
NM-tree: Flexible Approximate Similarity
Search in Metric and Non-metric Spaces

Tomáš Skopal and Jakub Lokoč

Charles University in Prague, FMP, Department of Software Engineering,
Malostranské nám. 25, 118 00 Prague, Czech Republic

{skopal,lokoc}@ksi.mff.cuni.cz

Abstract. So far, an efficient similarity search in multimedia databases
has been carried out by metric access methods (MAMs), where the uti-
lized similarity measure had to satisfy the metric properties (reflexivity,
non-negativity, symmetry, triangle inequality). Recently, the introduc-
tion of TriGen algorithm (turning any nonmetric into metric) enabled
MAMs to perform also nonmetric similarity search. Moreover, it simulta-
neously enabled faster approximate search (either metric or nonmetric).
However, a simple application of TriGen as the first step before MAMs’
indexing assumes a fixed “approximation level”, that is, a user-defined
tolerance of retrieval precision is preset for the whole index lifetime. In
this paper, we push the similarity search forward; we propose the NM-
tree (nonmetric tree) – a modification of M-tree which natively aggre-
gates the TriGen algorithm to support flexible approximate nonmetric
or metric search. Specifically, at query time the NM-tree provides a
user-defined level of retrieval efficiency/precision trade-off. We show the
NM-tree could be used for general (non)metric search, while the desired
retrieval precision can be flexibly tuned on-demand.

1 Introduction

As the digital devices for capturing multimedia data become massively available,
the similarity search in multimedia databases steadily becomes more important.
The metadata-based searching (using text/keywords/URL attached to multime-
dia documents, e.g., as at images.google.com) provides either limited search
capabilities or even is not applicable (for raw data). On the other hand, the
content-based similarity retrieval provides a native solution. The multimedia ob-
jects are retrieved based on their similarity to a query object (i.e., we suppose
the query-by-example modality). The similarity measure is domain-specific – we
could measure similarity of two images based on, for example, color histogram,
texture layout, shape, or any combination. In most applications the similarity
measure is regarded as computationally expensive.

In order to search a multimedia database efficiently enough, the database has
to be indexed so that the volume of explicitly computed similarity scores to
answer a query is minimized. That is, we try to avoid sequential scan over all
the objects in the database, and their comparing against the query object.

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2008, LNCS 5181, pp. 312–325, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

NM-tree: Flexible Approximate Similarity Search in Metric 313

1.1 Metric Search

A few decades ago, the database-oriented research established a metric-based class
of access methods for similarity search – the metric access methods (MAMs). The
similarity measure δ (dissimilarity or distance, actually) is modeled by a metric
distance function, which satisfies the properties of reflexivity, non-negativity, sym-
metry and triangle inequality. Based on these properties, the MAMs partition (or
index) the metric data space into classes, so that only some of the classes have to be
searched when querying; this results in a more efficient retrieval. To date, many
MAMs were developed, addressing various aspects – main-memory/database-
friendly methods, static/dynamic indexing, exact/approximate search, central-
ized/distributed indexing, etc. (see [21,15,4]). Although efficient in query process-
ing, MAMs force their users to employ just the metric similarity measures, which
is becoming a serious limitation nowadays.

1.2 Nonmetric Similarity

As the quantity/complexity of multimedia data grows, there is a need for more
complex similarity measuring. Here the metric model exhibits its drawbacks,
since the domain experts (being not computer scientists) are forced to “implant”
metric properties into their nonmetric measures, which is often impossible.

Fig. 1. Objections against metric properties in similarity measuring: (a) reflexivity (b)
non-negativity (c) symmetry (d) triangle inequality

However, a nonmetric similarity has also a qualitative justification. In partic-
ular, the reflexivity and non-negativity have been refuted by claiming that differ-
ent objects could be differently self-similar [11,19]. For example, in Figure 1a the
leaf on a trunk can be viewed as positively self-dissimilar if we consider the less
similar parts of the objects (here the trunk and the leaf). Or, alternatively, in
Figure 1b the leaf-on-trunk and leaf could be treated as identical if we consider
the most similar parts of the objects (the leaves). The symmetry was questioned
by showing that a prototypical object can be less similar to an indistinct one
than vice versa [13,14]. In Figure 1c, the more prototypical ”Great Britain and
Ireland” is more distant to the ”Ireland alone” than vice versa. The triangle
inequality is the most attacked property. Some theories point out the similar-
ity has not to be transitive [1,20]. Demonstrated by the well-known example, a

314 T. Skopal and J. Lokoč

man is similar to a centaur, the centaur is similar to a horse, but the man is
completely dissimilar to the horse (see Figure 1d).

1.3 Related Work

When compared to the rich research output in the area of metric access meth-
ods, there exist only few approaches to efficient nonmetric search. They include
mapping methods [2,12,7], where the nonmetric space is turned into a vector
space (mostly Euclidean). The distances in the target space are preserved more
or less approximately, while the approximation error is fixed and/or not known.
Similar approximate results achieve classification techniques [8,10]. Recently, an
exact search over a nonmetric database was introduced, assuming the query dis-
tribution is restricted to the database distribution [5], while the indexing is very
expensive (all pairwise distances on database objects must be computed).

Universal Solution. In our previous work we have introduced the TriGen algo-
rithm [17,16] – a universal approach to searching in (non)metric spaces – where
we addressed exact metric search, approximate metric search, (almost) exact
nonmetric search and approximate nonmetric search. All these retrieval types
can be achieved by turning the input (non)metric δ into a distance which satis-
fies the triangle inequality to some degree (including the full metric case). Such
a modified measure can be used by any MAM for indexing/querying. However,
as the proposed solution separates the measure conversion from the subsequent
MAM-related issues, querying on an index built using the modified measure can
be used to retrieval that is unchangeable in retrieval precision, that is, a retrieval
always exact or always approximate to some fixed extent. If the user wants to
adjust the desired precision, the entire database has to be reindexed.

Paper Contribution. In this paper we propose the NM-tree, a nonmetric (and
also metric) access method extending the M-tree. The NM-tree natively utilizes
the TriGen algorithm and provides retrieval precision adjustable at query time.

2 TriGen

The metric access methods are efficient because they use metric properties to in-
dex the database, especially the triangle inequality. However, in nonmetric spaces
a dissimilarity measure δ is not constrained by any properties, so we have no clue
for indexing. A way how to enable efficient nonmetric search is a transformation
to the (nearly) metric case by so-called T-bases. The reflexivity, non-negativity
and symmetry can be easily added to any nonmetric δ used for similarity search
(see [17]). We also assume the values produced by δ are scaled into 〈0, 1〉, which
is achieved for free when fixing the reflexivity and non-negativity.

The hard task is enforcing the triangle inequality. The TriGen algorithm
[17,16] can put more or less of the triangle inequality into any semimetric δ
(i.e., into any reflexive, non-negative, symmetric distance), thus any semimetric
distance can be turned into an equivalent full metric1, or to a semimetric which
1 In fact, the metric preserves the original query orderings (which is sufficient [17]).

NM-tree: Flexible Approximate Similarity Search in Metric 315

satisfies the triangle inequality to some user-defined extent. Conversely, TriGen
can also turn any full metric into a semimetric which preserves the triangle in-
equality only partially; this is useful for faster but only approximate search. For
its functionality the TriGen needs a (small) sample of the database objects.

2.1 T-bases

The principle behind TriGen is a usage of triangle triplets and T-bases. A triplet
of numbers (a, b, c) is triangle triplet if a + b ≥ c, b + c ≥ a, a + c ≥ b. The trian-
gle triplets can be viewed as witnesses of triangle inequality of a distance δ – if
all triplets (δ(Oi, Oj), δ(Oj , Ok), δ(Oi, Ok)) on all possible objects Oi, Oj , Ok are
triangle triplets, then δ satisfies the triangle inequality. Using triangle triplets
we measure the T-error – a degree of triangle inequality violation, computed as
the proportion of non-triangle triplets in all examined distance triplets.

Fig. 2. T-bases: (a) FP-base (b) RBQ(a,b)-base; for their formulas see [17]

A T-base f(x, w) is an increasing function (where f(0, w) = 0 & f(1, w) = 1)
which turns a value x ∈ 〈0, 1〉 of an input (semi)metric δ into a value of a
target (semi) metric δf , i.e., δf (·, ·) = f(δ(·, ·), w). Besides the input distance
value x, the T-base is parameterized also by a fixed weight w ∈ 〈−∞, ∞〉 which
determines how concave or convex f should be. The higher w > 0, the more
concave f , which means also the lower T-error of any δf . Conversely, the lower
w < 0, the more convex f and the higher T-error of any δf (w = 0 means f is
identity). For example, in Figure 2 see two T-bases, the fractional power T-base
(FP-base) and one of the rational Bézier quadratic T-bases (RBQ-bases).

2.2 Intrinsic Dimensionality

When choosing very high w (i.e., very concave f), we could turn virtually any
semimetric δ into a full metric δf . However, such a modification is not very use-
ful. The more concave f , the higher intrinsic dimensionality [4,3] of the data
space – a characteristic related to the mean and variance computed on the set of

316 T. Skopal and J. Lokoč

pairwise distances within the data space. Simply, a high intrinsic dimensionality
of the data leads to poor partitioning/indexing by any MAM (resulting in slower
searching), and vice versa. On the other hand, the more convex f , the lower in-
trinsic dimensionality of the data space but also the higher the T-error – this
results in fast but only approximate searching, because now the MAMs’ assump-
tion on fully preserved triangle inequality is incorrect. Hence, we have to make
a trade-off choice – whether to search quickly but only approximately using a
dissimilarity measure with higher T-error, or to search slowly but more precisely.

2.3 The TriGen Algorithm

Given a user-defined T-error tolerance θ, a sample S of the database, and an
input (semi)metric δ, the TriGen’s job is to find a modifier f so that the T-error
of δf is kept below θ and the intrinsic dimensionality of (S, δf) is minimized2. For
each of the predefined T-bases the minimal w is found (by halving the weight
interval), so that the weight w cannot be further decreased without T-error
exceeding θ. Among all the processed T-bases and their final weights, the one
is chosen which exhibits the lowest intrinsic dimensionality, and returned by
TriGen as the winning T-modifier (for details of TriGen see [17]).

The winning T-modifier could be subsequently employed by any MAM to
index and query the database using δf . However, at this moment a MAM’s
index built using δf is not usable if we want to change the approximation level
(the T-error of δf), that is, to use another f . This is because MAMs accept the
distance δf as a black box; they do not know it is a composition of δ and f . In
such case we have to throw the index away and reindex the database by a δf2 .

In this paper we propose the NM-tree, a MAM based on M-tree natively uti-
lizing TriGen. In NM-tree, any of the precomputed T-modifiers fi can be flexibly
chosen at query time, allowing the user to trade performance for precision.

3 M-tree

The M-tree [6] is a dynamic metric access method that provides good perfor-
mance in database environments. The M-tree index is a hierarchical structure,
where some of the data objects are selected as centers (references or local piv-
ots) of ball-shaped regions, and the remaining objects are partitioned among the
regions in order to build up a balanced and compact hierarchy, see Figure 3a.
Each region (subtree) is indexed recursively in a B-tree-like (bottom-up) way of
construction. The inner nodes of M-tree store routing entries

routl(Oi) = [Oi, rOi , δ(Oi, Par(Oi)), ptr(T (Oi))]

where Oi is a data object representing the center of the respective ball region,
rOi is a covering radius of the ball, δ(Oi, Par(Oi)) is so-called to-parent distance

2 As shown in [17,16], the real retrieval error of a MAM using δf is well estimated by
the T-error of δf , hence, θ can be directly used as a retrieval precision threshold.

NM-tree: Flexible Approximate Similarity Search in Metric 317

Fig. 3. (a) M-tree (b) Basic filtering (c) Parent filtering

(the distance from Oi to the object of the parent routing entry), and finally
ptr(T (Oi)) is a pointer to the entry’s subtree. The data is stored in the leaves
of M-tree. Each leaf contains ground entries

grnd(Oi) = [Oi, id(Oi), δ(Oi, Par(Oi))]

where Oi is the data object itself (externally identified by id(Oi)), and δ(Oi, Par
(Oi)) is, again, the to-parent distance. See an example of entries in Figure 3a.

3.1 Query Processing

The range and k nearest neighbors (kNN) queries are implemented by traversing
the tree, starting from the root3. Those nodes are accessed whose parent regions
(R, rR) described by the routing entry are overlapped by the query ball (Q, rQ).

In case of a kNN query (we search for k closest objects to Q), the query
radius (or range) rQ is not known in advance, so we have to additionally employ
a heuristic to dynamically decrease the radius during the search. The radius is
initially set to the maximum distance in the metric space, that is, to 1.0 since
we have assumed a dissimilarity measure scaled to 〈0, 1〉, see Section 2.

Basic filtering. The check for region-and-query overlap requires an explicit
distance computation δ(R, Q), see Figure 3b. In particular, if δ(R, Q) ≤ rQ + rR,
the data ball R overlaps the query ball, thus the child node has to be accessed.
If not, the respective subtree is filtered from further processing.

Parent filtering. As each node in the tree contains the distances from the
routing/ground entries to the center of its parent node, some of the non-relevant
M-tree branches can be filtered out without the need of a distance computa-
tion, thus avoiding the “more expensive” basic overlap check (see Figure 3c). In
particular, if |δ(P, Q) − δ(P, R)| > rQ + rR, the data ball R cannot overlap the
query ball, thus the child node has not to be re-checked by basic filtering. Note
δ(P, Q) was computed in the previous (unsuccessful) parent’s basic filtering.
3 We outline just the principles, for details see the original M-tree algorithms [6,18].

318 T. Skopal and J. Lokoč

4 NM-tree

The NM-tree is an extension of M-tree in terms of algorithms, while the data
structure itself is unchanged. The difference in indexing relies in encapsulating
the M-tree insertion algorithm by the more general NM-tree insertion (see Sec-
tion 4.1). The query algorithms have to be slightly redesigned (see Section 4.2).

4.1 Indexing

The distance values (to-parent distances and covering radii) stored in NM-tree
are all metric, that is, we construct a regular M-tree using a full metric. Since the
NM-tree’s input distance δ is generally a semimetric, the TriGen algorithm must
be applied before indexing, in order to turn δ into a metric δfM (i.e., searching for
a T-modifier fM under θ = 0). However, because at the beginning of indexing the
NM-tree is empty, there is no database sample available for TriGen. Therefore,
we distinguish two phases of indexing and querying on NM-tree.

Algorithm 1 (dynamic insertion into NM-tree)

method InsertObject(Onew) {
if database size < smallDBlimit then

store Onew into sequential file
else

insert Onew into NM-tree (using original M-tree insertion algorithm under δfM)
endif
if database size = smallDBlimit then

run TriGen algorithm on the database, having θM = 0, θ1, θ2, ..., θk > 0 ⇒
obtaining T-bases fM , fe1 , fe2 , ..., fek

with weights wM , we1 , we2 , ..., wek
for each object Oi in the sequential file

insert Oi into NM-tree (using original M-tree insertion algorithm under δfM)
empty the sequential file

end if }

For the whole picture of indexing in NM-tree, see Algorithm 1. The first phase
just gathers database objects until we get a sufficiently large set of database
objects. In this phase a possible query is solved sequentially, but this is not
a problem because the indexed database is still small. When the database size
reaches a certain volume (say, ≈ 104 objects, for example), the TriGen algorithm
is used to compute fM using the database obtained so far. At this moment we run
the TriGen also for other, user-defined θi values, so that alternative T-modifiers
will be available for future usage (for approximate querying). Finally, the first
phase is terminated by indexing the gathered database using a series of the
original M-tree insertions under the metric δfM (instead of δ). In the second
phase the NM-tree simply forwards the insertions to the underlying M-tree.

Notice: In contrast to the original TriGen [17], in NM-tree we require the T-
bases fi to be additionally inversely symmetric, that is, fi(fi(x, w), −w) = x. In
other words, when knowing a T-base fi with some weight w, we know also the
inverse f−1

i (·, w), which is determined by the same T-base and −w. The FP-base
and all RBQ-bases (see Section 2.1) are inversely symmetric.

NM-tree: Flexible Approximate Similarity Search in Metric 319

4.2 Query Processing

When querying, we distinguish two cases – exact search and approximate search.

Exact search. The exact case is simple, when the user issues a query with zero
desired retrieval error, the NM-tree is searched by the original M-tree algorithms,
because of employing δfM for searching, which is the full metric used also for
indexing. The original user-specified radius rQ of a range query (Q, rQ) must
be modified to fM (rQ) before searching. After the query result is obtained, the
distances of the query object Q to the query result objects Oi must be modified
inversely, that is, to f−1

M (δfM (Q, Oi)) (regardless of range or kNN query).

Approximate search. The approximate case is more difficult, while here the
main qualitative contribution of NM-tree takes its place. Consider user issues
a query which has to be processed with a retrieval error ei ∈ 〈0, 1〉, where for
ei = 0 the answer has to be precise (with respect to the sequential search) and
for 0 > ei ≥ 1 the answer may be more or less approximate. The ei value must
be one of the T-error tolerances θi predefined before indexing (we suppose the
T-error models the actual retrieval error, i.e., ei = θi).

An intuitive solution for approximate search would be a modification of the re-
quiredδfM -baseddistances/radii stored inNM-tree into δfei-baseddistances/radii.
In such case we would actually get an M-tree indexed by δfei , as used in [17], how-
ever, a dynamic one – a single NM-tree index would be interpreted as multiple M-
trees indexed by various δfei distances. Unfortunately, this “online interpretation”
is not possible, because NM-tree (M-tree, actually) stores not only direct distances
between two objects (the to-parent distances) but also radii, which consist of aggre-
gations. In other words, except for the two deepest levels (leaf and pre-leaf level),
the radii stored in routing entries are composed fromtwo ormore direct distances (a
consequence of node splitting). To correctly re-modify a radius into the correct one,
we would need to know all the components in the radius, but these are not available
in the routing entry.

Instead of “emulating” multiple semimetric M-trees as mentioned above, we
propose a technique performing the exact metric search at higher levels and
approximate search just at the leaf and pre-leaf level. In Figure 4 see all the dis-
tances/radii which are modified to semimetric ones during the search, while the
modification is provided by T-bases associated with their user-defined retrieval
errors. Besides the to-parent distances, we also consider the query radius and
covering radii at the pre-leaf level, because these radii actually represent real dis-
tances to a furthest object in the respective query/data region. The query radius
and entry-to-query distances (computed as δ(·, ·)) are not stored in NM-tree, so
these are modified simply by fei (where fei is a T-base modifier obtained for
retrieval error ei). The remaining distances stored in NM-tree (δfM (·, ·)-based
to-parent distances and covering radii), have to be modified back to the original
ones and then re-modified using fei , that is, fei(f

−1
M (δfM (·, ·))).

320 T. Skopal and J. Lokoč

Algorithm 2 (NM-tree range query)

RangeQuery(Node N , RQuery (Q, rQ), retrieval error ek) {
let Op be the parent routing object of N // if N is root then δ(Oi, Op)=δ(Op, Q)=0

if N is not a leaf then {
if N is at pre-leaf level then { // pre-leaf level

for each rout(Oi) in N do {
if |fek

(δ(Op, Q)) − fek
(f−1

M (δfM (Oi, Op)))| ≤ fek
(rQ) + fek

(f−1
M (rfM

Oi
)) then { // (parent filt.)

compute δ(Oi, Q)
if fek

(δ(Oi, Q)) ≤ fek
(rQ) + fek

(f−1
M (rfM

Oi
)) then // (basic filtering)

RangeQuery(ptr(T (Oi)), (Q, rQ), ek)
}

} // for each ...

} else { // higher levels
for each rout(Oi) in N do {

if |fM (δ(Op, Q)) − δfM (Oi, Op)| ≤ fM (rQ) + r
fM
Oi

then { // (parent filtering)

compute δ(Oi, Q)
if fM (δ(Oi, Q)) ≤ fM (rQ) + r

fM
Oi

then // (basic filtering)

RangeQuery(ptr(T (Oi)), (Q, rQ), ek)
}

} // for each ...

}
} else { // leaf level

for each grnd(Oi) in N do {
if |fek

(δ(Op, Q)) − fek
(f−1

M (δfM (Oi, Op)))| ≤ fek
(rQ) then { // (parent filtering)

compute δ(Oi, Q)
if δ(Oi, Q) ≤ rQ then

add Oi to the query result
}

} // for each ...

}

Fig. 4. Dynamically modified distances when searching approximately

In Algorithm 2 see the modified range query algorithm4. In the pseudocode
the “metrized” distances/radii stored in the index are denoted as δfM (·, ·), rfM

Oi
,

while an “online” distance/radius modification is denoted as fek
(·), f−1

M (·). If
removed fM , f−1

M , fek
from the pseudocode, we would obtain the original M-tree

range query, consisting of parent and basic filtering steps (see Section 3.1).
4 For the lack of space we omit the kNN algorithm, however, the modification is similar.

NM-tree: Flexible Approximate Similarity Search in Metric 321

Fig. 5. (a) Exact (metric) search (b) Approximate search

In Figure 5 see a visualization of exact and approximate search in NM-tree.
In the exact case, the data space is inflated into a (nearly) metric space, so
the regions tend to be huge and overlap each other. On the other hand, for
approximate search the leaf regions (and the query region) become much tighter,
the overlaps are less frequent, so the query processing becomes more efficient.

5 Experimental Results

To examine the NM-tree capabilities, we performed experiments with respect to
the efficiency and retrieval error, when compared with multiple M-trees (each
using a fixed modification of δ, related to a user-defined T-error tolerance). We
have focused just on the querying, since the NM-tree’s efficiency of indexing is
the same as that of M-tree. The query costs were measured as the number of
δ computations needed to answer a query. Each query was issued 200 times for
different query objects and the results were averaged. The precision of approx-
imate search was measured as the real retrieval error (instead of just T-error);
the normed overlap distance ENO between the query result QRNMT returned
by the NM-tree (or M-tree) and the correct query result QRSEQ obtained by
sequential search of the database, i.e. ENO = 1 − |QRNMT∩QRSEQ|

max(|QRNMT |,|QRSEQ|) .

5.1 The TestBed

We have examined 4 dissimilarity measures on two databases (images, polygons),
while the measures δ were considered as black-box semimetrics. All the measures
were normed to 〈0, 1〉. The database of images consisted of 68,040 32-dimensional
Corel features [9] (the color histograms were used). We have tested one semi-
metric and one metric on the images: the L 3

4
distance [17] (denoted L0.75), and

the Euclidean distance (L2). As the second, we created a synthetic dataset of
250,000 2D polygons, each consisting of 5 to 15 vertices. We have tested one
semimetric and one metric on the polygons: the dynamic time warping distance
with the L2 inner distance on vertices [17] (denoted DTW) and the Hausdorff
distance, again with the L2 inner distance on vertices [17] (denoted Hausdorff).

322 T. Skopal and J. Lokoč

0.1 0.2 0.3 0.4 0.5

2
5

1
0

2
0

5
0

1
0

0
2

0
0

POLYGONS

0.05-0.5% RQS, DTW

range query selectivity (%)

q
u

e
ry

c
o

s
ts

(x
1

0
0

0
,

lo
g

.
s
c
a

le
)

NM-Tree T-error=0.16
NM-Tree T-error=0.08
multiple M-Trees T-error=0.16
multiple M-Trees T-error=0.08

multiple M-Trees T-error=0.01
NM-Tree T-error=0.01

multiple M-Trees T-error=0
NM-Tree T-error=0

0.1 0.2 0.3 0.4 0.5

0
.0

0
0
.0

1
0
.0

2
0
.0

3
0
.0

4

POLYGONS

0.05-0.5% RQS, DTW

range query selectivity (%)
re

tr
ie

v
a
l
e
rr

o
r

multiple M-Trees T-error=0.16
multiple M-Trees T-error=0.08
NM-Tree T-error=0.16
NM-Tree T-error=0.08

multiple M-Trees T-error=0.01
NM-Tree T-error=0.01

Fig. 6. Range queries on Polygons under DTW

10 20 30 40 50 60 70 80 90 100

2
5

1
0

2
0

5
0

1
0

0

COREL

kNN, L0.75

k

q
u

e
ry

c
o

s
ts

(x
1

0
0

0
,

lo
g

.
s
c
a

le
)

multiple M-Trees T-error=0
NM-Tree T-error=0

multiple M-Trees T-error=0.01
NM-Tree T-error=0.01

NM-Tree T-error=0.16
NM-Tree T-error=0.08
multiple M-Trees T-error=0.16
multiple M-Trees T-error=0.08

10 20 30 40 50 60 70 80 90 100

0
.0

0
0
.0

1
0
.0

2
0
.0

3
0
.0

4

COREL

kNN, L0.75

k

re
tr

ie
v
a
l
e
rr

o
r

multiple M-Trees T-error=0.16
NM-Tree T-error=0.16
multiple M-Trees T-error=0.08
NM-Tree T-error=0.08
multiple M-Trees T-error=0.01
NM-Tree T-error=0.01
multiple M-Trees T-error=0
NM-Tree T-error=0

Fig. 7. kNN queries on Corel under L 3
4

The TriGen inside NM-tree was configured as follows: the T-base pool con-
sisting of the FP-base and 115 RBQ-bases (as in [17]), sample size 5% of Corel,
1% of Polygons. The NM-tree construction included creation of 4 · 10 = 40
T-modifiers by TriGen (concerning all the dissimilarity measures used), defined
by T-error tolerances [0, 0.0025, 0.005, 0.01, 0.015, 0.02, 0.04, 0.08, 0.16, 0.32]
used by querying. The node capacity of (N)M-tree was set to 30 entries per node
(32 per leaf); the construction method was set to SingleWay [18]. The (N)M-trees
had 4 levels (leaf + pre-leaf + 2 higher) on both Corel and Polygons databases.
The leaf/inner nodes were filled up to 65%/69% (on average).

5.2 Querying

In the first experiment we have examined query costs and retrieval error of range
queries on Polygons under DTW, where the range query selectivity (RQS) ranged

NM-tree: Flexible Approximate Similarity Search in Metric 323

50 100 150 200 250

0
5
0
0

1
0
0
0

1
5
0
0

POLYGONS

10NN, Hausdorff

DB size (x 1000)

q
u
e
ry

c
o
s
ts

NM-Tree T-error=0.16
multiple M-Trees T-error=0.16
NM-Tree T-error=0.32
multiple M-Trees T-error=0.32

NM-Tree T-error=0
multiple M-Trees T-error=0
NM-Tree T-error=0.08
multiple M-Trees T-error=0.08

50 100 150 200 250

0
0

.0
0

0
1

0
.0

1
0

.2
7

POLYGONS

10NN, Hausdorff

DB size (x 1000)
re

tr
ie

v
a

l
e

rr
o

r
(l
o

g
.

s
c
a

le
)

multiple M-Trees T-error=0.32
NM-Tree T-error=0.32
multiple M-Trees T-error=0.16
NM-Tree T-error=0.16
multiple M-Trees T-error=0.08
NM-Tree T-error=0.08
multiple M-Trees T-error=0
NM-Tree T-error=0

Fig. 8. 10NN queries on varying size of Polygons under Hausdorff

0 0.0001 0.001 0.01 0.1 0.27

0
.5

1
2

5
1

0
2

0
3

2

POLYGONS

10NN, retrieval error vs. query costs

retrieval error (log. scale)

q
u

e
ry

c
o

s
ts

(x
1

0
0

0
,

lo
g

.
s
c
a

le
)

NM-Tree DTW
multiple M-Trees DTW

NM-Tree Hausdorff
multiple M-Trees Hausdorff

0 0.00001 0.001 0.1 1

0
1
0
0
0
0

2
0
0
0
0

3
0
0
0
0

4
0
0
0
0

COREL

1% RQS, retrieval error vs. query costs

retrieval error (log. scale)

q
u
e
ry

c
o
s
ts

multiple M-Trees L0.75
NM-Tree L0.75

multiple M-Trees L2
NM-Tree L2

Fig. 9. Aggregated performance of 10NN queries for Polygons and Corel

from 0.05% to 0.5% of the database size (i.e., 125–1250 objects), see Figure 6.
We can see that a single NM-tree index can perform as good as multiple M-tree
indexes (each M-tree specifically created for a user-defined retrieval error). In
most cases the NM-tree is even slightly better in both observed measurements –
query costs and retrieval error.

Note that here the NM-tree is an order of magnitude faster than sequential file
when performing exact (nonmetric!) search, and even two orders of magnitude
faster in case of approximate search (while keeping the retrieval error below 1%).
The Figure 6 also shows that if the user allows a retrieval error as little as 0.5–
1%, the NM-tree can search the Polygons an order of magnitude faster, when
compared to the exact (N)M-tree search.

In the second experiment we have observed the query costs and retrieval error
for kNN queries on the Corel database under nonmetric L 3

4
(see Figure 7). The

324 T. Skopal and J. Lokoč

results are very similar to the previous experiment. We can also notice (as in the
first experiment) that with increasing query result the retrieval error decreases.

Third, we have observed 10NN queries on Polygons under Hausdorff, with
respect to the growing database size, see Figure 8. The query costs growth is
slightly sub-linear for all indexes, while the retrieval errors remain stable. Note
the T-error tolerance levels (attached to the labels in legends) specified as an
estimation of the maximal acceptable retrieval error are apparently a very good
model for the retrieval error.

In the last experiment (see Figure 9) we have examined the aggregated per-
formance of 10NN queries for both Polygons and Corel and all the dissimilarity
measures. These summarizing results show the trade-off between query costs and
retrieval error achievable by an NM-tree (and the respective M-trees).

6 Conclusions

We have introduced the NM-tree, an M-tree-based access methods for exact
and approximate search in metric and nonmetric spaces, which incorporates the
TriGen algorithm to provide nonmetric and/or approximate search. The main
feature on NM-tree is its flexibility in approximate search, where the user can
specify the approximation level (acceptable retrieval error) at query time. The
experiments have shown that a single NM-tree index can search as fast as if
used multiple M-tree indexes (each built for a certain approximation level). From
the general point of view, the NM-tree, as the only access method for flexible
exact/approximate nonmetric similarity search can achieve up to two orders of
magnitude faster performance, when compared to the sequential search.

Acknowledgments

This research has been partially supported by Czech grants: ”Information Society
program” number 1ET100300419 and GAUK 18208.

References

1. Ashby, F., Perrin, N.: Toward a unified theory of similarity and recognition. Psy-
chological Review 95(1), 124–150 (1988)

2. Athitsos, V., Hadjieleftheriou, M., Kollios, G., Sclaroff, S.: Query-sensitive embed-
dings. In: SIGMOD 2005: Proceedings of the 2005 ACM SIGMOD international
conference on Management of data, pp. 706–717. ACM Press, New York (2005)

3. Chávez, E., Navarro, G.: A Probabilistic Spell for the Curse of Dimensionality.
In: Buchsbaum, A.L., Snoeyink, J. (eds.) ALENEX 2001. LNCS, vol. 2153, pp.
147–160. Springer, Heidelberg (2001)

4. Chávez, E., Navarro, G., Baeza-Yates, R., Marroqúın, J.L.: Searching in metric
spaces. ACM Computing Surveys 33(3), 273–321 (2001)

5. Chen, L., Lian, X.: Efficient similarity search in nonmetric spaces with local con-
stant embedding. IEEE Transactions on Knowledge and Data Engineering 20(3),
321–336 (2008)

NM-tree: Flexible Approximate Similarity Search in Metric 325

6. Ciaccia, P., Patella, M., Zezula, P.: M-tree: An Efficient Access Method for Simi-
larity Search in Metric Spaces. In: VLDB 1997, pp. 426–435 (1997)

7. Farago, A., Linder, T., Lugosi, G.: Fast nearest-neighbor search in dissimilarity
spaces. IEEE Transactions on Pattern Analysis and Machine Intelligence 15(9),
957–962 (1993)

8. Goh, K.-S., Li, B., Chang, E.: DynDex: a dynamic and non-metric space indexer.
In: ACM Multimedia (2002)

9. Hettich, S., Bay, S.: The UCI KDD archive (1999), http://kdd.ics.uci.edu
10. Jacobs, D., Weinshall, D., Gdalyahu, Y.: Classification with nonmetric distances:

Image retrieval and class representation. IEEE Pattern Analysis and Machine In-
telligence 22(6), 583–600 (2000)

11. Krumhansl, C.L.: Concerning the applicability of geometric models to similar data:
The interrelationship between similarity and spatial density. Psychological Re-
view 85(5), 445–463 (1978)

12. Kruskal, J.B.: Multidimensional scaling by optimizing goodness of fit to a non-
metric hypothesis. Psychometrika 29(1), 1–27 (1964)

13. Rosch, E.: Cognitive reference points. Cognitive Psychology 7, 532–547 (1975)
14. Rothkopf, E.: A measure of stimulus similarity and errors in some paired-associate

learning tasks. J. of Experimental Psychology 53(2), 94–101 (1957)
15. Samet, H.: Foundations of Multidimensional and Metric Data Structures. Morgan

Kaufmann, San Francisco (2006)
16. Skopal, T.: On fast non-metric similarity search by metric access methods. In:

Ioannidis, Y., Scholl, M.H., Schmidt, J.W., Matthes, F., Hatzopoulos, M., Böhm,
K., Kemper, A., Grust, T., Böhm, C. (eds.) EDBT 2006. LNCS, vol. 3896, pp.
718–736. Springer, Heidelberg (2006)

17. Skopal, T.: Unified framework for fast exact and approximate search in dissimilarity
spaces. ACM Transactions on Database Systems 32(4), 1–46 (2007)

18. Skopal, T., Pokorný, J., Krátký, M., Snášel, V.: Revisiting M-tree Building Princi-
ples. In: Kalinichenko, L.A., Manthey, R., Thalheim, B., Wloka, U. (eds.) ADBIS
2003. LNCS, vol. 2798, pp. 148–162. Springer, Heidelberg (2003)

19. Tversky, A.: Features of similarity. Psychological review 84(4), 327–352 (1977)
20. Tversky, A., Gati, I.: Similarity, separability, and the triangle inequality. Psycho-

logical Review 89(2), 123–154 (1982)
21. Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search: The Metric Space

Approach (Advances in Database Systems). Springer, Secaucus (2005)

http://kdd.ics.uci.edu

	Introduction
	Metric Search
	Nonmetric Similarity
	Related Work

	TriGen
	T-bases
	Intrinsic Dimensionality
	The TriGen Algorithm

	M-tree
	Query Processing

	NM-tree
	Indexing
	Query Processing

	Experimental Results
	The TestBed
	Querying

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

