
On (not) indexing quadratic form distance
by metric access methods

Tomáš Skopal, Tomáš Bartoš, Jakub Lokoč

SIRET Research Group, Faculty of Mathematics and Physics,
Charles University in Prague, Malostranské nám. 25, 118 00, Prague, Czech Republic

{skopal, bartos, lokoc}@ksi.mff.cuni.cz

ABSTRACT
The quadratic form distance (QFD) has been utilized as
an effective similarity function in multimedia retrieval, in
particular, when a histogram representation of objects is
used. Unlike the widely used Euclidean distance, the QFD
allows to arbitrarily correlate the histogram bins (dimen-
sions), allowing thus to better model the similarity between
histograms. However, unlike Euclidean distance, which is
of linear time complexity, the QFD requires quadratic time
to evaluate the similarity of two objects. In consequence,
indexing and querying a database under QFD are expensive
operations. In this paper we show that, given static cor-
relations between dimensions, the QFD space can be trans-
formed into an equivalent Euclidean space. Thus, the overall
complexity of indexing and searching in the QFD similarity
model can be reduced qualitatively. Besides the theoretical
time complexity analysis of our approach applied to several
metric access methods, in experimental evaluation we show
the real-time speedup on a real-world image database.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content
analysis and indexing—Indexing methods

General Terms
Algorithms, theory, performance

Keywords
quadratic form distance, metric indexing, similarity search

1. INTRODUCTION
In the area of multimedia databases, we distinguish be-

tween two means of multimedia retrieval [8]. The first one
is based on the keyword search, where a multimedia object
(e.g., an image) is annotated and searched by keywords de-
scribing its content. The second mean is natively based on

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EDBT 2011, March 22–24, 2011, Uppsala, Sweden.
Copyright 2011 ACM 978-1-4503-0528-0/11/0003 ...$10.00

searching by the content itself, so the multimedia objects are
searched according to the semantics of their (low-level) fea-
tures. The most common content-based model considers the
similarity search, where a pairwise similarity (or distance)
function is defined on the descriptors of multimedia objects.
The descriptor is determined from the respective multimedia
object by a suitable feature extraction procedure, while it is
often represented as a high-dimensional vector. The query
is modeled by the usage of a sample multimedia object (its
descriptor, respectively), so that the database objects can
be thought as ordered by their similarity/distance to the
query example. The most popular query types, the k near-
est neighbors (kNN) query and the range query, are then
defined as a prefix of this ordering (i.e., either first k objects
in the ordering, or a part bounded by an object beyond the
user-defined similarity threshold, respectively).

From the effectiveness point of view, the research is fo-
cused on proposing models complying with the human per-
ception of the similarity, hence, seeking for the appropri-
ate feature extraction technique and the similarity function.
From the efficiency point of view, the research efforts are
devoted to indexing techniques that allow fast query pro-
cessing, given a particular similarity model. In this paper,
we are concerned with the efficiency of indexing and search-
ing, when using similarity models employing quadratic form
distance (QFD) as the similarity function.

1.1 Measuring Vector Similarity
The widely used functions for measuring similarity of n-

dimensional vectors is the class of Minkowski (Lp) distances:

Lp(u, v) =

(
n∑

i=1

|ui − vi|p
)1/p

, p ≥ 1

Among all Minkowski metrics, the Manhattan distance (L1),
the Euclidean distance (L2), and the Chessboard distance
(L∞) are used in multimedia retrieval.

When analyzing the suitability of a distance function for
the similarity search, we observe that Lp distances suppose
all the dimensions of the vector space to be independent
(not correlated). In other words, the difference |ui − vi|
in the i-th dimension of the two vectors contributes to the
final distance value independently, regardless of differences
in other dimensions. Hence, an Lp distance is suitable for
vector space models with no ”crosstalk”between dimensions.
For example, consider a vector describing a person as u =
[age: 54, height: 180cm, siblings: 2]. Here the dimensions
are obviously independent, so measuring similarity in this
simple model by a (weighted) Lp distance makes sense.

However, in multimedia retrieval we often encounter vec-
tor models where the individual dimensions are (expected
to be) correlated. The perfect case is a histogram on a ho-
mogeneous domain, that is, a vector collecting occurrences
of particular properties in individual bins (dimensions). For
instance, a simple representation of an image could be a
256-dimensional histogram describing the proportions of in-
dividual colors. The i-th histogram bin represents the num-
ber of pixels in the image having the i-th color. Measuring
the similarity of two histograms by an Lp distance would be
inappropriate, since it ignores the dimension ordering. In
turn, an Lp distance would incorrectly measure an image of
a sunset (red tones) as more similar to a tennis ball (yellow
tones) than to an orange fruit (orange tones).

1.2 Quadratic Form Distance
To overcome the insensitivity of Lp to other dimensions,

the Quadratic Form Distance (QFD) was proposed as a suit-
able function for similarity measuring, defined as

QFDA(u, v) =
√

(u− v)A(u− v)T ,

where A is required to be an n× n positive-definite matrix
(called the similarity matrix or the QFD matrix). If the
matrix A is diagonal, we get a reduction to weighted Eu-
clidean distance, while an identity matrix A reduces QFD
to the ordinary Euclidean distance. Importantly, the QFD
is a metric distance and from now on we will call the re-
spective metric space the QFD space (we will discuss the
properties of QFD in detail in Section 3.2).

One of the first widely-known works where the QFD was
defined and successfully used were [19], [14] and later [18].
In particular, the QFD was proved as an effective way of
searching for similarities in a set of color images. The rea-
son of better applicability was the support of correlations
between individual dimensions (using the QFD matrix A),
contributing to more robust similarity measuring.

For example, consider a 3-dimensional space, where the
dimensions represent the numbers of red, green, and blue
pixels in an image. Because the human perception views
green and blue colors as more similar than reds and blues or
reds and greens, the matrix A could be set as follows:

A =

R G B

R 1 0 0
G 0 1 0.5
B 0 0.5 1

A number of algorithms and image retrieval methods us-

ing QFD were developed within the QBIC project [24, 18,
14]. Other applications of QFD similarity search include 2D
& 3D shapes [2, 3], protein structures [4, 15, 16], or flow
cytometry [6]. In almost all the cited applications, the QFD
matrix A is supposed static (not changing from query to
query), while the correlations between dimensions are de-
fined based on a scoring function related to the particular
domain. Hence, the matrix A is not a query parameter and
also it is not data-dependent. For RGB image histograms,
the matrix A might be defined according to [18] as:

Aij = 1− dij
dmax

,where dmax = maxi,j(dij)

where dij is the Euclidean distance between representatives
of colors i and j in the RGB color space.

1.2.1 Dynamic distances based on QFD
Although most of the approaches employ static QFD ma-

trix, there appear also applications that use dynamic QFD
matrix or even a kind of generalized QFD distance.

A characteristic usage of a dynamic similarity matrix in
QFD is shown in several papers such as [20], [26], or [2].
In [20] the authors propose a general method of iteratively
guessing the distance function based on user preferences
(i.e., MindReader). This concept uses QFD and tries to
determine which attributes are important and find correla-
tions between them to satisfy the user query. The principle
of finding the ideal distance function (changing the similarity
matrix in QFD) is very similar to relevance feedback tech-
niques. According to multiple data examples (with scores),
the method guesses and refines the implied distance function
within several iterations.

A recent promising variant of QFD, the signature quadratic
form distance (SQFD) [5], enables to use feature signatures
(vectors of variable dimensionality) instead of just feature
histograms (vectors of fixed dimensionality). In fact, the
SQFD concatenates the compared signatures u, v into a vec-
tor (u| − v), followed by the usual QFD computation, i.e.,

SQFD(u, v) =
√

(u| − v)A(u| − v)T . This also requires a
dynamic QFD matrix A that fits the particular features in-
cluded in the signatures u, v. In other words, the SQFD con-
stitutes a dynamic extension over the original QFD function,
and it has proved a superior effectiveness in image classifi-
cation applications based on feature signatures.

2. INDEXING SIMILARITY
In addition to the modeling of domain-specific similarity

search problems in vector spaces, there were substantial ef-
forts spent on developing indexing techniques that speed up
the similarity queries in a large database. We distinguish
two classes of database indexing methods that are used for
the similarity search in vector spaces, both with some pros
and cons.

2.1 Spatial Access Methods
The spatial access methods (SAM) [9] mostly treat the

vector space independently of the distance function used for
the similarity search. Hence, a SAM index is constructed
using the vectorial structure of the descriptor (the values in
individual dimensions are used). In particular, we name the
R-tree family, X-tree, or VA-file, as representative SAMs.

As the SAM index is not dependent on a particular dis-
tance function, a distance function could be provided right
at the query time as a parameter, allowing thus flexible sim-
ilarity searches. This is especially important for QFD in
applications when the matrix A needs to be adjusted from
query to query, for example, when user preferences have to
be incorporated into the similarity function.

On the other hand, the independence from the distance
function is also the drawback of SAMs. Since a SAM indexes
the database objects within (rectangular) regions minimiz-
ing the volumes, surfaces and overlaps (e.g., the volume of
MBRs in case of R-tree), the objects in regions do not form
tight clusters with respect to the distance function that will
be used for querying. In consequence, the regions could be
unnecessarily large, which leads to poor filtering ability and
thus slower query processing. This negative effect is even
magnified with the increasing dimensionality of the space

(the so-called curse of dimensionality), while it was many
times proved that the data of the dimensionality beyond 10-
20 cannot be efficiently searched by SAMs1, regardless of
the distance function used for queries [7, 1].

2.2 Metric Access Methods
The metric access methods (or metric indexes) [28, 12]

represent a different indexing concept, treating the vector
space together with the distance function as a black-box
metric space. That is, only the distances between vectors
can be utilized to build the index, not the particular vector
coordinates. Here the pros and cons are exactly opposite
as for SAMs. Since MAMs build the index using a particu-
lar static distance function, they are not suitable when the
distance function has to be modified after indexing (e.g., at
the query time). For example, changing the QFD matrix
A would result in a different distance function than the one
used for indexing. Such a change would require a reorganiza-
tion of the metric index, making thus the actual index (and
the distance values stored within) invalid. Nevertheless, as
the matrix A is mostly regarded as not changing at query
time (see Section 1.2), the requirement on static A should
not be a big limitation.

To name the advantages, the MAM index regions are more
compact than those of SAMs, since the database objects are
organized in clusters gathering objects close in terms of the
distance function. In turn, the MAMs are more successful
in the fight with the curse of dimensionality, because the
embedding (vector) dimensionality is irrelevant for them.
Instead, the complexity of MAM indexing is determined by
the distance distribution, namely, the intrinsic dimension-
ality [12, 27], which is usually smaller than the embedding
dimensionality. In particular, we name the M-tree family,
M-index, vp-tree, Pivot tables, GNAT, or SAT as represen-
tative MAMs. Since we focus on indexing QFD by MAMs,
we further discuss the details of several MAMs in Section 4.

2.3 Indexing Quadratic Form Distance
When looking for an indexing technique suitable for effi-

cient similarity search, we recognize two performance com-
ponents contributing to the overall real-time cost – the cost
of a single distance evaluation and the number of evalua-
tions needed to answer a similarity query. To analyze the
first component, we observe the QFD computation is expen-
sive due to the matrix-to-vector multiplications (i.e., O(n2)).
Hence, the quadratic complexity of the QFD computation is
a serious argument when deciding whether to employ an Lp

distance (linear in time) or QFD. When thinking in abso-
lute numbers, the QFD computation is extremely slow when
used on high-dimensional histograms (say, n > 100). The
indexing of QFD should ideally minimize both performance
components: the complexity of QFD computation and the
number of distances spent by query processing.

2.3.1 Lower-bounding Approaches
In order to increase the efficiency of querying in QFD

spaces, there have been several transformational approaches
proposed (e.g., in IBM’s QBIC system [14, 18]), addressing
both of the above discussed performance components.

In the classic work [14], authors suggest an indexing scheme
for QFD that considers RGB color images. The scheme in-

1Observed and proved for uniformly distributed data and
exact search (i.e., a search not allowing false dismissals).

cludes a lower-bounding of the QFD by an Euclidean-like
function (specific to RGB image histograms) together with
contractive dimensionality reduction techniques using aver-
age RGB colors. The database is then searched in a filter-
and-refine way using a simple sequential scan not consid-
ering any indexing technique. Because of the applicability
only to RGB color images and reduction to 3 dimensions,
we consider this method as specific image retrieval model.

A transformational approach that uses a lower-bounding
and a dimensionality reduction is proposed in [18] (also for
color histograms) with further generalization of the trans-
formation to a k-dimensional space. As in [14], the whole
idea is based on a simple filter-and-refine strategy (i.e., no
database indexing, just sequential search) where the QFD
is replaced by Lp distance during the filtering step. In the
refinement step, the QFD is being computed for a possibly
smaller set of non-filtered candidates. The authors men-
tion the generalized method only briefly, supposing rank-k
SVD decomposition of the QFD matrix, which is used to ob-
tain a matrix providing transformation to a k-dimensional
Lp space. They do not explicitly propose k = n, that is, a
(possibly) homeomorphic transformation of the QFD space
into the Euclidean space (exactly preserving the distances).
Instead, they present the transformation to k-dimensional
space as an integral part of the whole retrieval method. The
main contribution of our paper also uses the decomposition
of the QFD matrix, however, we only consider the case k = n
which allows us to separate the transformation of the QFD
space itself from the subsequent indexing method (any met-
ric access method in our case).

A general approach of lower-bounding the QFD distance
is used in [26, 2, 4, 21], where SVD-based dimensionality re-
duction into the lower-dimensional QFD space is considered.
Moreover, the transformed database is indexed by the X-tree
for more efficient similarity search (with the dimensionality
reduced up to 20 in experiments).

The mentioned lower-bounding techniques suffer from sev-
eral drawbacks. First, some approaches [26, 4] use a di-
mensionality reduction that treats the entire database as a
large matrix that needs to be decomposed (e.g., by SVD
or KLT). Hence, the dimensionality reduction represents a
pre-processing step that is extremely expensive, for example,
O(m2 +n3) in case of SVD, where m is the size of database
and n is the dimensionality. Second, as the transforma-
tion to a smaller dimensionality is only contractive (i.e., the
new distances are smaller than the original ones), the lower
bounds become less tight as the target dimensionality de-
creases, leading to more false positives. The false positives
then need to be expensively checked by the QFD in the
original space. For larger target dimensionality the number
of false positives decreases, however, at the cost of ineffi-
cient indexing by SAMs (due to the curse of dimensional-
ity). Third, as the dimensionality reduction of data requires
the entire database beforehand, some subsequent updates
of the database (insertions and deletions) without complete
re-indexing could result in distorted embedding, leading to
false dismissals and/or less effective filtering.

2.3.2 Indexing QFD using MAMs
Simply said, the research community dealing with gen-

eral metric access methods views the quadratic form dis-
tance as any other expensive distance, like the edit distance.
There have been published many papers on MAMs (includ-

ing the classic monograph [28]) and their applications in
image retrieval [11], where the QFD is cited or even used
in the experiments, together with other metric distances.
From the conceptual point of view, the MAMs are able to
improve just one of the discussed performance components
– the number of QFD computations. Hence, even though
MAMs usually outperform SAMs (as discussed in Section
2.2), they are still too expensive for native indexing of the
QFD in real-world applications. Nevertheless, in the follow-
ing subsection we sketch the idea of our contribution, that
allows a MAM-based efficient and exact similarity search in
high-dimensional spaces under the QFD.

2.4 Paper Contribution
Comparing to the previous research mentioned in Section

2.3.1, we also consider a space transformation (we call it the
QMap model). However, the transformation is not only ap-
proximate, but it is a homeomorphic mapping of the source
QFD space onto a target Euclidean space, so that the dis-
tances are exactly preserved. A database described in the
transformed space can be then indexed by any MAM or
SAM. Obviously, the cost of indexing and querying in Eu-
clidean space is qualitatively cheaper than in QFD space.

To the best of our knowledge, none of the papers men-
tioned in Section 2.3 explicitly formulates the main outcome
of our paper – that there exists such homeomorphic mapping
of a QFD space into the Euclidean space. Moreover, un-
like the previous approaches, we separate the QMap model
from its usage in an access method, providing the freedom
of choosing an arbitrary MAM or SAM.

In the following, we show the mentioned transformation
always exists, and that it can be cheaply obtained just from
the QFD matrix. Later in the paper, we discuss the utiliza-
tion of the QMap model together with MAMs, including the
analysis of the indexing/querying complexity, as well as an
experimental evaluation on a real-world image database.

3. THE QMAP MODEL
The classic QFD model manipulates vectors in the QFD

space and computes the distances using directly the QFD
form. At this moment, we define the QMap model that en-
capsulates the whole concept of transforming the QFD space
and using the Euclidean space instead. Like the approaches
presented in Section 2.3.1, also the QMap model assumes a
static QFD matrix A for the transformation purposes.

The QMap model ensures that all vectors (database or
query vectors) from the QFD space will be transformed,
prior to any indexing or querying operation, into the Eu-
clidean space, yet preserving exactly the same distances.
Moreover, the QMap model constitutes an indexing frame-
work that allows to employ the existing MAMs without the
need of modifying them.

3.1 The Idea
The idea of the proposed transformation is sketched in

Figure 1, where we show a simple linear transformation of
a QFD space into the Euclidean space. When visualizing
a QFD ball of an arbitrary radius, we obtain an ellipsoid
that is freely oriented in the space, while the orientation
is a consequence of the dimension correlations specified in
the QFD matrix A. Note that the points on the ellipsoid
boundary are equally distant to the ellipsoid center (with
respect to the QFD). Also note that all possible ellipsoids

Figure 1: The idea of QMap – homeomorphic trans-
formation of a QFD space into the Euclidean space.

are oriented in the same way. Hence, to obtain an equivalent
Euclidean space, it should be sufficient:

• first, to rotate the space to obtain the QFD balls hav-
ing axes parallel to the axes of coordinate system, i.e.,
transformation to a weighted Euclidean space,

• and, second, to scale the space independently in all di-
mensions to obtain the same diameters of the ellipsoids
in all dimensions, that is, obtaining Euclidean balls.

Since the rotation and the scaling are linear transformations,
they can be composed to form a single transformation ma-
trix B. The matrix B can be used to transform the database
vectors (or a query vector) from the source QFD space into
vectors of the target Euclidean space. Most importantly, we
require the distances of mapped vectors in the target Eu-
clidean space to be exactly the same as they were in the
QFD space.

Although the presented transformation might be viewed
as well-known from the mathematic point of view, its appli-
cation in database indexing, surprisingly, was not explicitly
formulated so far (to the best of our knowledge).

As an additional minor contribution of the paper, in the
following technical section we prove that it is sufficient to as-
sume the QFD matrix to be symmetric and positive-definite.

3.2 QMap Preliminaries
Before we introduce the QMap transformation in Sec-

tion 3.3, we summarize some matrix operations and also
clarify the assumptions on the QFD matrix (Section 3.2.3).

In the following text, we will often use vectors, matrices,
and operations between them. Because we can see an n-
dimensional vector as an 1×n matrix, all matrix operations
apply also to vectors and their combinations with matrices.

3.2.1 Basic Matrix Operations
For any two conformable matrices2 C,D, the matrix trans-

position rule (CD)T = DTCT holds.
Suppose we have three conformable matrices C,D, and E.

Then, the matrix right-hand distributive law

(C +D)E = CE +DE

holds (similarly with the left-hand distributive law [22]).
The matrix associativity assures that we get the same re-

sult no matter in which order we multiply three conformable
matrices C,D,E:

(CD)E = C(DE)
2Such matrices, the dimensions of which are suitable for
defining some operations (e.g., addition, multiplication, etc).

Suppose we have an a × b matrix A and a b × c matrix
B. The product of the matrix multiplication AB is an a× c
matrix C for which any item Cij is defined as

Cij =

b∑
k=1

Aik ∗Bkj

3.2.2 Cholesky Decomposition
If A is a symmetric positive-definite n × n matrix, then

there exists a unique lower triangular n×n matrix B (called
Cholesky triangle) with positive diagonal entries such that

A = BBT .

The process of decomposing the matrix A into matrices
B and BT is called Cholesky decomposition (or Cholesky
factorization [17]).

In order to be clear, we provide the Cholesky decomposi-
tion algorithm that gives us the unique lower triangular ma-
trix B from the given QFD matrix A (see Algorithm 1). The
time complexity of the presented algorithm is O(n3), while
in common settings the running time is negligible (e.g., 30
milliseconds for n = 512 when running on an office PC).

Algorithm 1 Cholesky decomposition (matrix A)

Require: n× n symmetric positive-definite matrix A
1: B ← A.clone()
2: for i = 0 to n− 1 do
3: for j = i to n− 1 do
4: sum = B[i][j]
5: for k = i− 1 downto 0 do
6: sum = sum− (B[i][k] ∗B[j][k])
7: end for
8: if (i = j) then
9: if (sum ≤ 0) then

10: error(”Matrix is not positive definite!”)
11: return
12: end if
13: B[i][i] = sqrt(sum)
14: else
15: B[j][i] = sum / B[i][i]
16: end if
17: end for
18: end for
19: B.clearUpperTriangle()
20: return B

3.2.3 Properties of the QFD Matrix
Since there appear different assumptions on the QFD ma-

trix A over the available literature, in the following subsec-
tion we show that without loss of generality we can assume
the matrix A as positive-definite and symmetric.

Positive Definiteness
In some sources, the QFD matrix A is assumed as positive-
semidefinite (i.e., zAzT ≥ 0), while in others as positive-
definite (i.e., zAzT > 0, ∀z 6= 0).

Let z = (u − v), then from the identity (metric space
postulate) it follows zAzT = 0 ⇔ u = v (i.e., z = 0).
Otherwise (for u 6= v), it must hold zAzT > 0. Hence, to
preserve metric postulates of QFD, the QFD matrix A must
be strictly positive-definite.

Symmetry
According to the previous requirements, the QFD matrix
must be positive-definite. Furthermore, we show that for
any general matrix, we are able to define a symmetric one
that will give us the same results when we use it in the QFD
form. The following sequence of steps shows how to build
the corresponding symmetric matrix.

1. Let A be a general QFD matrix. When computing the
quadratic form distance d for any two vectors u, v, we
define z = (u − v) to be an n-dimensional vector and
we get:

d = QFD(u, v) =
√

(u− v)A(u− v)T =
√
zAzT

2. We decompose the inner matrix multiplications into
summations according to the matrix multiplication rules.
Let us define d′ as follows:

d′ = zAzT =

n∑
j=1

(

n∑
i=1

zi ∗Aij)zj =

n∑
j=1

n∑
i=1

Aij ∗ zi ∗ zj

3. Furthermore, we would like to replace the matrix A
with a symmetric matrix B which will give us the same
result. To build this new matrix from the given matrix
A, we analyze the result of the previous step according
to all zi ∗ zj multiplications.

We can see that for any two dimensions i, j of the vec-
tor z, the product of zi ∗ zj occurs in the final summa-
tion once if i = j or twice if i 6= j (with multiplicators
Aij and Aji) because zi ∗ zj = zj ∗ zi.
Therefore, we can define the elements in a new sym-
metric matrix B as follows

• Bii = Aii for i = 1, 2, .., n

• Bij = Bji =
Aij+Aji

2
for i, j = 1, 2, .., n when

i 6= j

4. Replacing the matrix A with the matrix B we get

d̃ =

n∑
j=1

(

n∑
i=1

zi ∗Bij)zj =

n∑
j=1

n∑
i=1

Bij ∗ zi ∗ zj

When we analyze the multiplication of zi∗zj in d̃ (with
matrix B) and d′ (with matrix A), we get:

• i = j (zi ∗ zi)
The multiplicator in d̃ is Bii which is the same
as the multiplicator in d′ (Aii) according to the
definition of B.

• i 6= j (zi ∗ zj , zj ∗ zi)
The product zi ∗ zj occurs in d̃ twice with multi-
plicators Bij and Bji. This leads to

Bij +Bji =
Aij +Aji

2
+
Aij +Aji

2
= Aij +Aji

which is the same as the multiplicator in d′.

Thus, we proved that replacing the matrix A with the
symmetric matrixB does not change the QFD distance
computed for any vector z.

The previous steps constitute a guide how to build a sym-
metric matrix B for a general matrix A that will return the
same results when we replace A with B in the QFD form.
Hence, we can assume that the QFD matrix is symmetric.
Note also that because A is positive-definite and d̃ = d′,
then also B must be positive-definite.

3.3 QFD-to-L2 Space Transformation
Without loss of generality, let us have the squared QFD

form on n-dimensional vectors u, v:

QFD(u, v)2 = (u− v)A(u− v)T (1)

We proved that without any consequences, we can suppose
the QFD matrix A to be positive-definite and symmetric.
Therefore, we can apply the Cholesky decomposition (see
Section 3.2.2) to the matrix A and we get a unique lower
triangular matrix B such that

BBT = A

After replacing the QFD matrix A with the product of
BBT , in the squared QFD form we get

QFD(u, v)2 = (u− v)BBT (u− v)T

Then, we subsequently apply the matrix associativity rule
(CD)E = C(DE), the matrix transposition rule DTCT =
(CD)T and, lastly, the matrix distributivity rule (C−D)E =
CE −DE, leading to

(u− v)BBT (u− v)T = [(u− v)B][BT (u− v)T]

= [(u− v)B][(u− v)B]T

= (uB − vB)(uB − vB)T

Precisely analyzing the product of previous steps, we find
out that the result is the squared Euclidean distance on mod-
ified n-dimensional vectors u′ = uB and v′ = vB:

L2(u′, v′)2 = (u′ − v′)(u′ − v′)T (2)

We obtained an n×n matrix B which transforms the QFD
space into an equivalent Euclidean space – any vectors u, v
into vectors u′, v′ in the Euclidean space.

Although we start with squared QFD form (1) and obtain
the squared Euclidean form (2), the results hold also for the
typical (non-squared) forms as defined in Section 1.1. The
reason is that both spaces are metric spaces in which any
distance is non-negative.

4. APPLICATION OF QMAP IN MAMS
In this section we show the comparison of the QFD model

and the QMap model in the process of indexing and query-
ing using several MAMs. In particular, we consider three
representatives of different MAM concepts, the simple se-
quential file (näıve referential method), the Pivot tables (flat
index – distance matrix), and the M-tree (hierarchical in-
dex). We focus mostly on the time complexity, considering
the database size as m and the vector dimensionality as n.

When transforming to the L2 space using the QMap model,
we need the result of the Cholesky decomposition of the
QFD matrix A (see Section 3.2.2). The resulting n× n ma-
trix B enables us to transform vectors from the QFD space
into the desired Euclidean space. As the decomposition is
computed for static A only once (it could be computed at the

time of designing the similarity), we suppose that the matrix
B is available when we begin with indexing or querying.

The transformation of a vector using the matrix B takes
O(n2) time (matrix-to-vector multiplication). We also re-
mark that a single distance computation takes O(n2) time in
a case of the QFD and O(n) time in a case of the L2 distance.
Importantly, as the QMap model preserves the QFD dis-
tances exactly, the number of distance computations spent
on indexing/querying in both models is the same, whatever
MAM is used. Also note that we analyze just the time spent
on the distance computations and on the transformations to
the Euclidean space. To be completely correct, we should
also include the overhead time, e.g., traversing the index,
I/O cost, etc. However, the overhead time is the same for
both models, because the MAMs index the data based on
exactly the same distances.

4.1 Sequential file
The sequential file is a flat binary file that is built from a

series of dynamic insertions by just appending the inserted
objects at the end of the file. Any query involves a sequen-
tial scan over all the objects in the binary file. For a query
object q and every data object oi, a distance δ(q, oi) must
be computed (regardless of the query selectivity). Although
this kind of “MAM” is not very smart, it is a baseline struc-
ture that also can take advantage of the QMap model.

4.1.1 Indexing
The time analysis of QFD indexing is straightforward be-

cause we need to simply insert all n-dimensional vectors.
Thus, indexing in the QFD model (just storing m n-dimen-
sional vectors) gives us the time complexity of O(mn). On
the other hand, in the QMap model, we have to addition-
ally transform each source vector into the Euclidean space,
which gives us the result time O(mn2).

4.1.2 Querying
Having a similarity query in the QFD model, we can di-

rectly compute the distances for all m vectors with the QFD
distance. Because the QFD is computed in O(n2) time, we
get the total time complexity of O(mn2). Compare this re-
sult to the QMap model with O(mn) searching time, as we
only need O(n) time to compute the L2 distance instead of
the QFD.

4.2 Pivot tables
A simple but efficient solution to the similarity search

in metric spaces represent methods called Pivot tables, like
LAESA [23]. In general, a set of p objects (so-called pivots)
is selected from the database, while for every database object
a p-dimensional vector of distances to the pivots is created.
The distance vectors belonging to the database objects then
form a distance matrix – the pivot table. When performing
a range query (q, rad), a distance vector for the query object
q is determined the same way as for a database object. From
the distance vector of the query and the query radius rad a
p-dimensional hyper-cube is created, centered in the query
and with edges of length 2rad. Then, the range query is
processed on the pivot table, such that the p-dimensional
vectors of the database objects that do not fall into the
query cube are filtered out from the further processing. The
database objects that cannot be filtered have to be subse-
quently checked by the usual sequential search.

4.2.1 Indexing
First, based on a pivot selection technique [10], we need

to select the p pivots from a database sample of a size s,
which takes c distance computations (usually c >> m > s).
Hence, in the QFD model the pivot selection requires O(cn2)
time, while in the QMap model it takes O(sn2 + cn) time.

Second, we need to insert the m data vectors into the in-
dex, including the computation of the distances in the pivot
table. In the QFD model, we take the m data vectors and
compute the QFD to all p pivots which takes O(mpn2) time.
In the QMap model, each data vector is transformed into
the L2 space (O(mn2) time) and then the p distances to the
pivots are computed in the L2 space and stored in the pivot
table (O(mpn) time), thus leading to O(mn2 +mpn) time3.

Hence, the total indexing time isO(cn2+mpn2) = O(cn2+
mn(pn)) in the QFD model and O(sn2 + cn+mn2 +mpn)
in the QMap model. Because m is an upper bound to s, we
can simplify the complexity of indexing in QMap model to
O(cn + mn(p + n)). Thus, we proved that indexing in the
QMap model is cheaper than indexing in the QFD model.

4.2.2 Querying
Given a query in the QFD model, we need to compute

QFD from query to the p pivots in O(pn2) time as the first
step. Then, we filter distance vectors using pivots and for
the remaining x non-filtered vectors, we evaluate the QFD.
This leads to O(pn2 +mp+ xn2) = O(n(pn) +mp+ xn2).

In the QMap model, we need to transform the query vec-
tor into L2 space and compute the L2 distances to the pivots
in O(n2 + pn) time. Then, the pivot table is searched in
O(mp) time, while the remaining x non-filtered vectors are
checked in O(xn) time. In total, we obtain the time com-
plexity O(n2+pn+mp+xn) = O(n(p+n)+mp+xn). Hence,
we proved that querying in the QMap model is cheaper.

4.3 M-tree
The M-tree [13] is a dynamic index structure that pro-

vides a good performance in the secondary memory (i.e., in
database environments). The M-tree is a hierarchical index,
where some of the data objects are selected as centers (local
pivots) of ball-shaped regions, while the remaining objects
are partitioned among the regions in order to build up a
balanced and compact hierarchy of data regions.

In its original version, the M-tree is built by dynamic in-
sertions in the same way as B-tree. First, a suitable leaf for
the newly inserted object must be found, which takes log(m)
time. Next, the insertion into the leaf could cause an overfill,
which results in splitting along the path to the root. Simply
said, the time complexity of the dynamic insertion in the
M-tree is analogous to the insertion complexity in B-trees,
hence leading to O(mlog(m)) distance computations.

The similarity queries are implemented by traversing the
tree, starting at the root. In general, those M-tree nodes are
accessed, whose regions are overlapped by the query.

4.3.1 Indexing
As mentioned earlier, the construction of M-tree takes

O(mlog(m)) considering the number of distance computa-
tions. In the QFD model, this means the time complexity
O(mn2log(m)). In the QMap model, we need to transform

3We do not need to transform the p pivots into the L2 space,
as they were already transformed during the pivot selection.

each data vector to the Euclidean space, leading to total time
complexity O(mn2 +mnlog(m)). Again, indexing using the
QMap model is cheaper.

4.3.2 Querying
Let x be the number of distance computations needed

while evaluating a similarity query. In the QFD model, the
query processing takes O(xn2) time. In the QMap model,
the query vector needs to be additionally transformed into
the Euclidean space, leading to time complexity O(n2 +xn).

4.4 Summary
To emphasize and show the effect of replacing the QFD

model with the QMap model when indexing, we present the
Table 1. As might be seen, the only MAM where the QMap
model is worse than the QFD model is the sequential file,
because all vectors must be transformed to the L2 space.
We notice this drawback but we do not see it as a big dis-
advantage. This is also the only situation where the QMap
model is less efficient. For all other cases, the QMap model
outperforms the QFD model by far.

Table 1: Indexing Time Complexity Comparison

Method (model) Indexing Better

seq. file (QFD) O(mn)
QFD

seq. file (QMap) O(mn2)

Pivot tables (QFD) O(cn2 +mn(pn))
QMap

Pivot tables (QMap) O(cn+mn(p+ n))

M-tree (QFD) O(mn2log(m))
QMap

M-tree (QMap) O(mn2 +mnlog(m)))

The Table 2 accents the improved time complexity of the
proposed QMap model for the query evaluations. The QMap
is more efficient in all cases, mainly because it leverages
cheaper distance computations compared to QFD model.

Table 2: Querying Time Complexity Comparison

Method (model) Querying Better

seq. file (QFD) O(mn2)
QMap

seq. file (QMap) O(mn)

Pivot tables (QFD) O(n(pn) +mp+ xn2)
QMap

Pivot tables (QMap) O(n(p+ n) +mp+ xn)

M-tree (QFD) O(xn2)
QMap

M-tree (QMap) O(n2 + xn)

5. EXPERIMENTAL EVALUATION
In addition to the theoretical analysis of the computa-

tional complexity of indexing/querying in both models, in
this section we present also an experimental evaluation on
a real-world database. In the experiments, we have used
the same MAMs as those analyzed in Section 4, that is, the
sequential file, the Pivot tables, and the M-tree.

5.1 The Testbed
We have used a database of 1,000,000 images downloaded

from Flickr.com. As the image representation we used the
standard RGB histogram of the dimensionality 512, where

the R,G,B components were divided in 8 bins each, thus
8*8*8 = 512 bins. Each histogram was normalized to have
the sum equal to 1, while the value of each bin was stored in
a float. Then, for each bin we computed as ”color prototype”
the color in the center of the bin ((Rmin+Rmax)/2, (Gmin+
Gmax)/2, (Bmin +Bmax)/2), and this color was transformed
to CIE Lab color space [25]. The QFD matrix A was com-
puted as described in Section 1.2, where the dij was the Eu-
clidean distance between the ”color prototypes” (after trans-
forming to CIE Lab) of bins i and j.

We have indexed and queried the database using all the
MAMs in both models (QFD model and QMap model), mea-
suring the real-time in seconds (note that some graphs use
log-scales). The query times were averaged for 500 different
queries, while the query histograms were not indexed.

Figure 2: Indexing: sequential file.

Figure 3: Indexing: pivot table.

5.2 Indexing
In Figures 2, 3, 4 see the real times of indexing for differ-

ent MAMs, where we observe different sizes of the indexed
database. The results reproduce the theoretical costs ana-
lyzed in the previous section. In particular, the sequential
file performs faster in the QFD model where just storing of

the vectors into the binary file takes place. The Pivot tables
and M-tree in the QMap model beat their QFD variants by
an order of magnitude (the M-tree is even 36x faster).

Figure 4: Indexing: M-tree.

5.3 Querying
After indexing, we searched the databases by k nearest

neighbors queries (kNN). In Figures 5, 6, 7, see the re-
sults for 1NN queries and growing volumes of the indexed
database. The sequential file in the QMap model was up to
227x faster than in the QFD model. Also the M-tree in the
QMap model exhibits a 200x speedup.

Figure 5: 1NN on growing databases – seq. file.

However, the Pivot tables in QMap model were just 24x
faster than in the QFD model. The reason of relatively
smaller speedup in Pivot tables is in the smaller propor-
tion of the real-time spent within the distance computations,
when compared to other operations needed to answer the
query. In particular, in the Pivot tables the query algorithm
traverses a large distance matrix, while the number of non-
filtered objects x that require the QFD computation is rela-
tively small (see Section 4.2.2). Note also that the speedup
was decreasing with the growing database (e.g., from 227x
to 100x speedup in a case of the sequential file); this relative

slowdown was caused by a fixed-size disk cache used in the
experiments, hence the query processing on larger databases
needed more frequent access to the disk.

Figure 6: 1NN on growing databases – Pivot tables.

Figure 7: 1NN on growing databases – M-tree.

In Figures 8 and 9, see the real-time for kNN queries
on the largest database (one million histograms) for Pivot
tables and the M-tree. The M-tree was up to 47x faster
in the QMap model when compared to the QFD model.
The speedup of Pivot tables was 15x in the QMap model.
Concerning Pivot tables, the speedup was, again, relatively
smaller than for the M-tree, because of relatively small num-
ber of non-filtered objects x (see Section 4.2.2). Also, the
M-tree is less demanding in the disk accesses than Pivot ta-
bles, so for M-tree the overhead cost was relatively smaller.

6. CONCLUSIONS
We have introduced the QMap model, a transformational

approach that maps the quadratic form distance (QFD)
space into the Euclidean space, while exactly preserving
the distances. Unlike different approaches based on expen-
sive dimensionality reduction and/or lower-bounding of the
QFD, the transformation of the QMap model is based just

Figure 8: kNN on 1M database – Pivot tables.

Figure 9: kNN on 1M database – M-tree.

on a relatively cheap decomposition of the static QFD ma-
trix, hence, being not dependent on the database objects. In
consequence, the QMap model allows similarity searching in
dynamically changing databases without any distortion of
the transformation. We have also shown that the QMap
model can be easily combined with the existing metric ac-
cess methods, achieving superior performance (even in terms
of the time complexity) when compared with the straightfor-
ward indexing of the QFD. Besides a theoretical analysis of
the time complexity of operations on MAMs used within the
QMap model, in the experimental evaluation we have shown
that the speedup in both indexing and querying could reach
several orders of magnitude.

6.1 Future work
In the future work we would like to experimentally com-

pare the QMap model with the QBIC approach [18]. How-
ever, as the QBIC implementation details were not properly
discussed, the comparison would be based on our own recon-
struction of QBIC. Furthermore, we plan to perform more
experiments with additional datasets.

Acknowledgments
This research has been supported in part by Czech Science
Foundation projects GAČR 201/09/0683, 202/11/0968, and
by the grant SVV-2011-263312.

7. REFERENCES
[1] C. C. Aggarwal, A. Hinneburg, and D. A. Keim. On

the surprising behavior of distance metrics in high
dimensional spaces. In ICDT. LNCS, Springer, 2001.

[2] M. Ankerst, B. Braunmüller, H.-P. Kriegel, and
T. Seidl. Improving adaptable similarity query
processing by using approximations. In Proc. 24th int.
conf. on Very large data bases (VLDB), pages
206–217. Morgan Kaufmann, 1998.

[3] M. Ankerst, G. Kastenmüller, H.-P. Kriegel, and
T. Seidl. 3d shape histograms for similarity search and
classification in spatial databases. In Advances in
Spatial Databases, volume 1651 of Lecture Notes in
Computer Science, pages 207–226. Springer Berlin /
Heidelberg, 1999.

[4] M. Ankerst, G. Kastenmüller, H.-P. Kriegel, and
T. Seidl. Nearest neighbor classification in 3d protein
databases. In Proceedings of the Seventh International
Conference on Intelligent Systems for Molecular
Biology, pages 34–43. AAAI Press, 1999.

[5] C. Beecks, M. S. Uysal, and T. Seidl. Signature
quadratic form distances for content-based similarity.
In Proceedings of the seventeen ACM international
conference on Multimedia, MM ’09, pages 697–700,
New York, NY, USA, 2009. ACM.

[6] T. Bernas, E. Asem, J. Robinson, and B. Rajwa.
Quadratic form: a robust metric for quantitative
comparison of flow cytometric histograms. Cytometry,
Part A., 73(8):715–726, 2008.

[7] K. S. Beyer, J. Goldstein, R. Ramakrishnan, and
U. Shaft. When is ”nearest neighbor” meaningful? In
ICDT ’99: Proceedings of the 7th International
Conference on Database Theory, pages 217–235,
London, UK, 1999. Springer-Verlag.

[8] H. M. Blanken, A. P. de Vries, H. E. Blok, and
L. Feng. Multimedia Retrieval. Springer, 2007.

[9] C. Böhm, S. Berchtold, and D. Keim. Searching in
High-Dimensional Spaces – Index Structures for
Improving the Performance of Multimedia Databases.
ACM Computing Surveys, 33(3):322–373, 2001.

[10] B. Bustos, G. Navarro, and E. Chávez. Pivot selection
techniques for proximity searching in metric spaces.
Pattern Recognition Letters, 24(14):2357–2366, 2003.

[11] V. Castelli and L. D. Bergman, editors. Image
Databases : Search and Retrieval of Digital Imagery.
Wiley-Inter., 2002.

[12] E. Chávez, G. Navarro, R. Baeza-Yates, and J. L.
Marroqúın. Searching in metric spaces. ACM
Computing Surveys, 33(3):273–321, 2001.

[13] P. Ciaccia, M. Patella, and P. Zezula. M-tree: An
Efficient Access Method for Similarity Search in
Metric Spaces. In VLDB’97, pages 426–435, 1997.

[14] C. Faloutsos, R. Barber, M. Flickner, J. Hafner,
W. Niblack, D. Petkovic, and W. Equitz. Efficient and
Effective Querying by Image Content. J. Intell. Inf.
Syst., 3:231–262, July 1994.

[15] T. Fober and E. Hüllermeier. Similarity measures for
protein structures based on fuzzy histogram
comparison. In IEEE World Congress on
Computational Intelligence. IEEE, 2010.

[16] T. Fober, M. Mernberger, G. Klebe, and
E. Hüllermeier. Efficient similarity retrieval for protein
binding sites based on histogram comparison. In
German Conference on Bioinformatics, 2010.

[17] G. H. Golub and C. F. Van Loan. Matrix
computations (3rd ed.). Johns Hopkins University
Press, Baltimore, MD, USA, 1996.

[18] J. Hafner, H. S. Sawhney, W. Equitz, M. Flickner, and
W. Niblack. Efficient color histogram indexing for
quadratic form distance functions. IEEE Transactions
on Pattern Analysis and Machine Intelligence,
17:729–736, 1995.

[19] M. Ioka. A method of defining the similarity of images
on the basis of color information. Technical Report
Tech. Report RT-0030, IBM Tokyo Research Lab,
1989.

[20] Y. Ishikawa, R. Subramanya, and C. Faloutsos.
Mindreader: Querying databases through multiple
examples. In Proceedings of the 24th International
Conference on Very Large Data Bases, VLDB ’98,
pages 218–227, San Francisco, CA, USA, 1998.
Morgan Kaufmann Publishers Inc.

[21] M. Luo, X. Bai, and G. Xu. Svd-based hierarchical
algorithm for similarity indexing in quadratic form
distance space. In Fifth Asian Conference on
Computer Vision, 2002.

[22] C. D. Meyer, editor. Matrix analysis and applied linear
algebra. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, 2000.

[23] M. L. Mico, J. Oncina, and E. Vidal. A new version of
the nearest-neighbour approximating and eliminating
search algorithm (aesa) with linear preprocessing time
and memory requirements. Pattern Recogn. Lett.,
15(1):9–17, 1994.

[24] W. Niblack, R. Barber, W. Equitz, M. Flickner, E. H.
Glasman, D. Petkovic, P. Yanker, C. Faloutsos, and
G. Taubin. The QBIC Project: Querying Images by
Content, Using Color, Texture, and Shape. In Storage
and Retrieval for Image and Video Databases
(SPIE)’93, pages 173–187, 1993.

[25] Y. Rubner, J. Puzicha, C. Tomasi, and J. M.
Buhmann. Empirical evaluation of dissimilarity
measures for color and texture. Comput. Vis. Image
Underst., 84(1):25–43, 2001.

[26] T. Seidl and H.-P. Kriegel. Efficient user-adaptable
similarity search in large multimedia databases. In
Proceedings of the 23rd International Conference on
Very Large Data Bases, VLDB ’97, pages 506–515,
San Francisco, CA, USA, 1997. Morgan Kaufmann
Publishers Inc.

[27] T. Skopal. Unified framework for fast exact and
approximate search in dissimilarity spaces. ACM
Trans. Database Syst., 32, November 2007.

[28] P. Zezula, G. Amato, V. Dohnal, and M. Batko.
Similarity Search - The Metric Space Approach,
volume 32. Springer, 2006.

