
Metric Indexing for the Vector Model
in Text Retrieval

Tomáš Skopal1, Pavel Moravec2, Jaroslav Pokorný1, and Václav Snášel2

1 Charles University in Prague, Department of Software Engineering,
Malostranské nám. 25, 118 00 Prague, Czech Republic, EU

tomas@skopal.net, jaroslav.pokorny@mff.cuni.cz
2 VŠB – Technical University of Ostrava, Department of Computer Science,

17. listopadu 15, 708 33 Ostrava, Czech Republic, EU
{pavel.moravec,vaclav.snasel}@vsb.cz

Abstract. In the area of Text Retrieval, processing a query in the vector
model has been verified to be qualitatively more effective than searching
in the boolean model. However, in case of the classic vector model the
current methods of processing many-term queries are inefficient, in case
of LSI model there does not exist an efficient method for processing
even the few-term queries. In this paper we propose a method of vector
query processing based on metric indexing, which is efficient especially
for the LSI model. In addition, we propose a concept of approximate
semi-metric search, which can further improve the efficiency of retrieval
process. Results of experiments made on moderate text collection are
included.

1 Introduction

The Text Retrieval (TR) models [4, 3] provide a formal framework for retrieval
methods aimed to search huge collections of text documents. The classic vector
model as well as its algebraic extension LSI have been proved to be more effec-
tive (according to precision/recall measures) than the other existing models1.
However, current methods of vector query processing are not much efficient for
many-term queries, while in the LSI model they are inefficient at all. In this pa-
per we propose a method of vector query processing based on metric indexing,
which is highly efficient especially for searching in the LSI model.

1.1 Classic Vector Model

In the classic vector model, each document Dj in a collection C (0 ≤ j ≤ m,
m = |C|) is characterized by a single vector dj , where each coordinate of dj is
associated with a term ti from the set of all unique terms in C (0 ≤ i ≤ n, where
n is the number of terms). The value of a vector coordinate is a real number
wij ≥ 0 representing the weight of the i-th term in the j-th document. Hence,

1 For a comparison over various TR models we refer to [20, 11].

A. Apostolico and M. Melucci (Eds.): SPIRE 2004, LNCS 3246, pp. 183–195, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

184 Tomáš Skopal et al.

a collection of documents can be represented by an n × m term-by-document
matrix A. There are many ways how to compute the term weights wij stored
in A. A popular weight construction is computed as tf ∗ idf (see e.g. [4]).

Queries. The most important problem about the vector model is the querying
mechanism that searches matrix A with respect to a query, and returns only the
relevant document vectors (appropriate documents respectively). The query is
represented by a vector q the same way as a document is represented. The goal is
to return the most similar (relevant) documents to the query. For this purpose,
a similarity function must be defined, assessing a similarity value to each pair
of query and document vectors (q, dj). In the context of TR, the cosine measure
SIMcos(q, dj) =

∑ n
k=1 qk·wkj√∑ n

k=1 qk
2·∑ n

k=1 wkj
2

is widely used. During a query processing,

the columns of A (the document vectors) are compared against the query vector
using the cosine measure, while the sufficiently similar documents are returned
as a result. According to the query extent, we distinguish range queries and
k-nearest neighbors (k-NN) queries. A range query returns documents similar to
the query more than a given similarity threshold. A k-NN query returns the k
most similar documents.

Generally, there are two ways how to specify a query. First, a few-term query
is specified by the user using a few terms, while an appropriate vector for such
a query is very sparse. Second, a many-term query is specified using a text
document, thus the appropriate query vector is usually more dense. In this paper
we focus just on the many-term queries, since they better satisfy the similarity
search paradigm which the vector model should follow.

1.2 LSI Vector Model (Simplified)

Simply said, the LSI (latent semantic indexing) model [11, 4] is an algebraical
extension of the classic vector model. First, the term-by-document matrix A is
decomposed by singular value decomposition (SVD) as A = UΣV T . The matrix
U contains concept vectors, where each concept vector is a linear combination
of the original terms. The concepts are meta-terms (groups of terms) appearing
in the original documents. While the term-by-document matrix A stores doc-
ument vectors, the concept-by-document matrix ΣV T stores pseudo-document
vectors. Each coordinate of a pseudo-document vector represents a weight of an
appropriate concept in a document.

Latent Semantics. The concept vectors are ordered with respect to their sig-
nificance (appropriate singular values in Σ). Consequently, only a small number
of concepts is really significant – these concepts represent (statistically) the main
themes present in the collection – let us denote this number as k. The remaining
concepts are unimportant (noisy concepts) and can be omitted, thus the dimen-
sionality is reduced from n to k. Finally, we obtain an approximation (rank-k
SVD) A ≈ UkΣkV T

k , where for sufficiently high k the approximation error will

Metric Indexing for the Vector Model in Text Retrieval 185

be negligible. Moreover, for a low k the effectiveness can be subjectively even
higher (according to the precision/recall values) than for a higher k [3]. When
searching in a real-world collection, the optimal k is usually ranged from several
tens to several hundreds. Unlike the term-by-document matrix A, the concept-
by-document matrix ΣkV T

k as well as the concept base matrix U are dense.

Queries. Searching for documents in the LSI model is performed the same way
as in the classic vector model, the difference is that matrix ΣkV T

k is searched
instead of A. Moreover, the query vector q must be projected into the concept
base, i.e. UT

k q is the pseudo-query vector used by LSI. Since the concept vectors
of U are dense, a pseudo-query vector is dense as well.

1.3 Vector Query Processing

In this paper we focus on efficiency of vector query processing. More specifically,
we can say that a query is processed efficiently in case that only a small propor-
tion of the matrix storage volume is needed to load and process. In this section
we outline several existing approaches to the vector query processing.

Document Vector Scanning. The simplest method how to process a query
is the sequential scanning of all the document vectors (i.e. the columns of A,
ΣkV T

k respectively). Each document vector is compared against the query vector
using the similarity function, while sufficiently similar documents are returned
to the user. It is obvious that for any query the whole matrix must be processed.
However, sequential processing of the whole matrix is sometimes more efficient
(from the disk management point of view) than a random access to a smaller
part of the matrix used by some other methods.

Term Vector Filtering. For sparse query vectors (few-term queries respec-
tively), there exists a more efficient scanning method. Instead of the document
vectors, the term vectors (i.e. the rows of the matrix) are processed. The cosine
measure is computed simultaneously for all the document vectors, “orthogo-
nally” involved in the term vectors. Due to the simultaneous cosine measure
evaluation a set of m accumulators (storing the evolving similarities between
each document and the query) must be maintained in memory. The advantage
of term filtering is that only those term vectors must be scanned, for which the
appropriate term weights in the query vector are nonzero. The term vector fil-
tering can be easily provided using an inverted file – as a part of the boolean
model implementation [15].

The simple method of term filtering has been improved by an approximate
approach [19] reducing the time as well as space costs. Generally, the improve-
ment is based on early termination of query processing, exploiting a restructured
inverted file where the term entries are sorted according to the decreasing occur-
rences of a term in document. Thus, the most relevant documents in each term

186 Tomáš Skopal et al.

entry are processed first. As soon as the first document is found in which the
number of term occurrences is less than a given addition threshold, the process-
ing of term entry can stop, because all the remaining documents have the same
or less importance as the first rejected document. Since some of the documents
are never reached during a query processing, the number of used accumulators
can be smaller than m, which saves also the space costs. Another improvement
of the inverted file exploiting quantized weights was proposed recently [2], even
more reducing the search costs.

Despite the above mentioned improvements, the term vector filtering is gen-
erally not so much efficient for many-term queries, because the number of filtered
term vectors is decreased. Moreover, the term vector filtering is completely use-
less for the LSI model, since each pseudo-query vector is dense, and none of the
term vectors can be skipped.

Signature Methods. Signature files are a popular filtering method in the
boolean model [13], however, there were only few attempts made to use them in
the vector model. In that case, the usage of signature files is not so straightfor-
ward due to the term weights. Weight-partitioned signature files (WPSF) [14]
try to solve the problem by recording the term weights in so-called TF-groups.
A sequential file organization was chosen for the WPSF which caused excessive
search of the signature file. An improvement was proposed recently [16] using the
S-trees [12] to speedup the signature file search. Another signature-like approach
is the VA-file [6]. In general, usage of the signature methods is still complicated
for the vector model, and the results achieved so far are rather poor.

2 Metric Indexing

Since in the vector model the documents are represented as points within an
n-dimensional vector space, in our approach we create an index for the term-
by-document matrix (for the concept-by-document matrix in case of LSI) based
on metric access methods (MAMs) [8]. A property common to all MAMs is that
they exploit only a metric function for the indexing. The metric function stands
for a similarity function, thus metric access methods provide a natural way for
similarity search. Among many of MAMs, we have chosen the M-tree.

2.1 M-Tree

The M-tree [9, 18, 21] is a dynamic data structure designed to index objects of
metric datasets. Let us have a metric space M = (U, d) where U is an object
universe (usually a vector space), and d is a function measuring distance between
two objects in U. The function d must be a metric, i.e. it must satisfy the axioms
of reflexivity, positivity, symmetry and triangular inequality. Let S ⊆ U be a
dataset to be indexed. In case of the vector model in TR, an object Oi ∈ S is
represented by a (pseudo-)document vector of a document Di. The particular
metric d, replacing the cosine measure, will be introduced in Section 2.2.

Metric Indexing for the Vector Model in Text Retrieval 187

Like the other indexing trees based on B+-tree, the M-tree structure is a
balanced hierarchy of nodes. In M-tree the objects are distributed in a hierarchy
of metric regions (each node represents a single metric region) which can be,
in turn, interpreted as a hierarchy of object clusters. The nodes have a fixed
capacity and a minimum utilization threshold. The leaf nodes contain ground
entries grnd(Oi) of the indexed objects themselves, while in the inner nodes the
routing entries rout(Oj) are stored, representing the metric regions and routing
to their covering subtrees. Each routing entry determines a metric region in space
M where the object Oj is a center of that region and rOj is a radius bounding the
region. For the hierarchy of metric regions (routing entries rout(Oj) respectively)
in the M-tree, the following requirement must be satisfied:

All the objects of ground entries stored in the leaves of the covering subtree
of rout(Oj) must be spatially located inside the region defined by rout(Oj).

The most important consequence of the above requirement is that many
regions on the same M-tree level may overlap. An example in Figure 1 shows
several objects partitioned among metric regions and the appropriate M-tree.
We can see that the regions defined by rout1(O1), rout1(O2), rout1(O4) overlap.
Moreover, object O5 is located inside the regions of rout1(O1) and rout1(O4) but
it is stored just in the subtree of rout1(O4). Similarly, the object O3 is located
even in three regions but it is stored just in the subtree of rout1(O2).

Fig. 1. Hierarchy of metric regions (a) and the appropriate M-tree (b)

Similarity Queries in the M-Tree. The structure of M-tree natively supports
similarity queries. The similarity function is represented by the metric function
d where the close objects are interpreted as similar.

A range query RangeQuery(Q,rQ) is specified as a query region given by a
query object Q and a query radius rQ. The purpose of a range query is to retrieve
all such objects Oi satisfying d(Q, Oi) ≤ rQ. A k-nearest neighbours query (k-
NN query) kNNQuery(Q,k) is specified by a query object Q and a number k. A
k-NN query retrieves the first k nearest objects to Q.

188 Tomáš Skopal et al.

During the range query processing (k-NN query processing respectively), the
M-tree hierarchy is being traversed down. Only if a routing entry rout(Oj) (its
metric region respectively) overlaps the query region, the covering subtree of
rout(Oj) is relevant to the query and thus further processed.

2.2 Application of M-Tree in the Vector Model

In the vector model the objects Oi are represented by (pseudo-)document vec-
tors di, i.e. by columns of term-by-document or concept-by-document matrix,
respectively. We cannot use the cosine measure SIMcos(di, dj) as a metric func-
tion directly, since it does not satisfy the metric axioms. As an appropriate
metric, we define the deviation metric ddev(di, dj) as a vector deviation

ddev(di, dj) = arccos(SIMcos(di, dj))

The similarity queries supported by M-tree (utilizing ddev) are exactly those
required for the vector model (utilizing SIMcos). Specifically, the range query
will return all the documents that are similar to a query more than some given
threshold (transformed to the query radius) while the k-NN query will return
the first k most similar (closest respectively) documents to the query.

In the M-tree hierarchy similar documents are clustered among metric re-
gions. Since the triangular inequality for ddev is satisfied, many irrelevant doc-
ument clusters can be safely pruned during a query processing, thus the search
efficiency is improved.

3 Semi-metric Search

In this section we propose the concept of semi-metric search – an approximate
extension of metric search applied to M-tree. The semi-metric search provides
even more efficient retrieval, considerably resistant to the curse of dimensionality.

3.1 Curse of Dimensionality

The metric indexing itself (as is experimentally verified in Section 4) is benefi-
cial for searching in the LSI model. However, searching in a collection of high-
dimensional document vectors of the classic vector model is negatively affected
by a phenomenon called curse of dimensionality [7, 8]. In the M-tree hierar-
chy (even the most optimal hierarchy) the curse of dimensionality causes that
clusters of high-dimensional vectors are not distinct, which is reflected by huge
overlaps among metric regions.

Intrinsic Dimensionality. In the context of metric indexing, the curse of
dimensionality can be generalized for general metric spaces. The major condition
determining the success of metric access methods is the intrinsic dimensionality
of the indexed dataset. The intrinsic dimensionality of a metric dataset (one of
the interpretations [8]) is defined as

Metric Indexing for the Vector Model in Text Retrieval 189

ρ =
µ2

2σ2

where µ and σ2 are the mean and the variance of the dataset’s distance distri-
bution histogram. In other words, if all pairs of the indexed objects are almost
equally distant, then the intrinsic dimensionality is maximal (i.e. the mean is
high and/or the variance is low), which means the dataset is poorly intrinsically
structured. So far, for datasets of high intrinsic dimensionality there still does
not exist an efficient MAM for exact metric search. In case of M-tree, a high
intrinsic dimensionality causes that almost all the metric regions overlap each
other, and searching in such an M-tree deteriorates to sequential search.

In case of vector datasets, the intrinsic dimensionality negatively depends on
the correlations among coordinates of the dataset vectors. The intrinsic dimen-
sionality can reach up to the value of the classic (embedding) dimensionality. For
example, for uniformly distributed (i.e. not correlated) n-dimensional vectors the
intrinsic dimensionality tends to be maximal, i.e. ρ ≈ n.

In the following section we propose a concept of semi-metric modifications
that decrease the intrinsic dimensionality and, as a consequence, provide a way
to efficient approximate similarity search.

3.2 Modification of the Metric

An increase of the variance of distance distribution histogram is a straightforward
way how to decrease the intrinsic dimensionality. This can be achieved by a
suitable modification of the original metric, preserving the similarity ordering
among objects in the query result.
Definition 1. Let us call the increasing modification df

dev of a metric ddev a
function

df
dev(Oi, Oj) = f(ddev(Oi, Oj))

where f : 〈0, π〉 → R+
0 is an increasing function and f(0) = 0. For simplicity, let

f(π) = 1.
Definition 2. Let s : U × U → R+

0 be a similarity function (or a distance
function) and SimOrders : U → P(S × S) be a function defined as

〈Oi, Oj〉 ∈ SimOrders(Q) ⇔ s(Oi, Q) < s(Oj , Q)

∀Oi, Oj ∈ S, ∀Q ∈ U. In other words, the function SimOrders orders the objects
of dataset S according to the distances to the query object Q.
Proposition. For the metric ddev and every increasing modification df

dev the
following equality holds:

SimOrderddev
(Q) = SimOrderdf

dev
(Q), ∀Q ∈ U

Proof:
“⊂”: The function f is increasing. If for each Oi, Oj , Ok, Ol ∈ U, ddev(Oi, Oj) >
ddev(Ok, Ol) holds, then f(ddev(Oi, Oj)) > f(ddev(Ok, Ol)) must also hold.
“⊃”: The second part of proof is similar. �

190 Tomáš Skopal et al.

As a consequence of the proposition, if we process a query sequentially over
the entire dataset S, then it does not matter if we use either ddev or df

dev, since
both of the ways will return the same query result.

If the function f is additionally subadditive, i.e. f(a) + f(b) ≥ f(a + b), then
f is metric-preserving [10], i.e. f(d(Oi, Oj)) is still metric. More specifically,
concave functions are metric-preserving (see Figure 2a), while convex (even par-
tially convex) functions are not – let us call them metric-violating functions (see
Figure 2b). A metric modified by a metric-violating function f is a semi-metric,
i.e. a function satisfying all the metric axioms except the triangular inequality.

Fig. 2. (a) Metric-preserving functions (b) Metric-violating functions

Clustering Properties. Let us analyze the clustering properties of modifica-
tions df

dev (see also Figure 2). For concave f , two objects close to each other
according to ddev are more distant according to df

dev. Conversely, for convex
f , the close objects according to ddev are even closer according to df

dev. As a
consequence, the concave modifications df

dev have a negative influence on clus-
tering, since the object clusters become indistinct. On the other side, the convex
modifications df

dev even more tighten the object clusters, making the cluster
structure of the dataset more evident. Simply, the convex modifications increase
the distance histogram variance, thereby decreasing the intrinsic dimensionality.

3.3 Semi-metric Indexing and Search

The increasing modifications df
dev can be utilized in the M-tree instead of the

deviation metric ddev. In case of a semi-metric modification df
dev, the query

processing is more efficient because of smaller overlaps among metric regions in
the M-tree. Usage of metric modifications is not beneficial, since their clustering
properties are worsen, and the overlaps among metric regions are larger.

Metric Indexing for the Vector Model in Text Retrieval 191

Semi-metric Search. A semi-metric modification df
dev can be used for all op-

erations on the M-tree, i.e. for M-tree building as well as for M-tree searching.
With respect to M-tree construction principles (we refer to [21]) and the propo-
sition in Section 3.2, the M-tree hierarchies built either by d or df

dev are the
same. For that reason, an M-tree built using a metric d can be queried using any
modification df

dev. Such semi-metric queries must be extended by the function f ,
which stands for an additional parameter. For a range query the query radius rQ

must be modified to f(rQ). During a semi-metric query processing, the function
f is applied to each value computed using d as well as it is applied to the metric
region radii stored in the routing entries.

Error of the Semi-metric Search. Since the semi-metric df
dev does not satisfy

the triangular inequality property, a semi-metric query will return more or less
approximate results. Obviously, the error is dependent on the convexity of a
modifying function f . As an output error, we define a normed overlap error

ENO = 1 − |resultMtree ∩ resultscan|
max(|resultMtree|, |resultscan|)

where resultMtree is a query result returned by the M-tree (using a semi-metric
query), and resultscan is a result of the same query returned by sequential search
over the entire dataset. The error ENO can be interpreted as a relative precision
of the M-tree query result with respect to the result of full sequential scan.

Semi-metric Search in Text Retrieval. In the context of TR, the searching
is naturally approximate, since precision/recall values do never reach up to 100%.
From this point of view, the approximate character of semi-metric search is not
a serious limitation – acceptable results can be achieved by choosing such a
modifying function f , for which the error ENO will not exceed some small value,
e.g. 0.1. On the other side, semi-metric search significantly improves the search
efficiency, as it is experimentally verified in the following section.

4 Experimental Results

For the experiments we have chosen the Los Angeles Times collection (a part
of TREC 5) consisting of 131,780 newspaper articles. The entire collection con-
tained 240,703 unique terms. As “rich” many-term queries, we have used articles
consisting of at least 1000 unique terms. The experiments were focused on disk
access costs (DAC) spent during k-NN queries processing. Each k-NN query was
repeated for 100 different query documents and the results were averaged. The
access to disk was aligned to 512B blocks, considering both access to the M-tree
index as well as to the respective matrix. The overall query DAC are presented
in megabytes. The entries of M-tree nodes have contained just the document
vector identifiers (i.e. pointers to the matrix columns), thus the M-tree storage

192 Tomáš Skopal et al.

volume was minimized. In Table 1 the M-tree configuration used for experiments
is presented (for a more detailed description see [21]).

The labels of form Devxxx in the figures below stand for modifying functions
f used by semi-metric search. Several functions of form DevSQp(α) =

(
α
π

)p were
chosen. The queries labeled as Dev represent the original metric queries presented
in Section 2.2.

Table 1. The M-tree configuration

Page size: 512 B; Capacity (leaves: 42, nodes: 21)
Construction: MinMax + SingleWay + SlimDown

Tree height: 4; Avg. util. (leaves: 56%, nodes: 52%)

4.1 Classic Vector Model

First, we performed tests for the classic vector model. The storage of the term-
by-document matrix (in CCS format [4]) took 220 MB. The storage of M-tree
index was about 4MB (i.e. 1.8% of the matrix storage volume (MSV)).

In Figure 3a the comparison of document vector scanning, term vector filter-
ing as well as metric and semi-metric search is presented. It is obvious that using
document vector scanning the whole matrix (i.e. 220 MB DAC) was loaded and
processed. Since the query vectors contained many zero weights, the term vector
filtering worked more efficiently (76 MB DAC, i.e. 34% of MSV).

Fig. 3. Classic vector model: (a) Disk access costs (b) ENO error

The metric search Dev did not performed well – the curse of dimensionality
(n = 240,703) forced almost 100% of the matrix to be processed. The extra
30 MB DAC overhead (beyond the 220 MB of MSV) was caused by the non-
sequential access to the matrix columns. On the other side, the semi-metric
search performed better. The DevSQ10 queries for k = 5 consumed only 30 MB

Metric Indexing for the Vector Model in Text Retrieval 193

DAC (i.e. 13.6% of MSV). Figure 3b shows the normed overlap error ENO of
the semi-metric search. For DevSQ4 queries the error was negligible. The error
for DevSQ6 remained below 0.1 for k > 35. The DevSQ10 queries were affected
by a relatively high error from 0.25 to 0.2 (with increasing k).

4.2 LSI Model

The second set of tests was made for the LSI model. The target (reduced) dimen-
sionality was chosen to be 200. The storage of the concept-by-document matrix
took 105 MB, while the size of M-tree index was about 3 MB (i.e. 2.9 % of MSV).

Because the size of term-by-document matrix was very large, the direct cal-
culation of SVD was impossible. Therefore, we have used a two-step method
[17], which in first step calculates a random projection [1, 5] of document vectors
into a smaller dimensionality of pseudo-concepts. This is done by multiplication
of a zero-mean unit-variance random matrix and the term-by-document matrix.
Second, a rank-2k SVD is calculated on the resulting pseudoconcept-by-document
matrix, giving us a very good approximation of the classic rank-k SVD.

Fig. 4. LSI model: (a) Disk access costs (b) ENO error

The Figure 4a shows that metric search Dev itself was more than twice as
efficient as the document vector scanning. Even better results were achieved by
the semi-metric search. The DevSQ3 queries for k = 5 consumed only 5.8 MB
DAC (i.e. 5.5% of MSV). Figure 4b shows the error ENO. For DevSQ1.5 queries
the error was negligible, for DevSQ2 it remained below 0.06. The DevSQ3 queries
were affected by a relatively high error.

5 Conclusion

In this paper we have proposed a metric indexing method for an efficient search
of documents in the vector model. The experiments have shown that metric in-
dexing itself is suitable for an efficient search in the LSI model. Furthermore,

194 Tomáš Skopal et al.

the approximate semi-metric search allows us to provide quite efficient similarity
search in the classic vector model, and a remarkably efficient search in the LSI
model. The output error of semi-metric search can be effectively tuned by choos-
ing such modifying functions, that preserve an expected accuracy sufficiently.

In the future we would like to compare the semi-metric search with some
other methods, in particular with the VA-file (in case of LSI model). We also
plan to develop an analytical error model for the semi-metric search in M-tree,
allowing to predict and control the output error ENO.

This research has been partially supported by GAČR grant No. 201/00/1031.

References

1. D. Achlioptas. Database-friendly random projections. In Symposium on Principles
of Database Systems, 2001.

2. V. N. Anh, O. de Kretser, and A. Moffat. Vector-space ranking with effective early
termination. In Proceedings of the 24th annual international ACM SIGIR, pages
35–42. ACM Press, 2001.

3. R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison Wes-
ley, New York, 1999.

4. M. Berry and M. Browne. Understanding Search Engines, Mathematical Modeling
and Text Retrieval. Siam, 1999.

5. E. Bingham and H. Mannila. Random projection in dimensionality reduction: ap-
plications to image and text data. In Knowledge Discovery and Data Mining, pages
245–250, 2001.

6. S. Blott and R. Weber. An Approximation-Based Data Structure for Similarity
Search. Technical report, ESPRIT, 1999.

7. C. Böhm, S. Berchtold, and D. Keim. Searching in High-Dimensional Spaces –
Index Structures for Improving the Performance of Multimedia Databases. ACM
Computing Surveys, 33(3):322–373, 2001.

8. E. Chávez and G. Navarro. A probabilistic spell for the curse of dimensionality. In
Proc. 3rd Workshop on Algorithm Engineering and Experiments (ALENEX’01),
LNCS 2153. Springer-Verlag, 2001.

9. P. Ciaccia, M. Patella, and P. Zezula. M-tree: An Efficient Access Method for
Similarity Search in Metric Spaces. In Proceedings of the 23rd Athens Intern. Conf.
on VLDB, pages 426–435. Morgan Kaufmann, 1997.

10. P. Corazza. Introduction to metric-preserving functions. Amer. Math Monthly,
104(4):309–23, 1999.

11. S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas, and R. A. Harsh-
man. Indexing by latent semantic analysis. Journal of the American Society of
Information Science, 41(6):391–407, 1990.

12. U. Deppisch. S-tree: A Dynamic Balanced Signature Index for Office Retrieval. In
Proceedings of ACM SIGIR, 1986.

13. C. Faloutsos. Signature-based text retrieval methods, a survey. IEEE Computer
society Technical Committee on Data Engineering, 13(1):25–32, 1990.

14. D. L. Lee and L. Ren. Document Ranking on Weight-Partitioned Signature Files.
In ACM TOIS 14, pages 109–137, 1996.

15. A. Moffat and J. Zobel. Fast ranking in limited space. In Proceedings of ICDE 94,
pages 428–437. IEEE Computer Society, 1994.

Metric Indexing for the Vector Model in Text Retrieval 195

16. P. Moravec, J. Pokorný, and V. Snášel. Vector Query with Signature Filtering. In
Proc. of the 6th Bussiness Information Systems Conference, USA, 2003.

17. C. H. Papadimitriou, H. Tamaki, P. Raghavan, and S. Vempala. Latent seman-
tic indexing: A probabilistic analysis. In Proocedings of the ACM Conference on
Principles of Database Systems (PODS), Seattle, pages 159–168, 1998.

18. M. Patella. Similarity Search in Multimedia Databases. Dipartmento di Elettronica
Informatica e Sistemistica, Bologna, 1999.

19. M. Persin. Document filtering for fast ranking. In Proceedings of the 17th annual
international ACM SIGIR, pages 339–348. Springer-Verlag New York, Inc., 1994.

20. G. Salton and M. McGill. Introduction to Modern Information Retrieval. McGraw
Hill Publications, 1st edition, 1983.

21. T. Skopal, J. Pokorný, M. Krátký, and V. Snášel. Revisiting M-tree Building Prin-
ciples. In ADBIS 2003, LNCS 2798, Springer, Dresden, Germany, 2003.

	1 Introduction
	1.1 Classic Vector Model
	1.2 LSI Vector Model (Simplified)
	1.3 Vector Query Processing

	2 Metric Indexing
	2.1 M-Tree
	2.2 Application of M-Tree in the Vector Model

	3 Semi-metric Search
	3.1 Curse of Dimensionality
	3.2 Modification of the Metric
	3.3 Semi-metric Indexing and Search

	4 Experimental Results
	4.1 Classic Vector Model
	4.2 LSI Model

	5 Conclusion
	References

