Revisiting M-Tree Building Principles

Tomas Skopal', Jaroslav Pokorny?, Michal Kratky', and Vaclav Snagel!

! Department of Computer Science
VSB-Technical University of Ostrava, Czech Republic
{tomas.skopal,michal.kratky,vaclav.snasel}@vsb.cz
2 Department of Software Engineering
Charles University, Prague, Czech Republic
jaroslav.pokorny@ksi.ms.mff.cuni.cz

Abstract. The M-tree is a dynamic data structure designed to index
metric datasets. In this paper we introduce two dynamic techniques of
building the M-tree. The first one incorporates a multi-way object inser-
tion while the second one exploits the generalized slim-down algorithm.
Usage of these techniques or even combination of them significantly
increases the querying performance of the M-tree. We also present
comparative experimental results on large datasets showing that the
new techniques outperform by far even the static bulk loading algorithm.

Keywords: M-tree, bulk loading, multi-way insertion, slim-down
algorithm

1 Introduction

Multidimensional and spatial databases have become more and more impor-
tant for different industries and research areas in the past decade. In the areas
of CAD/CAM, geography, or conceptual information management, it is often to
have applications involving spatial or multimedia data. Consequently, data man-
agement in such databases is still a hot topic of research. Efficient indexing and
querying spatial databases is a key necessity to many interesting applications in
information retrieval and related disciplines.

In general, the objects of our interests are spatial data objects. Spatial data
objects can be points, lines, rectangles, polygons, surfaces, or even objects in
higher dimensions. Spatial operations are defined according to the functionality
of the spatial database to support efficient querying and data management. A
spatial access method (SAM) organizes spatial data objects according to their
position in space. As the structure of how the spatial data objects are organized
can greatly affect performance of spatial databases, SAM is an essential part in
spatial database systems (see e.g. [12] for a survey of various SAM).

So far, many SAM were developed. We usually distinguish them according to
which type of space is a particular SAM related. One class of SAM is based on
vector spaces, the second one uses metric spaces. For example, well-known data
structures like kd-tree [2], quad-tree [I1], and R-tree [§], or more recent ones like
UB-tree [1], X-tree [3], etc. are based on a form of vector space. Methods for

L. Kalinichenko et al. (Eds.): ADBIS 2003, LNCS 2798, pp. 148162 2003.
© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.3
 Für schnelle Web-Anzeige optimieren: Nein
 Piktogramme einbetten: Nein
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [2400 2400] dpi
 Papierformat: [595.276 841.889] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 2400 dpi
 Downsampling für Bilder über: 3600 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Warnen und weiter
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Farbe nicht ändern
 Methode: Standard
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Ja
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Ja
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
 EPS-Info von DSC beibehalten: Ja
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Ja

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Warning
 /ParseDSCComments true
 /DoThumbnails false
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize false
 /ParseDSCCommentsForDocInfo true
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.3
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends true
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo true
 /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /LeaveColorUnchanged
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 300
 /EndPage -1
 /AutoPositionEPSFiles true
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 2400
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 300
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [2400 2400]
>> setpagedevice

Revisiting M-Tree Building Principles 149

indexing metric spaces include e.g. metric tree [14], vp-tree [15], mvp-tree [5],
Slim-tree [13], and the M-tree [7].

Searching for objects in multimedia databases is based on the concept of
similarity search. In many disciplines, similarity is modelled using a distance
function. If the well-known triangular inequality is fulfilled by this function, we
obtain metric spaces. Authors of [9] remind that if the elements of the metric
space are tuples of real numbers then we get a finite dimensional vector space.

For spatial and multimedia databases there are three interesting types of
queries in metric spaces: range queries, nearest neighbours queries, and k-nearest
neighbours queries. A performance of these queries differs in vector and metric
spaces. For example, the existing vector space techniques are very sensitive to
the space dimensionality. Closest point search algorithms have an exponential
dependency on the dimensionality of the space (this is called the curse of dimen-
sionality, see [4] or [16]).

On the other hand, metric space techniques seem to be more attractive for
a large class of applications of spatial and multimedia databases due to their
advantages in querying possibilities. In the paper, we focus particularly on im-
provement of the dynamic data structure M-tree. The reason for M-tree lies in
the fact that, except Slim-trees, it is still the only persistent metric index. In
existing approaches to M-tree algorithms there is a static bulk loading algorithm
with a small construction complexity. Unfortunately, a querying performance of
above-mentioned types of queries is not too high on such tree.

We introduce two dynamic techniques of building the M-tree. The first one
incorporates a multi-way object insertion while the second one exploits the gen-
eralized slim-down algorithm. Usage of these techniques or even combination of
them significantly increases the querying performance of the M-tree. We also
present comparative experimental results on large datasets showing that the
new techniques outperform by far even the static bulk loading algorithm. By the
way, the experiments have shown that the querying performance of the improved
M-tree has grown by more than 300%.

In Section 2 we introduce shortly general concepts of the M-tree, discuss the
quality of the M-tree structure, and introduce the multi-way insertion method.
In Section 3 we repeat the slim-down algorithm and we also introduce here a
generalization of this algorithm. Experimental results and their discussion are
presented in Section 4. Section 5 concludes the results.

2 General Concepts of the M-Tree

M-tree, introduced in [7] and elaborated in [I0], is a dynamic data structure
for indexing objects of metric datasets. The structure of M-tree was primarily
designed for multimedia databases to natively support the similarity queries.

Let us have a metric space M = (D, d) where D is a domain of feature objects
and d is a function measuring distance between two feature objects. A feature
object O; € D is a sequence of features extracted from the original database
object. The function d must be a metric, i.e. d must satisfy the following metric
axioms:

150 T. Skopal et al.

d(0;,0;) =0 reflexivity
d(Oi, OJ) >0 (Oz #* Oj) positivity
d(Oi, OJ) = d(Oj, 0;) symmetry
d(0;,0;) + d(04,04) > d(0;, Oy) triangular inequality

The M-tree is based on a hierarchical organization of feature objects according to
a given metric d. Like other dynamic and persistent trees, the M-tree structure is
a balanced hierarchy of nodes. As usually, the nodes have a fixed capacity and a
utilization threshold. Within the M-tree hierarchy, the objects are clustered into
metric regions. The leaf nodes contain entries of objects themselves (here called
the ground objects) while entries representing the metric regions are stored in
the inner nodes (the objects here are called the routing objects). For a ground
object O;, the entry in a leaf has a format:

grnd(0;) = [0;,0id(0;), d(O;, P(O;))]

where O; € D is the feature object, 0id(O;) is an identifier of the original DB
object (stored externally), and d(O;, P(O;)) is a precomputed distance between
O; and its parent routing object.

For a routing object O;, the entry in an inner node has a format:

rout(0;) = [0, ptr(T(0;)),7(0;),d(0;, P(O;))]

where O; € D is the feature object, ptr(T(0;)) is pointer to a covering subtree,
r(0;) is a covering radius, and d(O;, P(O;)) is a precomputed distance between
O, and its parent routing object (this value is zero for the routing objects stored
in the root). The entry of a routing object determines a metric region in space
M where the object O; is a center of that region and r(0;) is a radius bounding
the region. The precomputed value d(O;, P(O;)) is redundant and serves for
optimizing the algorithms upon the M-tree. In Figure [, a metric region and

Fig. 1. A metric region and its routing object in the M-tree structure.

its appropriate entry rout(O;) in the M-tree is presented. For the hierarchy of
metric regions (routing objects rout(O) respectively) in the M-tree, only one
invariant must be satisfied. The invariant can be formulated as follows:

Revisiting M-Tree Building Principles 151

o All the ground objects stored in the leafs of the covering subtree of rout(O;)
must be spatially located inside the region defined by rout(O;). .

Formally, having a rout(O;) then YO € T(0;),d(0, O;) < r(O;). If we real-
ize, this invariant is very weak since there can be constructed many M-trees of
the same object content but of different structure. The most important conse-
quence is that many regions on the same M-tree level may overlap. An example

Fig. 2. Hierarchy of metric regions and the appropriate M-tree.

in Figure (2] shows several objects partitioned into metric regions and the ap-
propriate M-tree. We can see that the regions defined by routq(O,), rout:(0;),
rout1(0;) overlap. Moreover, object O; is located inside the regions of rout(O;)
and rout(O;) but it is stored just in the subtree of rout(O;). Similarly, the
object O,, is located even in three regions but it is stored just in the subtree of
rout1(0p).

2.1 Similarity Queries

The structure of M-tree natively supports similarity queries. A similarity mea-
sure is here represented by the metric function d. Given a query object Oy, a
similarity query returns (in general) objects close to O,. The similarity queries
are of two basic kinds: a range query and a k-nearest neighbour query.

Range Queries. A range query is specified as a query region given by a query
object O4 and a query radius r(Oy). The purpose of a range query is to return
all the objects O satisfying d(Oy, O) < r(0,). A query with r(O,) = 0 is called
a point query.

k-Nearest Neighbours Queries. A k-nearest neighbours query (k-NN query)
is specified by a query object O, and a number k. A k-NN query returns the
first k nearest objects to O,4. Technically, the k-NN query can be implemented

152 T. Skopal et al.

using the range query with a dynamic query radius. In practice, the k-NN query
is used more often than the range query since the size of the k-NN query result
is known in advance.

By the processing of a range query (k-NN query respectively), the M-tree
hierarchy is being passed down. Only if a routing object rout(O;) (its metric
region respectively) intersects the query region, the covering subtree of rout(O,)
is relevant to the query and thus further processed.

2.2 Quality of the M-Tree

As of many other indexing structures, the main purpose of the M-tree is its abil-
ity to efficiently process the queries. In other words, when processing a similarity
query, a minimum of disk accesses as well as computations of d should be per-
formed. The need of minimizing the disk access costd] (DAC) is a requirement
well-known from other index structures (B-trees, R-trees, etc.). Minimization
of the computation costs (CC), i.e. the number of the d function executions, is
also desirable since the function d can be very complex and its execution can
be computationally expensive. In the M-tree algorithms, the DAC and CC are
highly correlated, hence in the following we will talk just about “costs”.

The key problem of the M-tree’s efficiency resides in a quantity of overlaps
between the metric regions defined by the routing objects. If we realize, the
query processing must examine all the nodes the parent routing objects of
which intersect the query region. If the query region lies (even partially) in an
overlap of two or more regions, all the appropriate nodes must be examined and
thus the costs grow.

In generic metric spaces, we cannot quantify the volume of two regions overlap
and we even cannot compute the volume of a whole metric region. Thus we
cannot measure the goodness of an M-tree as a sum of overlap volumes. In [13],
a fat-factor was introduced as a way to classify the goodness of the Slim-tree,
but we can adopt it for the M-tree as well. The fat-factor is tightly related to
the M-tree’s query efficiency since it informs about the number of objects in
overlaps using a sequence of point queries.

For the fat-factor computation, a point query for each ground object in the
M-tree is performed. Let h be the height of an M-tree T', n be the number of
ground objects in T', m be the number of nodes, and I. be the total DAC of all
the n point queries. Then,

I.—h-n 1
n (m —h)

fat(T) =

is the fat-factor of T', a number from interval (0, 1). For an ideal tree, the fat(T)
is zero. On the other side, for the worst possible M-tree the fat(T) is equal to
one. For an M-tree with fat(T) = 0, every performed point query costs h disk

! considering all logical disk accesses, i.e. disk cache is not taken into account

Revisiting M-Tree Building Principles 153

accesses while for an M-tree with fat(T) = 1, every performed point query costs
m disk accesses, i.e. the whole M-tree structure must be passed.

2.3 Building the M-Tree

By revisiting the M-tree building principles, our objective was to propose an M-
tree construction technique keeping the fat-factor minimal even if the building
efforts would increase.

First, we will discuss the dynamic insertion of a single object. The insertion
of an object into the M-tree has two general steps:

1. Find the “most suitable” leaf node where the object O will be inserted as a
ground object. Insert the object into that node.

2. If the node overflows, split the node (partition its content among two new
nodes), create two new routing objects and promote them into the parent
node. If now the parent node overflows, repeat step 2 for the parent node. If
a root is split the M-tree grows by one level.

Single-Way Insertion. In the original approach presented in [7], the basic
motivation used to find the “most suitable” leaf node is to follow a path in the M-
tree which would avoid any enlargement of the covering radius, i.e. at each level
of the tree, a covering subtree of rout(O,) is chosen, for which d(O;, O) < r(0;).
If multiple paths with this property exist, the one for which object O is closest
to the routing object rout(O;) is chosen.

If no routing object for which d(O;,0) < r(0;) exists, an enlargement of a
covering radius is necessary. In this case, the choice is to minimize the increase
of the covering radius. This choice is thightly related to the heuristic criterion
that suggests to minimize the overall “volume” covered by routing objects in the
current node.

The single-way leaf choice will access only h nodes, one node on each level,
as depicted in Figure Bh.

Multi-way Insertion. The single-way heuristic was designed to keep the build-
ing costs as low as possible and simultaneously to choose a leaf node for which
the insertion of the object O will not increase the overall “volume”. However,
this heuristic behaves very locally (only one path in the M-tree is examined) and
thus the most suitable leaf may be not chosen.

In our approach, the priority was to choose the most suitable leaf node at all.
In principle, a point query defined by the inserted object O is performed. For
all the relevant leafs (their routing objects rout(O;) respectively) visited during
the point query, the distances d(O;, O) are computed and the leaf for which the
distance is minimal is chosen. If no such leaf is found, i.e. no region containing
the O exists, the single-way insertion is performed.

This heuristic behaves more globally since multiple paths in the M-tree are
examined. In fact, all the leafs the regions of which spatially contain the object
O are examined. Naturally, the multi-way leaf choice will access more nodes than
h as depicted in Figure [Bb.

154 T. Skopal et al.

] ﬁ% [
IHHHHHHHWIHI lHHHmlHI
b)

a)

Fig. 3. a) Single path of the M-tree is passed during the single-way insertion. b) Mul-
tiple leafs are examined during the multi-way insertion.

Node Splitting. When a node overflows it must be split. According to keep
the minimal overlap, a suitable splitting policy must be applied. Splitting policy
determines how to split a given node, i.e. which objects to choose as the new
routing objects and how to partition the objects into the new nodes.

As the experiments in [I0] have shown, the minMAX_RAD method of choos-
ing the routing objects causes the best querying performance of the M-tree.
The minMAX_RAD method examines all of the @ pairs of objects candidating
to the two new routing objects. For every such a pair, the remaining objects
in the node are partitioned according to the objects of the pair. For the two
candidate routing objects a maximal radius is determined. Finally, such a pair
(rout(0;), rout(O;)) for which is the maximal radius (the greater of the two radii
r(0;),r(0;)) minimal is chosen as the two new routing objects.

For the object partition, a distribution according to general hyperplane is
used as the beneficial method. An object is simply assigned to the routing object
that is closer. For preservation of the minimal node utilization a fixed amount

of objects is distributed according to the balanced distribution.

2.4 Bulk Loading the M-Tree

In [6] a static algorithm of the M-tree construction was proposed. On a given
dataset a hierarchy is built resulting into a complete M-tree.

The basic bulk loading algorithm can be described as follows: Given the set
of objects S of a dataset, we first perform an initial clustering by producing
k sets of objects Fi,...,Fr. The k-way clustering is achieved by sampling k
objects Oy, , ..., Oy, from the § set, inserting them in the sample set 7, and then
assigning each object in S to its nearest sample, thus computing k - n distance
matrix. In this way, we obtain k sets of relatively “close” objects. Now, we invoke
the bulk loading algorithm recursively on each of these k sets, obtaining k sub-
trees T1,...,Tr. Then, we have to invoke the bulk loading algorithm one more
time on the set F, obtaining a super-tree 7;,,. Finally, we append each sub-tree
T; to the leaf of T,y corresponding to the sample object Oy,, and obtain the
final tree T.

The algorithm, as presented, would produce a non-balanced tree. To resolve
this problem we use two different techniques:

Revisiting M-Tree Building Principles 155

— Reassign the objects in underfull sets F; to other sets and delete correspond-
ing sample object from F.

— Split the taller sub-trees, obtaining a shorter sub-trees. The roots of the
sub-trees will be inserted in the sample set F, replacing the original sample
object.

A more precise description of the bulk loading algorithm can be found in
[6] or [10].

3 The Slim-Down Algorithm

Presented construction mechanisms incorporate decision moments that regard
only a partial knowledge about the data distribution. By the dynamic insertion,
the M-tree hierarchy is constructed in a moment when the nodes are about to
split. However, splitting a node is only a local redistribution of objects. From this
point of view, the dynamic insertion of the whole dataset will raise a sequence
of node splits — local redistributions — which may lead to a hierarchy that is not
ideal.

On the other side, the bulk loading algorithm works statically with the whole
dataset, but it also works locally — according to a randomly chosen sample of
objects.

In our approach we wanted to utilize a global mechanism of (re)building the
M-tree. In [13] a post-construction method was proposed for the Slim-tree, called
as slim-down algorithm. The slim-down algorithm was used for an improvement
of a Slim-tree already built by dynamic insertions. The basic idea of the slim-
down algorithm was an assumption that a more suitable leaf exists for a ground
object stored in a leaf. The task was to examine the most distant objects (from
the routing object) in the leaf and try to find a better leaf. If such a leaf existed
the object was inserted to the new leaf (without the need of its covering radius
enlargement) and deleted from the old leaf together with a decrease of its cover-
ing radius. This algorithm was repeatedly applied for all the ground objects as
long as the object movements occured.

However, the experiments have shown that the original (and also cheaper)
version of the slim-down algorithm presented in [I3] improves the querying per-
formace of the Slim-tree only by 35%.

3.1 Generalized Slim-Down Algorithm

We have generalized the slim-down algorithm and applied it for the M-tree as
follows:

The algorithm separately traverses each level of the M-tree, starting on the
leaf level. For each node IV on a given level, a better location for each of the
objects in the node N is tried to find. For a ground object O in a leaf N, a set of
relevant leafs is retrieved, similarly like the point query does it by the multi-way
insertion. For a routing object O in a node N, a set of relevant nodes (on the
appropriate level) is retrieved. This is achieved by a modified range query, where

156 T. Skopal et al.

the query radius is 7(O) and only such nodes are processed the routing objects
of which entirely contain rout(O). From the relevant retrieved nodes a node
is chosen the parent routing object rout(O;) of which is closest to the object
O. If the object O is closer to rout(O;) more than to the routing object of N
(i.e. d(O,rout(0;)) < d(O,rout(N)), the object O is moved from N to the new
node. If O was the most distant object in N, the covering radius of its routing
object rout(N) is decreased. Processing of a given level is repeated as long as
any object movements are occuring. When a level is finished the algorithm for
the next higher level starts.

The slim-down algorithm reduces the fat-factor of the M-tree via decreasing
the covering radii of routing objects. The number of nodes on each M-tree level
is preserved since only redistribution of objects on the same level is performed
during the algorithm and no node overflows or underflows (and thus node
splitting or merging) by the object movements are allowed.

Example (generalized slim-down algorithm):
Figure [shows an M-tree before and after the slim-down algorithm application.

LT
. .
. a,

.
B ..

.0

.

rl
POLLLLITIN

. “
. -

* *
.
* EIR S

.
.t

sty
------ ans® Traa,

a)

Fig. 4. a) M-tree before slimming down. b) M-tree after slimming down.

Routing objects stored in the root of the M-tree are denoted as A, B while the
routing objects stored in the nodes of first level are denoted as 1, 2, 3, 4. In the
leafs are stored the ground objects (denoted as crosses). Before slimming down,
the subtree of A contains 1 and 4 while the subtree of B contains 3 and 2. After
slimming down the leaf level, one object was moved from 2 to 1 and one object
was moved from 4 to 1. Covering radii of 2 and 4 were decreased. After slimming
down the first level, 4 was moved from A to B, and 2 was moved from B to A.
Covering radii of A and B were decreased.

Revisiting M-Tree Building Principles 157
4 Experimental Results

We have completely reimplemented the M-tree in C++, i.e. we have not used the
original GiST implementation (our implementation is stable and about 15-times
faster than the original one). The experiments ran on an Intel Pentium®4
2.5GHz, 512MB DDR333, under Windows XP.

The experiments were performed on synthetic vector datasets of clustered
multidimensional tuples. The datasets were of variable dimensionality, from 2 to
50. The size of dataset was increasing with the dimensionality, from 20,000 2D
tuples to 1 million 50D tuples. The integer coordinates of the tuples were ranged
from 0 to 1,000,000.

Fig. 5. Two-dimensional dataset distribution.

The data were randomly distributed inside hyper-spherical (Ls) clusters (the
number of clusters was increasing with the increasing dimensionality — 50 to
1,000 clusters) with radii increasing from 100,000 (10% of the domain extent)
for 2D tuples to 800,000 (80% of the domain extent) for 50D tuples. In such
distributed datasets, the hyper-spherical clusters were highly overlapping due to
their quantity and large radii. For the 2D dataset distribution, see Figure

4.1 Building the M-Tree

The datasets were indexed in five ways. The single-way insertion method and the
bulk loading algorithm (in the graphs denoted as SingleWay and Bulk Loading)
represent the original methods of the M-tree construction. In addition to these

158 T. Skopal et al.

Table 1. M-tree statistics.

Metric: Ly (euclidean)

Node capacity: 20

Dimensionality: 2 — 50

Tuples: 20,000 — 1,000,000

Tree height: 3 — 5

Index size: 1 — 400 MB

Building the M-tree (disk access costs)

Object Insertion (realtime)

P =
. _e—7 S | [+~ Multiway+SiimDown
S ’/’ . © ---- SingleWay+SlimDown
Lo e S |-+~ Multiway
V"/ e < --©-- SingleWay (original dynamic
hd o 9
o i
S IV AR g
/AN =
v e S
Q . o <@ P
<D(S /’/ o &
04 ," O O OO 8.7
e | S &
- et
Bl 5000 e =1 e
/ ELa o
SRR [~ MultiWay+SlmDown P .
< --w-- SingleWay+SlimDown S SF o
[DR - MultiWay S ‘y/ Jos .
- X --0-- SingleWay (original dynamic) oA P .-
X --x-- Bulk Loading (original static) §, 0‘3;066 """ <> B SUSRD D SURIP S S
L ELUNUPULIBUSLIUNL ULULUSLISUSLIPUSLEN) L BUNLIDUNL IBULBUSLULUSUSUSLISUSLEY
2 6 10 14 18 22 26 30 34 38 42 46 50 2 6 10 14 18 22 26 30 34 38 42 46 50
Dim Dim

Fig. 6. Building the M-tree: a) Disk access costs. b) Realtime costs per one object.

methods, the multi-way insertion method (denoted as MultiWay) and the gen-
eralized slim-down algorithm represent the new building techniques introduced
in this article. The slim-down algorithm, as a post-processing technique, was
applied on both SingleWay and MultiWay indexes which resulted into indexes de-
noted as SingleWay+SlimDown and MultiWay+SlimDown. Some general M-tree
statistics are presented in Table 1.

The first experiment shows the M-tree building costs. In Figure [6k, the disk
access costs are presented. We can see that the SingleWay and Bulk Loading in-
dexes were built much cheaply than the other ones, but the construction costs
were not the primary objective of our approach. Figure [illustrates the average
realtime costs per one inserted object. In Figure [7h, the fat-factor characteristics
of the indexes are depicted. The fat-factor of SingleWay+SlimDown and Multi-
Way-+SlimDown indexes is very low, which indicates that these indexes contain
relatively few overlapping regions. An interesting fact can be observed from the
Figure [7b showing the average node utilization.

The MultiWay index utilization is by more than 10% better than the uti-
lization of the SingleWay index. Studying this value is not relevant for the Sin-
gleWay+SlimDown and MultiWay+SlimDown indexes since the “slimming-down”
does not change the average node utilization, thus the results are the same as
those achieved for SingleWay and MultiWay.

4.2 Range Queries

The objective of our approach was to increase the querying performace of the
M-tree. For the query experiments, sets of query objects were randomly selected

Revisiting M-Tree Building Principles 159

° Fat-Factor Node Utilization
& Multiway-+SlimD: 2+
= —— PR AR el — MultiWay (MultiWay+SlimDown)
v SingleWay+slimDown \ -y SingleWay (SingleWay+SlimDown)
© i --+-- Multiway +
S| --0-- SingleWay (original dynamic \
o H o +
° 4t
S hd + \+_+\+\
5 27 +——t—t
g° N c0l”"
T w© S o] kY
2 54 v,
o
v.
e S ‘"-V
= + v.
=] V*—¢V>+_+\+ Vs Gt eneeees —
..... S \+. +—t + AR AEEE va
gl T R —
o R
UL USLULULUSLSUSLEUSLESUSLE DDLU USLULUSUSUSLIUSLI
10 14 18 22 26 30 34 38 42 46 50 2 6 10 14 18 22 26 30 34 38 42 46 50
Dim Dim
Fig. 7. Building the M-tree: a) Fat-factor. b) Node utilization.
Range Query Selectivity Range Queries (realtime)
o
S| <
<] —— Selectivity (+ percentage + radius)l 0.40% - —+ MultiWay+SlimDown
27 e 2040000 - |-o- ’\Sﬂinlgt;_l\(levWawslimDown
— % + .- ultivay
& 0.81% 1720000+\+D/ + g, -<©-- SingleWay (original dynamic)
o 1200000 QS0 0.33%
o
o 8 2200000 -
o N_
2 0.93% © |
8 8] 910003 053% . . =3
S N 1340000 1550000 o R
3 o 1.00% ;'00% @
‘g 8- 677000+ 89500 b
53—
87| 0.99% 1.00% B
S7] 351000/ 522000 ~
2] /+ N
s] 0.99% i
27| -t 204000
*+1.00% o
° 56500 o]
DDLU PUSLBULUSLUSLBUSLE T T T T T T T T T T T T T T T T T T 1T T T T 111
2 6 10 14 18 22 26 30 34 38 42 46 50 2 6 10 14 18 22 26 30 34 38 42 46 50
Dim Dim

Fig. 8. Range queries: a) Range query selectivity. b) Range query realtimes.

from the datasets. Each query test consisted from 100 to 750 queries (according
to the dimensionality and dataset size). The results were averaged.

In Figure[Bh, the average range query selectivity is presented for each dataset.
The selectivity was kept under 1% of all the objects in the dataset. For an
interest, we also present the average query radii. In Figure[8b, the realtime costs
are presented for the range queries. We can see that the query processing of the
SingleWay+SlimDown and MultiWay+SlimDown indexes is almost twice faster
when compared with the SingleWay index.

The disk access costs and the computation costs for the range queries are
presented in Figure[d. The computation costs comprise the total number of the
d function executions.

4.3 k-NN Queries

The performace gain is even more noticeable by the k-NN queries processing. In
Figure [Tk, the disk access costs are presented for 10-NN queries.

160 T. Skopal et al.
o Range Queries (disk access costs) o Range Queries (computations)
07 o
&7 |~ Multiway+SlimDown 87 |+ Multiway+SlimDown
1 |-w- SingleWay+SlimDown O ©- |-w- SingleWay+SlimDown
S | |- Multiway R 1 |-+ Multiway
§* --0-- SingleWay (original dynamic)| O X 87 [|¢-_SingleWay (original dynamic)
~ | |->-- Bulk Loading (original static) e X - 3
o - ™~
=8 w]
i 5 &
O o o I.D7
< S| £
oo [
i £ o
g o
o o 84
g 5 :
< h &
i 7] &
g g R
« 2] a4
. s'v'
ol w® <) ”ég
rrrrrr T T T T T T T T T T T T T T T T rrrrrrrrr T T T T T T T T T T T T T T T T
2 6 10 6 10 14 18 22 26 30 34 38 42 46 50

DAC
1000 1500 2000 2500 3000 3500

500

0

14 18 22 26 30 34 38 42 46 50
Dim

Dim

Fig. 9. Range queries: a) Disk access costs. b) Computation costs.

10-NN Queries (disk access costs)

10-NN Queries (computations)

T [+~ muttiway-+simbown - s | [~ muttiway+simpown
¥+ SingleWay+SlimDown o S [+w- SingleWay+SlimDown
|- M_ul(lWay . . « ---- Multiway
-6~ SingleWay (original dynamic) X o 1 |-o- SingleWay (original dynamic)
-x-- Bulk Loading (original static) o § -x-- Bulk Loading (original static)
— : A o |
[} ‘_—
| S8
ERSh
. S5 —
. o .
_ X £
o1 8 8]
x° i 8
| S
. * |
5% ey =
. LK .,/--'*’“v <
3 Y
2w ¥
. ’ o
rrrrrrrr T
2 6 10 14

18 22 26 30 34 38 42 46 50
Dim

2 6 10 14 18 22 26 30 34 38 42 46 50
Dim

Fig. 10. 10-NN queries: a) Disk access costs. b) Computation costs.

As the results show, querying the SingleWay+SlimDown index consumes
3.5-times less disk accesses than querying the SingleWay index. Similar behaviour
can be observed also for the computation costs presented in Figure [b. The
most promising results are presented in Figure [[1l where the 100-NN queries
were tested. The querying performance of the SingleWay+SlimDown index is
here better by more than 300% than the performance of the SingleWay index.

5 Conclusions

In this paper we have introduced two dynamic techniques of building the
M-tree. The cheaper multi-way insertion causes superior node utilization and
thus smaller indexes, while the querying performance for the k-NN queries is
improved by up to 50%. The more expensive generalized slim-down algorithm
causes superior querying performance for both the range and the k-NN queries,
for the 100-NN queries even by more than 300%.

Revisiting M-Tree Building Principles 161

3 100-NN Queries (disk access costs) 100-NN Queries (realtime)
3
“ | |+ Multiway+SiimDown P & [+ Muttiway+StimbDown L
S | |+~ SingleWay+SlimDown < --- SingleWay+SlimDown 4
S --+-- MultiWay - . o,_..o — |-=- Muitiway
o -6~ SingleWay (original dynamic) . © | |- SingleWay (original dynamic)
S | - S 4
g 0 o < SO
< o h 'S ’
o
S| o
o o . o o
< - o] *
o8 P @ Ry
o -
© . 3| s
o ,<> . <
o J *
S o % N E
- O e Y=Y < *
— 3 s ¥
o * V/*qv 27 -9 -* ---‘SF/SF/
87 A, o e P
- e a
grve P 633"“‘“"*
o Sle®
T T ULV UL USLIUSLIUSLE S T IULPULULUSLPUSLUSLITUSLE
2 6 10 14 18 22 DZ_B 30 34 38 42 46 50 2 6 10 14 18 22 |32'6 30 34 38 42 46 50
im im

Fig. 11. 100-NN queries: a) Disk access costs. b) Realtime costs.

Since the M-tree construction costs used by the multi-way insertion and
mainly by the generalized slim-down algorithm are considerable, the methods
proposed in this paper are suited for DBMS scenarios where relatively few in-
sertions to a database are requested and, on the other hand, many similarity
queries must be quickly answered at a moment.

From the DBMS point of view, the static bulk loading algorithm can be
considered as a transaction, hence the database is not usable during the bulk
loading algorithm run. However, the slim-down algorithm, as a dynamic post-
processing method, is not a transaction. Moreover, it can operate continuously in
a processor idle time and it can be, whenever, interrupted without any problem.
Thus the construction costs can be spread over the time.

References

1. R. Bayer. The Universal B-Tree for multidimensional indexing: General Concepts.
In Proceedings of World-Wide Computing and its Applications’97, WWCA’97,
Tsukuba, Japan, 1997.

2. J. Bentley. Multidimensional Binary Search Trees Used for Associative Searching.
Communication of the ACM, 18(9):508-517, 1975.

3. S. Berchtold, D. Keim, and H.-P. Kriegel. The X-tree: An Index Structure for High-
Dimensional Data. In Proceedings of the 22nd Intern. Conf. on VLDB, Mumbai
(Bombay), India, pages 28-39. Morgan Kaufmann, 1996.

4. C. Boéhm, S. Berchtold, and D. Keim. Searching in High-Dimensional Spaces —
Index Structures for Improving the Performance of Multimedia Databases. ACM
Computing Surveys, 33(3):322-373, 2001.

5. T. Bozkaya and Z. M. Ozsoyoglu. Indexing large metric spaces for similarity search
queries. ACM Transactions on Database Systems, 24(3):361-404, 1999.

6. P. Ciaccia and M. Patella. Bulk loading the M-tree. In Proceedings of the 9th
Australian Conference (ADC’98), pages 15-26, 1998.

7. P. Ciaccia, M. Patella, and P. Zezula. M-tree: An Efficient Access Method for
Similarity Search in Metric Spaces. In Proceedings of the 23rd Athens Intern.
Conf. on VLDB, pages 426-435. Morgan Kaufmann, 1997.

162

8.

10.

11.

12.

13.

14.

15.

16.

T. Skopal et al.

A. Guttman. R-Trees: A Dynamic Index Structure for Spatial Searching. In
Proceedings of ACM SIGMOD 1984, Annual Meeting, Boston, USA, pages 47-57.
ACM Press, June 1984.

E. Navarro, R. Baeza-Yates, and J. Marroquin. Searching in Metric Spaces. ACM
Computing Surveys, 33(3):273-321, 2001.

M. Patella. Similarity Search in Multimedia Databases. Dipartmento di Elettronica
Informatica e Sistemistica, Bologna, 1999.

H. Samet. The Quadtree and Related Hierarchical Data Structures. ACM Com-
puting Surveys, 16(3):184-260, 1984.

H. Samet. Spatial data structures in Modern Database Systems: The Object Model,
Interoperability, and Beyond, pages 361-385. Addison-Wesley/ACM Press, 1995.
C. Traina Jr., A. Traina, B. Seeger, and C. Faloutsos. Slim-Trees: High perfor-
mance metric trees minimizing overlap between nodes. Lecture Notes in Computer
Science, 1777, 2000.

J. Uhlmann. Satisfying general proximity/similarity queries with metric trees.
Information Processing Letters, 40(4):175-179, 1991.

P. N. Yanilos. Data Structures and Algorithms for Nearest Neighbor Search in
General Metric Spaces. In Proceedings of Fourth Annual ACM/SIGACT-SIAM
Symposium on Discrete Algorithms - SODA, pages 311-321, 1993.

C. Yu. High-Dimensional Indezing. Springer—Verlag, LNCS 2341, 2002.

	Introduction
	General Concepts of the M-Tree
	Similarity Queries
	Quality of the M-Tree
	Building the M-Tree
	Bulk Loading the M-Tree

	The Slim-Down Algorithm
	Generalized Slim-Down Algorithm

	Experimental Results
	Building the M-Tree
	Range Queries
	k-NN Queries

	Conclusions

