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ABSTRACT

The pivot tables are a popular metric access method, pri-
marily designed as a main-memory index structure. It has
been many times proven that pivot tables are very efficient
in terms of distance computations, hence, when assuming a
computationally expensive distance function. However, for
cheaper distance functions and/or huge datasets exceeding
the capacity of the main memory, the classic pivot tables
become inefficient. The situation is dramatically changing
with the rise of solid state disks that decrease the seek times,
so we can now efficiently access also small fragments of data
stored in the secondary memory. In this paper, we propose
a persistent variant of pivot tables, the clustered pivot ta-
bles, focusing on minimizing I/O cost when accessing small
data blocks (a few kilobytes). The clustered pivot tables
employs a preprocessing method utilizing the M-tree in the
role of clustering technique and an original heuristic for I/O-
optimized kNN query processing. In the experiments we
empirically show that our proposed method significantly re-
duces the number of necessary I/O operations during query
processing.

1. INTRODUCTION

The explosive growth of complex multimedia data includ-
ing images, videos, and music challenges the effectiveness
and efficiency of today’s multimedia databases. In order
to provide the users with access and insight into these in-
evitably increasing masses, multimedia databases have to
manage data objects effectively and appropriately with re-
spect to content-based retrieval. When searching multime-
dia databases in a content-based way, users issue similarity
queries by selecting multimedia objects or by sketching the
intended object contents. Given an example multimedia ob-
ject or sketch, the multimedia database searches for the most
related objects with respect to the query by measuring the
similarity between the query and each database object by
means of a distance function. As a result, the multimedia
objects with the lowest distance to the query are returned
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to the user. In order to answer a similarity query as fast as
possible, there were various indexing structures proposed.
The most established class of such indexes is the class of
metric access methods, formed by database structures and
algorithms aiming at minimizing the distance computations
and I/O operations needed to answer a query. The only re-
striction of metric access methods is that they require the
distance function to be a metric.

1.1 Metric access methods

A metric space (U, ) consists of a feature representation
domain U, and a distance function § which has to satisfy
the metric postulates: identity, symmetry, and triangle in-
equality. In this way, metric spaces allow domain experts to
model their notion of content-based similarity by an appro-
priate feature representation and distance function serving
as similarity measure. At the same time, this approach al-
lows database experts to design index structures, so-called
metric access methods (MAMSs) or metric indexes [4, 20,
14], for efficient query processing of content-based similarity
queries in a database S C U. These methods rely on the
distance function J only, i.e., they do not necessarily know
the structure of the feature representation of the objects.

Metric access methods organize database objects 0; € S
by grouping them based on their distances, with the aim of
minimizing not only traditional database costs like I/O but
also the number of costly distance function evaluations. For
this purpose, nearly all metric access methods apply some
form of filtering based on cheap lower bounds. For the case
of pivoting, these bounds are based on the fact that exact
pivot—object distances are pre-computed.

We illustrate this fundamental principle in Figure 1 where
we depict the query object ¢ € U, some pivot element p € S,
and a database object o € S in some metric space. Note
that pivot elements are used to group database objects and
to improve the efficiency of the search process by pruning

Figure 1: The lower-bounding principle.



whole parts of the index structure. Given a range query
(g,7), we aim at estimating the distance (g, 0) by making
use of §(g, p) and (o, p), with the latter already stored in the
metric index. Due to the triangle inequality, we can safely
filter object o without the need of (costly) computing §(g, o)
if the triangular lower bound

dr(g,0) = [6(¢q,p) — (0, p)|, (1)

also known as the inverse triangle inequality, is greater than
the query radius 7.

1.2 Paper contribution

In this paper we propose a new variant of the pivot tables
method, the clustered pivot tables, optimized for efficient
persistent metric indexing. The main contributions of this
paper can be summarized as:

e We propose a new method of persistent metric index-
ing based on the classic pivot tables. The method em-
ploys the M-tree as a general metric clustering method.

e We have designed a new I/O friendly heuristic for kNN
query processing.

e We have experimentally evaluated the proposed meth-
ods on four different datasets, where we demonstrated
that the clustering approach has positive effect on 1/0
cost spent during query processing.

In the following section we review the related work that
we utilize and combine in this paper. In section 3 we detail
the principles of the proposed method. After that, we report
and discuss experimental results in section 4 and finally we
conclude contributions of our method in section 5.

2. RELATED WORK

In this section we overview two MAMSs that we use in our
approach — the M-tree and the Pivot tables.

2.1 Mk-tree

The M-tree [6] is a dynamic index structure that provides
good performance in secondary memory (i.e., in database
environments). The M-tree is a hierarchical index, where
some of the data objects are selected as centers (local piv-
ots) of ball-shaped regions, while the remaining objects are
partitioned among the regions in order to build up a bal-
anced and compact hierarchy of data regions, see Figure 2.
Each region (subtree) is indexed recursively in a B-tree-like
(bottom-up) way of construction.

The inner nodes of M-tree store routing entries
rout;(0;) = [0i,rado,, 8(0i, Par(o;)), ptr(T(0;))], where o; €
S is a data object representing the center of the respec-
tive ball region, rad,;, is a covering radius of the ball,
0(0s, Par(0;)) is the so-called to-parent distance (the dis-
tance from o; to the object of the parent routing entry), and
finally ptr(T(o;)) is a pointer to the entry’s subtree. The
data is stored in the leaves of M-tree. Each leaf contains
ground entries grnd(o;) = [0s,(0i, Par(o;))], where o; € S
is an indexed database object and §(o0;, Par(o;)) is, again,
the to-parent distance.

Range and kNN queries are implemented by traversing
the tree, starting from the root. Those nodes are accessed,
whose parent regions (described by the routing entries) are
overlapped by the query ball (¢,rad). In case of a kNN
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Figure 2: M-tree (hierarchical space decomposition
and the tree structure).

query the radius rad is not known beforehand, so we have
to additionally employ a process to dynamically decrease
the radius during the search (initially set to co). The kNN
algorithm performs a best-first traversal of the index, where
regions are accessed in the order of increasing lower bound
distance to q.

2.2 M-tree construction

The M-tree index is created dynamically in the bottom-up
fashion like the B-tree. The insertion of a new object starts
in the root node and tries to find a suitable leaf node for
the new object using a leaf selection strategy. If the found
leaf node is overfull the node is split, moreover, the split
may cause chain of other splits of the corresponding parent
nodes. In general, during splitting the two new nodes are
created and all the objects from the split node are divided
within the two new nodes using a splitting policy. For more
details about splitting policies see [6].

The static way of M-tree construction, motivated by
speeding up the construction process, is to load more data
at once (i.e., bulk loading). For more details about the idea
of bulk loading see [5, 15] as this is out of scope of this paper.

When selecting a suitable leaf node for a dynamic object
(re)insertion, we could choose from the following techniques.

2.2.1 Single-way leaf selection

The single-way leaf selection strategy considers a single
path from the root node to a suitable leaf node. At each level
of the tree the strategy deterministically selects one best
subtree for the inserted object (the subtrees are represented
by the routing items in the actually processed node). Such a
subtree is preferred the covering radius of which would stay
unchanged after insertion of the new object. Furthermore,
if more such subtrees exist, the one with the closest center
to the inserted object is chosen. For more details see [6].

2.2.2  Multi-way leaf selection

The motivation for the multi-way leaf selection strategy
[18] is to take globally the single-way effort to minimize the
enlargements of the M-tree regions. The multi-way algo-
rithm considers nondeterministically all paths related to the
inserted object instead of just one path as the single-way
method. First, a point query with the inserted object as a



query object is issued and all possible candidate leaf nodes
for the new object are returned. Then, the leaf node the
parent routing object of which is the closest to the inserted
object is chosen. In case when the point query does not
return any leaf node the single-way leaf selection is used.
Although this approach creates more tight and less over-
lapped M-tree regions, the indexing cost becomes an order
of magnitude more expensive.

2.2.3 Forced reinserting

The method of forced reinserting [9, 17] concerns splitting
of the tree nodes. Forced reinserting tries to postpone split-
ting by reinserting some of the objects from the overfull leaf
node in a hope they will be inserted into other (non-overfull)
leaf nodes. There are several selection strategies for rein-
serted objects, for more details see [9]. Since object reinser-
tion may lead to another split (leading again to reinserting),
the recursion depth limiting the number of reinsertion at-
tempts is required as the parameter. When the recursion
depth is reached, all remaining objects are inserted in the
standard way, where nodes are split if necessary. This ap-
proach also leads to more tight and less overlapping regions,
but the indexing cost is not as increased as in the case of
the multi-way leaf selection.

2.3 Pivot tables

One of the most efficient (yet simple) metric indexes is
the pivot table [12], originally introduced as LAESA [11].
Basically, the structure of a pivot table is a simple matrix of
distances 6(os, p;) between the database objects o; € S and a
pre-selected static set of m pivots p; € P C S. For querying,
pivot tables allow us to perform cheap lower-bound filtering
by computing the maximum lower bound (Eq. 1) to d(g, o)
using all the pivots.

From a more intuitive perspective, pivot tables index the
database objects as m-dimensional vectors in a pivot space.
When querying, the range query ball (¢,7) (or kNN ball
with the current radius) is mapped into the pivot space,
such that its center is (6(q,p1),0(q,p2),...,0(q¢,pm)). An
important property of the mapping is that ¢ in the original
space is lower-bounded by L, distance in the pivot space
(i.e., it is a non-expansive mapping). The query ball in the
pivot space (i.e., the Loo-ball of radius r) can therefore be
used to retrieve all the objects inside the query ball in the
original space, possibly with some false positives that must
be filtered out by J in a refinement step. See Figure 3 for
an illustration of the pivot-based mapping from the original
space into the pivot space, and the respective query balls.
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Figure 3: (a) Original space (b) Pivot space

The concept of LAESA was implemented many times
under different conditions, we name, e.g., TLAESA [10]
(pivot table indexed by GH-tree-like structure), Spaghettis
[3] (pivot table indexed by multiple sorted arrays), OMNI
family [19] (pivot table indexed by R-tree) and PM-tree [16]
(hybrid approach combining M-tree and pivot tables).

3. CLUSTERED PIVOT TABLES

In this section, we introduce a new persistent variant of
pivot tables, the clustered pivot tables, employing the M-
tree as a preprocessing clustering algorithm. The structure
of the clustered pivot tables consists of two separate parts —
the first part, the distance matrix of precomputed distances
between all the database objects and a static set of pivots,
is located in the main memory, while the second part is a
persistent datafile containing data objects (usually large)
organized in the disk pages of fixed size. The goal of our
method is to reduce the I/O cost during pivot table query
processing, i.e., the number of necessarily read disk pages
storing data objects. In the following subsections we pro-
pose static and dynamic variants of clustered pivot tables.
We also discuss the kNN query processing, because when
considering also I/O cost, the LAESA-based kNN query pro-
cessing is not optimal. We do not consider caching of disk
pages and pivot selection techniques [11, 2, 13], although
they can further improve the performance of our method.
We also assume that the whole distance matrix fits into the
main memory (but not yet the data objects).

3.1 Motivation

In general, we have to assume that objects from the input
dataset arrive in random order, while in the classic approach
(denoted as the non-clustered pivot tables) the objects are
just appended one after the other to the datafile (and the
respective vectors to the distance matrix). When a query
is being processed, the distance matrix is traversed to com-
pute the lower-bound distances to all the database objects,
while the pages of the non-filtered candidate objects must
be fetched from the datafile. Because in the classic approach
there is a high probability that each of the non-filtered can-
didates will occupy a different disk page (because similar
objects are not clustered in datafile), the entire processing
would exhibit a high I/O cost.

3.2 Clustering the datafile

To avoid the high I/O cost, we have focused on clustering
the datafile, because there is a higher probability that lower-
bounding could filter all the objects located in the clustered
disk pages, which would lead to lower I/O cost. We decided
to employ M-tree as the clustering method, because it pro-
vides many dynamic techniques organizing objects within
compact clusters. We focus on the dynamic M-tree construc-
tion techniques, which influence the number and quality of
the created clusters. In particular, we consider single-way
and multi-way leaf selection strategies and the forced rein-
sertions. After construction of the M-tree we have all data
within clustered index and from this point we consider two
ways of creating either static or dynamic variant of the clus-
tered pivot tables.

3.3 Static Clustered Pivot Tables

The first proposal (depicted in Figure 4) is the classic pivot
table index which just reorganizes input dataset using the



M-tree — data objects from M-tree leaves (whole clusters)
are serialized into the datafile. The datafile is paged, where
the page size is defined as a parameter before the construc-
tion. Let us denote that the mapping between M-tree leaf
node and datafile block is not one to one, because M-tree
leaf nodes have not 100% utilization. Because of uneven
M-tree leaf utilization, the created clusters contain differ-
ent number of objects and because the datafile block has a
fixed size (the same as a full M-tree leaf), one block within
the datafile could contain data from more clusters (M-tree
leaves) than one. Although this variant considers static cre-
ation of the datafile, dynamic insertions to the datafile and
distance matrix are possible — the clusters just become less
compact. Moreover, the M-tree could be maintained up-to-
date during the dynamic insertions, so that a possible future
reindexing (new datafile creation) could be cheaper.
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Figure 4: Clustered PT — data in sequential file

3.4 Dynamic Clustered Pivot Tables

In the second proposal (depicted in Figure 5), we do not
copy data objects from the M-tree to a separate datafile,
but we consider the set of M-tree leaves as the datafile itself.
The M-tree is here not only a clustering algorithm but also
a persistent dynamic part of the index. Thus, the dynamic
clustered pivot tables consist from the distance matrix con-
nected to the M-tree, where the vectors in the distance ma-
trix are grouped according to the corresponding leaf nodes.
Let us denote that for the dynamic variant (data in the M-
tree), the number of disk pages is greater than for the static
index type (separated datafile) due to lower utilization of
the M-tree leaf pages. On the other hand, we expect that
more compact clusters will lead to more efficient filtering of
the corresponding disk pages.

3.5 Querying

The main idea behind efficient query processing in the
clustered pivot tables is to minimize the volume of data re-
trieved from the disk (we consider solid state disks with
fast seek time, see the discussion in section 4.4). As the
proposed variants of clustered pivot tables group similar ob-
jects within the datafile (or M-tree leaves), many of the data
pages could be filtered out because the clusters they repre-
sent do not overlap with the query region.

The range query processing is nearly the same as for the
original pivot tables. The only difference is that for non-
filtered objects we have to load the corresponding pages from
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Figure 5: Clustered PT — data within M-tree leaves

the disk. However, for kNN query we have to consider com-
pletely different heuristic for query processing if we want to
minimize also the I/O cost. The original algorithm is opti-
mal in terms of minimal distance computations spent, but it
can lead to high I/O cost because the same page can be ac-
cessed many times during the query processing. Although,
the I/O cost for kNN query can be reduced by a disk page
cache, the overall cost can be higher than for serial pro-
cessing. Thus, to prevent multiple accesses to disk pages,
we do not use reordering of objects according to their lower
bound distance to the query object (as the original LAESA
algorithm does).

Unfortunately, the I/O cost benefits caused by storing
similar objects together turns into a drawback when the
query radius is computed dynamically (in kNN search). The
kNN query algorithm simply processes objects from ‘left to
right’ in the order the objects are stored within the leaves
of the M-tree (or pages of datafile). This means all objects
from a cluster are processed before another cluster is en-
tered. In case the early processed clusters are far from the
query, the dynamic query radius can decrease to the final
value very slowly. This may result in higher number of re-
trieved disk pages and also to more distance computations.
Therefore, we keep data in first few disk pages unsorted
and non-clustered, while the rest of the dataset is reordered
by the M-tree. When the kNN query tries to determine
the dynamic query radius, it first processes objects from
the non-clustered part (randomly distributed through the
whole space) so that the radius is decreased quickly. A sim-
ilar method of initial query radius approximation based on
non-indexed data was proposed in [8].

4. EXPERIMENTAL RESULTS

We have performed experiments with four methods of M-
tree construction in the preprocessing phase and two ap-
proaches of organization of the clustered pivot tables index
—the dynamic and static. According to the results of the first
set of experiments, we chose one method for building M-tree
and performed several tests comparing our proposal to the
non-clustered pivot tables (pivot tables without M-tree pre-
processing). The implementation of the non-clustered pivot
tables method is the same as the proposed static method
which has pages of fixed size and data stored in the separate
datafile. As we have mentioned, our proposal is aimed at the
minimal number of I/O operations, so I/O cost is the only
value we present in the graphs. The kNN heuristic employ-
ing lower-bound ordering (original LAESA algorithm) was
two times faster in distance computations than our kNN



algorithm (one-pass scan with the initial query radius ap-
proximation), however, around five times worse in I/O cost.

4.1 The testbed

We tested our method on two real-world datasets (Cophir,
ColorHistogram) and two synthetic datasets (PolygonSet,
Cloud). For both real-world and synthetic datasets we have
selected data with lower and higher intrinsic dimensionality.

We used a subset of the CoPhIR database [1] consist-
ing of 1,000,000 feature vectors representing 64-dimensional
MPEGT color structure descriptor. As a distance function
the Euclidean (L2) distance was used. The second real-
world dataset, the ColorHistogram, was a subset of the Corel
database [7] and consisted of 68,040 32-dimensional vectors
representing color histograms of the images. We have con-
sidered Euclidean (L2) distance also for this dataset.

The PolygonSet was a synthetic database of 250,000 2D
polygons, each polygon consisted of 5-15 vertices. The sec-
ond synthetic database, the Cloud, consisted of 110,000
clouds of 60 6-dimensional points, where all these points
were from a unitary 6D cube. The first point (the center of
cloud) was generated at random and the rest of the cloud
points were generated around the center under normal distri-
bution. The synthetic databases consisting of non-vectorial
data were tested as an alternative to normally distributed
vector datasets. Both of the synthetic databases used the
Hausdorff distance with L2 ground distance.

If not mentioned otherwise, in the experiments we used
all data from the ColorHistogram and the Cloud, while con-
cerning Cophir and PolygonSet we used random subset con-
sisting of 150,000 data objects. For each test, 100 different
query objects were considered and the result cost was an
average. These query objects were distributed in space ac-
cording to dataset distribution, but they were not presented
in the respective dataset.

Label Description

PT(n, c)
CPT-SF(n, ¢, M-tree p.)

PT indexing non-clustered data
PT indexing clustered data

stored in sequential datafile (static)
PT indexing clustered data

stored in M-tree leaves (dynamic)
n is the number of pivots
c is the data page capacity

CPT-MT(n, ¢, M-tree p.)

M-tree p. can be (MW|SW|MW RI|SW RI)
MW means Multi-way leaf selection
SW means Single-way leaf selection
RI means forced reinserting

range query(k) range query with approximately
k objects in result
sorted by LB kNN query (LAESA) sorts objects
before filtering by their

lower bound of real distance

Table 1. Labels used in the figures.

4.2 Experiment settings

At first we have considered four variants of M-tree con-
struction. Single-way and multi-way leaf selection was tested
both with or without forced reinserting. The parameters of
forced reinserting were set as follows — recursion depth was
set to 10 and the maximal number of reinserted objects was
set to 5. For the M-tree splitting policies the mM_RAD
method was employed and the minimal utilization of the
M-tree nodes was set to 20%.

Since we compare our proposal to the classic pivot tables,
we tested all methods with the same size of the disk page.
Size of the disk page for each dataset was adapted to keep
approximately 32 database objects, that is, 4kB for the Col-
orHistogram and the PolygonSet, 8kB for the Cophir and
44kB for the Cloud. In tests with varying page size the
values varied from 16kB to 64kB. In all tests we used ran-
domly selected set of pivots, where the number of pivots
varied from 10 to 90. The number of results of range and
kNN queries varied from 1 to 256 objects. The number of
non-clustered objects at the beginning of indexed data (used
for kNN query radius approximation) was set to 2% of the
dataset volume for each test. For better understanding the
graphs we have formed a set of labels for the tested methods
and their parameters, see Table 1.

4.3 The results

4.3.1 The M-tree variants

In the first set of experiments (see Figure 6 and Figure 7)
we tested querying performance for different methods of M-
tree construction. The multi-way leaf selection has beaten
the single-way approach in all tests. For dynamic clustered
pivot tables the CPT-MT(30,32,SW RI) behaves like CPT-
MT(30,32,MW), where CPT-MT(30,32,MW RI) is the best
and CPT-MT(30,32,SW) the worst strategy, according to
the query costs. As we can see, the construction cost (see
Table 2) of M-tree built using the multi-way leaf selection is
an order of magnitude higher than using the single-way leaf
selection. For this reason, we have performed the following
tests using the single-way leaf selection method with forced
reinserting only.

PolygonSet(DB_SIZE=100000) Cophir (DB_SIZE=100000)

kNN kNN

300
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S CPT-SF(30,32,MW)

FHCPT-MT(30,32,MW)
A-CPT-MT(30,32,5W RI) 2500 - | _A-CPT-SF(30,32,5W RI)
% CPT-SF(30,32,5W)

>CPT-MT(30,32,5W)

2000

1500

1/0s

1000

500

0
12 4 8 16 32 64 128 256 1 2 4 8 16 32 64 128 256
k (log. scale) k (log. scale)

Figure 6: kNN query, size of query result: (a) data
in M-tree leaves (b) data in sequential file.
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Figure 7: Range query, size of query result: (a) data
in sequential file (b) data in M-tree leaves.



Dataset SW SW RI MW MW RI
ColorHist. 4,115,903 6,249,718 49,557,479 86,196,298
PolygonSet 6,164,869 9,051,290 17,572,966 29,340,106
Cloud 7,829,020 11,313,893 103,194,717 164,596,502
Cophir 6,937,617 10,163,521 191,559,936 304,081,707

Table 2. Construction cost for Figure 6 and Figure 7.

4.3.2  Number of pivots and disk page size

In the second set of tests we have examined the behavior of
the methods for varying number of pivots (see Figure 8). For
increasing number of pivots both dynamic and static meth-
ods become very similar to each other. The optimal number
of pivots is somewhere around 30 pivots, for lower values the
number of I/O operations heavily increases and for higher
values the effect is negligible. We can also observe that for
range queries with small number of results (i.e., small query
radius) and a small number of pivots the improvement on
the real and synthetic datasets is significant.

ColorHistogram(DB_SIZE=67040)
range query(10)
600 1800

Cloud(DB_SIZE=109000)
range query(10)
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+£-PT(-,32) #PT(-32)
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Figure 8: Number of pivots: (a) real-world dataset
(b) synthetic dataset.

Furthermore, we have inspected the varying disk page size.
The higher number of objects in the disk page can posi-
tively impact the clustering (more clusters are filtered out)
by adding more similar objects in one place. However, it
can also negatively lead to regions that cover greater un-
necessary space and then the effect of clustering is not so
significant. From this test (see Figure 9) we can observe the
positive effect of increasing number of objects in the disk
page in our synthetic databases, being of lower intrinsic di-
mensionality. However, in the CoPhIR datasets the negative
effect has taken place due to high intrinsic dimensionality of
this real-world dataset.

PolygonSe t(DB_SIZE=150000) Cophir(DB_SIZE=150000)

10NN
140 3000 10NN
©-CPT-MT(30,-SW RI)
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©-CPT-MT(30,-SW RI) 2000
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0 0
16 2 48 64 16 32 48 64
page size page size

Figure 9: Disk page size: (a) synthetic dataset (b)
real dataset.

4.3.3 Database size and query selectivity

In the third set of tests we have examined the standard
LAESA approach for kNN search, which means to order the
indexed objects according to their estimated lower-bound
distances and in this order to process all the database ob-
jects. We did not consider this approach in our heuristics
because with sorting according to the lower bound the I/O
cost heavily increases for higher query radius. To illustrate
this effect, in Figure 10 see the kNN results for the proposed
heuristics including the lower-bound sorting. We can ob-
serve total elimination of the positive clustering effect, since
clustered and non-clustered pivot tables behave the same.
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Figure 10: Size of query result — comparison with
LAESA-like kNN query.

In the following experiment, we have examined the impact
of the growing database. In this test we have also compared
two variants of M-tree preprocessing. As we can see in Fig-
ure 11, for range query the impact of clustering to eliminate
unwanted regions is increasing with growing database. Un-
fortunately, KNN queries do not follow this effect. From the
left graph in Figure 11 we can see the Multi-way leaf selec-
tion method is only slightly better than the Single-way leaf
selection method with forced reinserting.
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Figure 11: Database size: (a) range query (b) kNN
query.

In the next test we have examined increasing size of query
result (query selectivity). That is, either directly k in case
of kNN queries, or range queries with query radius set to
cover k objects, i.e., kNN processed as a range query. We
can see (Figure 12) that the effect of clustering is positively
increasing (w.r.t. PT) with the increasing query selectiv-
ity. Concerning kNN queries, the positive effect of cluster-
ing (w.r.t. PT) is significant just for lower values of k. We
can observe from the next test that there exists an optimal
query selectivity also for range queries.

In another test (see Figure 13) we have observed how
the proposed methods cope with large dataset — we used
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Figure 12: Size of query result: (a) range query (b)
kNN query.

1,000,000 vectors from CoPhIR database. We can observe
that our method shows better performance for range queries
than for kNN queries. With the increasing size of query re-
sult, the clusters of the dynamic clustered pivot tables lose
their positive effect on decreasing I/O cost faster than for the
static clustered pivot tables. When performing kNN query,
some clusters that are within dynamic query radius and not
within the final query radius have to be also fetched from
the datafile/M-tree. Due to these “false positive” clusters,
the number of 1/O operations for kNN queries is higher than
for range queries.
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Figure 13: Size of query result on large dataset: (a)
range query (b) kNN query.

4.3.4 Comparison to M-tree

In the last test we have compared our proposal to the
M-tree. We have compared the number of performed I/O
operations while querying. As we can see in Figure 14 the
proposed method has reached better results for range queries
than M-tree within all tested parameters. However, for kNN
queries the proposed method was better only for lower values
of k.

4.4 Discussion

The experiments proved that the proposed clustered pivot
tables can significantly improve the I/O-efficiency of query
processing if we use the M-tree in the role of a clustering
method. In all tests the clustered pivot tables beat the clas-
sic non-clustered version of pivot tables for all tested pa-
rameters. However, there are also disadvantages of the new
method, which can be summarized as:

e We have to construct and manage two MAMs. More-
over, M-tree indexing is more expensive to manage.

e [f we use storage devices with slow seek time, it is more
efficient to read one large block from the secondary
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Figure 14: Comparison to M-tree: (a) kNN query
(b) range query.

memory instead of random access to multiple small
disk pages. Nevertheless, we explicitly assume zero

seek-time storage devices, such as the solid state drives
(SSD).

e If the distance function is really expensive, the I/O
cost is negligible and the LAESA-based kNN query
processing is then more efficient.

e If the distance space suffers from high intrinsic dimen-
sionality, any compact clustering is impossible and the
preprocessing by M-tree becomes just an overhead.

This study could also encourage to adapt other MAMs
for indexing large datasets by separating the storage of data
objects from the index information itself. We have demon-
strated that separation of data objects from the index struc-
ture can be useful and that we can use just the precom-
puted distance matrix for avoiding 1/O operations. Let us
also denote, that the static version beats proposed dynamic
version, so utilizing underfull disk pages makes no sense.
However, when the dynamic updates become frequent, the
M-tree could be successfully used also as a page index. Sev-
eral M-tree constructing techniques were considered, while
although the Multi-way leaf selection is a better choice for
querying, we can utilize this method only in the case when
high construction costs are not a problem. The forced rein-
serting used by M-tree is thus better choice, because it is
much cheaper technique which also improves query process-
ing. In the future we would like to compare M-tree, classic
pivot tables and the clustered pivot tables for really huge
datasets, using SSD devices.

S. CONCLUSIONS

In this paper we have proposed the clustered pivot tables
method, which employs the M-tree leaf regions to serialize
the database objects into the data part of the index. The
usage of clustered data structure within pivot tables fulfilled
our goal to decrease the number of I/O operations spent dur-
ing query processing. In the future research we plan to adapt
also other metric access method by using separated storage
of the data objects and the index information. This strategy
together with modern storage devices with zero seek-time
access (such as solid state drives) could lead to a new class
of metric access methods optimal in I/O cost.
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