, 1990,

pp. 343–352.

[9] H. Sagan, Space-Filling Curves, Springer, New York,

1994.

[10] C. Böhm, G. Klump, H.-P. Kriegel, XZ-Ordering: a space-

filling curve for objects with spatial extension, in:

Proceedings of the 6th International Symposium on

Advances in Spatial Databases, Springer, Berlin, 1999,

pp. 75–90.

[11] V. Markl, Processing relational queries using a multi-

dimensional acces technique, Dissertations in Database

and Information Systems-Infix, vol. 59, 1999, 217pp.

[12] F. Ramsak, V. Markl, R. Fenk, M. Zirkel, K. Elhardt, R.

Bayer, Integrating the UB-tree into a database system

kernel, in: Proceedings of the 26th International Con-

ference on Very Large Data Bases, Morgan Kaufmann

Publishers Inc., Los Altos, CA, 2000, pp. 263–272.

[13] J.K. Lawder, P.J.H. King, Using space-filling curves for

multi-dimensional indexing, in: Proceedings of the 17th

British National Conference on Databases, Springer,

Berlin, 2000, pp. 20–35.

[14] J.K. Lawder, P.J.H. King, Querying multi-dimensional

data indexed using the Hilbert space-filling curve,

SIGMOD Rec. 30 (1) (2001) 19–24.

[15] C. Gotsman, M. Lindenbaum, On the metric properties of

discrete space-filling curves, IEEE Trans. Image Process. 5

(5) (1996) 794–797.

[16] H. Samet, The Design and Analysis of Spatial Data

structures, Addison-Wesley, Reading, MA, Longman,

New York, 1990.

[17] C. Yu, High-Dimensional Indexing: Transformational

Approaches to High-dimensional Range and Similarity

Searches, Springer, New York, 2002.

[18] N. Beckmann, H.-P. Kriegel, R. Schneider, B. Seeger, The

R�-tree: an efficient and robust access method for points

and rectangles, in: Proceedings of the 1990 ACM

SIGMOD International Conference on Management of

Data, ACM Press, New York, 1990, pp. 322–331.

[19] A. Guttman, R-trees: a dynamic index structure for spatial

searching, in: Proceedings of the 1984 ACM SIGMOD

International Conference on Management of Data, ACM

Press, New York, 1984, pp. 47–57.

	A new range query algorithm for Universal B-trees
	Introduction
	Preliminaries
	Range query

	UB-tree
	Motivation
	Z-regions
	Evaluation of range query in UB-tree

	Related work
	Query box decomposition
	Query box touching
	Time complexity
	I/O costs
	Other related work

	The down-right-up algorithm
	Time complexity
	I/O costs

	Z-region intersection
	Geometric properties of the Z-curve
	Z-address construction
	Hyper-quad trees
	Important consequences

	Minimal Z-region Hquad Envelope
	Intersection of Hyper-boxes
	Time complexity

	Linear intersection algorithm
	Time complexity
	Relationship with the query box �decomposition

	Experimental results
	Conclusions and outlook
	Acknowledgements
	References

