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ABSTRACT
The signature quadratic form distance has been introduced
as an adaptive similarity measure coping with flexible con-
tent representations of multimedia data. While this dis-
tance has shown high retrieval quality, its high computa-
tional complexity underscores the need for efficient search
methods. Recent research has shown that a huge improve-
ment in search efficiency is achieved when using metric in-
dexing. In this paper, we analyze the applicability of Ptole-
maic indexing to the signature quadratic form distance. We
show that it is a Ptolemaic metric and present an applica-
tion of Ptolemaic pivot tables to image databases, resolving
queries nearly four times as fast as the state-of-the-art met-
ric solution, and up to 300 times as fast as sequential scan.

Categories and Subject Descriptors
H.3.1 [content analysis and indexing]: indexing methods

General Terms
Theory, Experimentation, Performance

1. INTRODUCTION
The explosive growth of complex multimedia data includ-

ing images, videos, and music challenges the effectiveness
and efficiency of today’s multimedia databases. Supposed
to provide users access and insight into these inevitably in-
creasing masses, multimedia databases have to manage data
objects effectively and appropriately with respect to con-
tents access. When searching multimedia databases in a
content-based way, users issue similarity queries by select-
ing multimedia objects or by sketching the intended object
contents. Given an example multimedia object or sketch,
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the multimedia database searches for the most related ob-
jects with respect to the query by measuring the similarity
between the query and each database object by means of a
distance function. As a result, the multimedia objects with
the lowest distance to the query are returned to the user.

In fact, when determining content-based similarity be-
tween two multimedia objects, the distance is evaluated on
feature representations which aggregate the inherent proper-
ties of the multimedia objects. The conventional feature rep-
resentations aggregate and store these properties in feature
histograms, which can be compared by vectorial distances
[16, 23]. Recent feature representations adaptively aggre-
gate and store individual object properties in more flexible
feature signatures, which can be compared by adaptive sim-
ilarity measures [3]. It has been shown that the signature
quadratic form distance (SQFD) [2, 5] yields high retrieval
effectiveness [2, 5, 3]. However, the distance indexability (or
search efficiency) remains a challenging issue. While pre-
vious solutions [4, 6] relying on the sequential scan of the
database provide approximate and exact search results with
a comparatively low speed-up, the recently introduced ap-
proach of Beecks et al. [1] using metric access methods [9,
28] improves the efficiency of accessing multimedia databases
with a speed-up factor of up to 170.

1.1 Paper Contributions
In this paper, we use Ptolemaic pivot tables (PPT), orig-

inally described by Hetland [15], for efficient content-based
similarity search in large multimedia databases. Ptolemaic
indexing has been shown to be particularly efficient for
quadratic form distances (QFDs). Unfortunately, as the
Ptolemaic approach suffers from an increased internal com-
plexity, it is mainly suitable for expensive distances, where
this extra complexity becomes insignificant. Hence, it may
not be a feasible solution for one particular kind of QFD:
the cheap (weighted) Euclidean distance. Moreover, it has
recently been shown that for indexing purposes, all static
QFDs can be mapped to the Euclidean case [26], so Ptole-
maic indexing may not be viable even for them.

However, the mapping to Euclidean case does not ef-
fectively apply to the more expressive family of signature
quadratic form distances. In this paper we show both that
these distances are Ptolemaic, and that Ptolemaic indexing



is a clear improvement on the state of the art [1] for indexing
them. The main contributions of this paper are:

• A proof sketch that the SQFD is a Ptolemaic metric.

• New heuristics for efficiently performing the Ptolemaic
filtering which lead to an improvement in the real-time
efficiency of the PPT method.

• Empirical evidence that PPT is an efficient index for
the SQFD, also when combined with metric pivoting.

The structure of this paper is as follows: in Section 2 we
briefly describe the SQFD. In Section 3 we outline related
work. In Sections 4 and 5 we investigate Ptolemaic indexing
of the SQFD. We report the experimental results in Section 6
before we conclude our paper in Section 7.

2. SQFD AND FEATURE SIGNATURES
In this section, we briefly review the SQFD as an adaptive

similarity measure between feature signatures which repre-
sent objects by individually aggregating their properties in
a compact way. Unlike conventional feature histograms, fea-
ture signatures are frequently obtained by clustering the ob-
jects’ properties, such as color, texture, or other more com-
plex features [10, 21], within some feature space and storing
the cluster representatives and weights. Thus, given a fea-
ture space F, the feature signature So of a multimedia object
o is defined as a set of tuples from F×R+ consisting of rep-
resentatives ro ∈ F and weights wo ∈ R+.

We depict an example of image feature signatures accord-
ing to a feature space comprising position and color informa-
tion, i.e. F ⊆ R5, in Figure 1. For this purpose we applied
a k-means clustering algorithm where each representative
roi ∈ F corresponds to the centroid of the cluster Coi ⊆ F,

i.e., roi =

∑
f∈Co

i
f

|Coi |
, with relative frequency woi =

|Coi |∑
i |Coi |

.

We depict the feature signatures’ representatives by circles
in the corresponding color. The weights are reflected by
the diameter of the circles. As can be seen in this exam-
ple, feature signatures adjust to individual image contents
by aggregating the features according to their appearance in
the underlying feature space.

To compare feature signatures we make use of the SQFD
which is a generalization of the conventional quadratic form
distance (QFD) [13]. It is defined for the comparison of two
feature signatures of different structure and size as follows.

Definition 1 (SQFD). Given two feature signatures
Sq = {〈rqi , w

q
i 〉}

n
i=1 and Sp = {〈rpi , w

p
i 〉}

m
i=1 and a similarity

function fs : F× F→ R over some feature space F, the sig-
nature quadratic form distance SQFDfs

between Sq and Sp

is defined as:

SQFDfs
(Sq, Sp) =

√
(wq | −wp) ·Afs · (wq | −wp)T ,

where Afs ∈ R(n+m)×(n+m) is the similarity matrix arising
from applying the similarity function fs to the corresponding
representatives, i.e., aij = fs(ri, rj). Furthermore, wq =
(wq1, . . . , w

q
n) and wp = (wp1 , . . . , w

p
m) form weight vectors,

and (wq | −wp) = (wq1, . . . , w
q
n,−wp1 , . . . ,−wpm) denotes the

concatenation of weights wq and −wp.

As can be seen in Definition 1, the signature quadratic
form distance takes into account the similarity values be-
tween any two representatives by making use of a similarity

Figure 1: Three example images with their corre-
sponding feature signature visualizations.

function fs. This similarity relationship is reflected within
the similarity matrix Afs which has to be determined for
each distance computation individually. Thus, the complex-
ity of a single distance computation is in O

(
(n+m)2 · φ

)
where n and m denote the size of feature signatures Sq and
Sp, respectively, and φ denotes the complexity of the simi-
larity function fs over some feature space F. Beecks et al. [5]
proposed three example similarity functions:

• Minus function: f−(ri, rj) = −d(ri, rj)

• Heuristic function: fh(ri, rj) = 1
α+d(ri,rj)

• Gaussian function: fg(ri, rj) = e−α·d
2(ri,rj)

It turns out that the Gaussian function with the parameter
α ∈ R+ adapted to the current multimedia database exhibits
the highest retrieval performance in terms of effectiveness,
while the minus function results in the lowest computation
time [3].

Beyond images, feature signatures can also be applied to
other kinds of multimedia data which fit into this flexible
feature representation form. In general, there are no obsta-
cles to using a non-vectorial feature space F, so the SQFD
has prospects of becoming a universal distance for measuring
locality-sensitive similarity between any complex signatures
consisting of local features.

3. INDEXING SQFD – RELATED WORK
In this section, we first briefly explain the fundamentals

of metric indexing with a particular focus on the simplest
and most intuitive metric access method: pivot tables. We
then outline related work regarding metric indexing of the
SQFD.

3.1 Metric Access Methods
A metric space (U, δ) consists of a feature representation

domain U (in this paper, the set of all possible signatures)
and a distance function δ which has to satisfy the metric
postulates: identity, non-negativity, symmetry, and triangle
inequality. In this way, metric spaces allow domain experts
to model their notion of content-based similarity by an ap-
propriate feature representation and distance function serv-
ing as similarity measure. At the same time, this approach
allows database experts to design index structures, so-called
metric access methods (or metric indexes) [9, 28, 24, 14], for
efficient query processing of content-based similarity queries
in a database S ⊂ U. These methods rely on the distance
function δ only, i.e., they do not necessarily know the struc-
ture of the feature representation of the objects.
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Figure 2: The lower-bounding principle.

Metric access methods organize database objects oi ∈ S
by grouping them based on their distances, with the aim of
minimizing not only traditional database costs like I/O but
also the number of costly distance function evaluations. For
this purpose, nearly all metric access methods apply some
form of filtering based on cheap lower bounds. For the case
of pivoting, these bounds are based on the fact that exact
pivot–object distances are pre-computed.

We illustrate this fundamental principle in Figure 2 where
we depict the query object q ∈ U, some pivot element p ∈ S,
and a database object o ∈ S in some metric space. Given a
range query (q, r), we wish to estimate the distance δ(q, o)
by making use of δ(q, p) and δ(o, p), with the latter already
stored in the metric index. Because of the triangle inequal-
ity, we can safely filter object o without needing to compute
the (costly) distance δ(q, o) if the triangular lower bound

δT(q, o) = |δ(q, p)− δ(o, p)| , (1)

also known as the inverse triangle inequality, is greater than
the query radius r.

3.1.1 Pivot Tables
One of the most efficient (yet simple) metric indexes is

the pivot table [22], originally introduced as LAESA [20].
Basically, the structure of a pivot table is a simple matrix of
distances δ(oi, pj) between the database objects oi ∈ S and a
pre-selected static set of m pivots pj ∈ P ⊂ S. For querying,
pivot tables allow us to perform cheap lower-bound filtering
by computing the maximum lower bound (1) to δ(q, o) using
all the pivots.

From a more intuitive perspective, pivot tables index the
database objects as m-dimensional vectors in a pivot space.
When querying, the range query ball (q, r) (or kNN ball
with the current radius) is mapped into the pivot space,
such that its center is (δ(q, p1), δ(q, p2), . . . , δ(q, pm)). An
important property of the mapping is that δ in the original
space is lower-bounded by L∞ distance in the pivot space
(i.e., it is a non-expansive mapping). The query ball in the
pivot space (i.e., the L∞-ball of radius r) can therefore be
used to retrieve all the objects inside the query ball in the
original space, possibly with some false positives that must
be filtered out by δ in a refinement step. See Figure 3 for
an illustration of the pivot-based mapping from the original
space into the pivot space, and the respective query balls.

3.2 Metric indexing of the SQFD
Unlike previous approaches which focus on improving the

efficiency of a sequential scan by making use of maximum
component feature signatures [4] or similarity matrix com-
pression [6], a recently introduced approach exploits the in-
dexability of the SQFD by investigating the parameters of

Figure 3: (a) Original space (b) Pivot space

the similarity function and indexing the data through sim-
ple pivot tables [1]. Although the approaches that improve
sequential scan can be used when adapting the similarity
function to user preferences, they only reach a speed-up fac-
tor of up to 13 and 9, respectively. In contrast, using pivot
tables yields a speed-up factor of up to 170 when modifying
the inherent parameter α used by the similarity function fs.
In fact, Beecks et al. [1] show that the similarity function fs
applied inside SQFD not only determines the retrieval qual-
ity but also the indexability. Thus, changing the parameters
of the similarity function will result in better indexability.

However, in this paper we investigate the indexability of
the SQFD beyond the lower-bounding principle based on
triangle inequality. We propose to use the Ptolemaic in-
dexing approach introduced by Hetland [15] to improve the
efficiency of processing content-based similarity queries even
further. Our approach is detailed in the next section.

4. PTOLEMAIC INDEXING OF THE SQFD
This section first summarizes the principles of Ptolemaic

indexing, and then shows that they apply to the SQFD.

4.1 The Principles of Ptolemaic Indexing
In metric indexes, the triangle inequality is used to con-

struct lower bounds for the distance. Analogously, in Ptole-
maic indexing [15], Ptolemy’s inequality is used to construct
such lower bounds as well. A distance function is called a
Ptolemaic distance if it has the properties of identity, non-
negativity, and symmetry, and satisfies Ptolemy’s inequal-
ity. If a Ptolemaic distance also satisfies the triangle in-
equality, it is a Ptolemaic metric.

Ptolemy’s inequality states that for any quadrilateral, the
pairwise products of opposing sides sum to more than the
product of the diagonals. In other words, for any four points
x, y, u, v ∈ U, we have the following:

δ(x, v) · δ(y, u) ≤ δ(x, y) · δ(u, v) + δ(x, u) · δ(y, v) (2)

One of the ways the inequality can be used for indexing is
in constructing a pivot-based lower bound. For a query q,
object o, and pivots p and s, we get the candidate bound:

δC(q, o, p, s) =
|δ(q, p) · δ(o, s)− δ(q, s) · δ(o, p)|

δ(p, s)
(3)

For simplicity, we let δC(q, o, p, s) = 0 if δ(p, s) = 0. As
for triangular lower-bounding, one would normally have a
set of pivots P, and the bound can then be maximized over



all (ordered)1 pairs of distinct pivots drawn from this set,
giving us the final Ptolemaic bound [15]:

δ(q, o) ≥ δP(q, o) = max
p,s∈ P

δC(q, o, p, s) (4)

As for the triangular case, the Ptolemaic lower bound
δP could be used to filter objects not contained in the
query ball, i.e., exclude those oi ∈ S from search for which
δP(q, oi) > r.

4.2 The SQFD is a Ptolemaic Metric
This section outlines a proof sketch justifying the use of

Ptolemaic and metric indexing for the SQFD. The idea is
simple: the SQFD is basically an efficient way of calculating
the QFD between extremely sparse weight vectors. Consider
an ordinary QFD with vectors in RN. Assume that for any
dimension, at most one vector in the space has a nonzero
value. By assuming a representative for each dimension, the
similarity matrix for this space can be computed exactly
as in the SQFD. It should now be clear that for the QFD
over these vectors, most dimensions will be irrelevant. Any
dimension where both of the vectors have a value of 0 will be
eliminated from the inner product, and we end up actually
using a tiny portion of the similarity matrix. This is exactly
what is done in the SQFD.

We can look at this the other way around, starting with
the SQFD signatures. We first embed the weight vectors
of feature signatures into RN, where each dimension of each
weight vector in the original feature space is assigned to a
separate dimension in RN. The number of dimensions, N ,
is thus the sum of all feature signature sizes in our original
distance space. Embedding a weight vector in RN simply in-
volves padding it with zeros on either end, so that its weights
end up in the correct dimensions. Let w′ ∈ RN be the em-
bedded version of any weight vector w. We then have:

(wa | −wb)′ = w′a − w′b

Here, the embedding (wa | −wb)′ ∈ RN is taken to mean the
embedding that assigns the values from wa and wb to the
same dimensions as the individual embeddings w′a and w′b.

We can now define a global similarity matrix A, using the
same similarity function as for the local matrices Afs . We
can then calculate the QFD between w′a and w′b as follows:

QFD(w′a, w
′
b) =

√
(w′a − w′b) ·A · (w′a − w′b)T

=
√

(wa | −wb)′ ·A · (wa | −wb)′T

In the matrix product x′Ax′T , the extra dimensions in-
volved in the embedding are all zero, and don’t contribute at
all (see Figure 4). Only the original dimensions, and the cor-
responding entries in A (which together form Afs), are used
in computing the distance. Thus we have QFD(w′a, w

′
b) =

SQFD(a, b). If A is well-behaved (symmetric positive def-
inite), QFD is a Ptolemaic metric [15]. Since the map-
ping x 7→ x′ is a distance-preserving isomorphism, the same
holds for SQFD. (This presentation assumes unique repre-
sentatives, but this is not a requirement of the proof. The
proof can also be extended to infinite distance spaces, using
infinite-dimensional inner products.)

1Computing the absolute value is redundant when examin-
ing all ordered pairs. It is, however, useful when only some
pairs are examined, as explained later.

Afs

Aw′a − w′b

(w′a − w′b)T

0

0

wa

−wb

Figure 4: Embedding SQFD vectors in a QFD space.
Because of the zero components of w′

a−w′
b, the gray

areas of A won’t affect the inner product.

5. PTOLEMAIC PIVOT TABLES
As mentioned in Section 3.1.1, pivot tables are a simple,

yet efficient and extensible metric access method. Moreover,
it was recently shown [15] that pivot tables could also be
used as a Ptolemaic access method. In this paper we call
this method Ptolemaic pivot tables, or PPT. Note that in
addition to the Ptolemaic lower bounds, the PPT can also
employ the lower bound provided by the triangle inequality
(thus becoming a Ptolemaic and/or metric access method).
The following section describes how some simple heuristics
can be used to compute the lower bound more efficiently.
The data structure needed in order to accommodate these
new heuristics is described in Section 5.2.

5.1 Computing the Bound Efficiently
One of the most important sources of filtering power for

Ptolemaic lower-bounding is the increased number of candi-
date bounds – quadratic in the number of pivots. Although
this is certainly an advantage for filtering, it can significantly
increase the computation time of the final bound. Unless
the distance calculation itself is very slow, not many pivots
are needed before the computation of the bound becomes
prohibitively expensive. One of the contributions of this pa-
per is a specific procedure for computing the bound, which
takes advantage of the Ptolemaic filtering power and that is
efficient (fast) in practice.

The idea is to perform online pivot selection, as used in the
original pivot table methods, AESA [27] and LAESA [20], as
well as in some more recent methods [11, 7]. It is a fair as-
sumption that the candidate bounds will differ significantly
– this is the motivation for using multiple pivots, after all.
Our task is to find a good pivot pair, a pair that will let us
exclude an irrelevant object. Rather than trying out every
pivot pair in an arbitrary order (which we refer to as the
näıve approach), we can perform a heuristic search for the
best ones. As long as the search radius (or the current search
radius, in a kNN search) is available to us when computing
the bound, we can terminate as soon as the radius has been
exceeded. With a good heuristic ordering of the pairs, this
will usually allow us to terminate early.

A high-quality heuristic will not only allow us to terminate
the bound computation early when we are able to discard
an object; it will give us the confidence needed to end our
computation early by fiat. That is, if we know the best
candidate bounds are probably computed first, and we are
unable to eliminate an object early on, we should probably
give up. This “giving up point” can either be set to a fixed
number of candidate bounds, or it can be based on lack of



improvement over a series of candidate bounds.

5.1.1 Pivot Permutations
Given the structure of the Ptolemaic lower bound (3), it

would seem reasonable to expect a good pivot pair to consist
of one object-like pivot p and one query-like pivot s.2 We
therefore decided to use low values for δ(q, s) and δ(o, p)
as the heuristic guidelines in our search. In the heuristics,
we require an ordering of the pivots based on distance to
a particular object o (either a database or a query object).
For an object o we define a pivot permutation [25, 8], as
follows.

Having a fixed set of m pivots P = {p1, p2, . . . , pm} and
an object o ∈ U, let ()o : {1, 2, . . . ,m} 7→ {1, 2, . . . ,m} be
a permutation such that ∀i, j ∈ 1, . . . ,m : (i)o ≤ (j)o ↔
δ(p(i)o , o) ≤ δ(p(j)o , o) ∨ (δ(p(i)o , o) = δ(p(j)o , o) ∧ i < j).
Hence, the sequence p(1)o , p(2)o , . . . , p(m)o is ordered with
respect to distances between the pivots and object o.

In order to efficiently look for pivots that are close to
the query or to a given object, we need to precompute and
store the pivot permutations (·)o for every object o. We also
compute (·)q at the beginning of the search. Using these
permutations, we generate a sequence of pivot pairs (p, s),
and these pivot pairs are used to create candidate bounds.

5.1.2 An Unbalanced Heuristic
The simplest way of using these permutations is simply to

use two nested loops, each iterating over one of the permuta-
tions (see Algorithm 5.1). Using this unbalanced heuristic,
either the q-like pivots or the o-like pivots are preferred. In
each iteration, the algorithm checks whether it should termi-
nate early, that is, before all pivot pairs have been examined.
This happens if either the bound is large enough (δP > r),
or if we have already tried κ pivot pairs, where κ is a cut-off
parameter.

Algorithm 5.1: UnbalancedFilter(q, o, r, κ) 7→ δP

1: δP = c = 0
2: for i = 1 to m do
3: for j = 1 to m do
4: δP ← max{δP, δC(q, o, p(i)o , p(j)q )}
5: c← c+ 1
6: if δP > r or c = κ then
7: return

5.1.3 A Balanced Heuristic
To avoid giving preference to one of the permutations

as the unbalanced heuristic does, we propose the balanced
traversal heuristic (see Algorithm 5.2). This explores carte-
sian product of (·)o and (·)q in a breadth-first fashion, start-
ing at ((1)o, (1)q). Every o-like pivot (in order of distance
from o) is combined with every q-like pivot that is at least
as good, i.e., with at most the same rank in distance order-
ing from q, and vice versa. The checks for early termination
work like in the unbalanced heuristic.

Figure 5 shows a comparison of the näıve approach, and
both heuristics in a Euclidean space (using 20 pivots drawn
from a 10D uniform unit cube distribution). As expected,
the balanced heuristic achieves a tight bound the fastest:

2That is, p and s are close to object and query, respectively.

Algorithm 5.2: BalancedFilter(q, o, r, κ) 7→ δP

1: δP = c = 0
2: for i = 1 to m do
3: for j = 1 to i do
4: δP ← max{δP, δC(q, o, p(i)o , p(j)q )}
5: c← c+ 1
6: if i 6= j then
7: δP ← max{δP, δC(q, o, p(j)o , p(i)q )}
8: c← c+ 1
9: if δP > r or c ≥ κ then

10: return

Figure 5: Pivot pair selection heuristics.

after examining 15 pivot pairs the bound gets to 90% of the
value obtained by examining all 190 unique pivot pairs.

5.2 The PPT Index Structure
The index structure of PPT consists of two components:

— The pivot file, storing the set P of m pivots, and a pivot
distance matrix, storing the distances between all distinct
pairs of pivots from P.

— The index file, storing the distances between each
database object o ∈ S and all the pivots, the pivot permuta-
tion for each object o, and the object o itself. Formally, the
index file consists of |S| entries, each belonging to a database
object o, as [o, (·)o, δ(o, p(1)o), δ(o, p(2)o), . . . , δ(o, p(m)o)].

The difference between regular pivot tables and the PPT is
thus an extra information stored: the pivot distance matrix
and the pivot permutation for each object o (used by the
proposed heuristics).

5.3 Querying the PPT
A similarity query is processed by traversing the index file

sequentially. However, for each database object o, we try to
avoid computing δ(q, o) by applying either triangle or Ptole-
maic lower-bounding (or both). For the implementation of
the PPT range queries, see Algorithm 5.3.

Note that TriangleFilter and PtolemaicFilter compute the
lower bound to δ(q, o), including possible early termination
– either due to the current bound exceeding the query ra-
dius r, or the number of examined pivot pairs exceeding
the limit κ. While the PtolemaicFilter refers to either Un-
balancedFilter or BalancedFilter (see Algorithms 5.1, 5.2),
the TriangleFilter just applies the triangle inequality test for
each pivot p ∈ P, as usual in the regular pivot tables.

As mentioned, the parameter κ refers to the maximum
number of pivot pairs to be examined before giving up on



Algorithm 5.3: RangeQuery(q, r,mode, κ) 7→ Result

1: Result = ∅
2: for each o in S do
3: if mode = triangle or mode = triangle+pto then
4: if TriangleFilter(q, o, r) > r then
5: continue for
6: if mode = ptolemaic or mode = triangle+pto then
7: if PtolemaicFilter(q, o, r, κ) > r then
8: continue for
9: compute δ(q, o)

10: if δ(q, o) ≤ r then
11: add o to Result

computing the bound. Although this parameter could be left
to the user, by setting κ = |P| we obtain Ptolemaic lower-
bounding of the same time complexity as the triangle one
(i.e., O(|P|)).

6. EXPERIMENTAL EVALUATION
In this section, we evaluate the efficiency of search under

SQFD. We compare the PPT with the original pivot tables,
so far the state-of-the-art metric index applied to SQFD.

6.1 The Testbed
We make use of the MIR Flickr database [17] includ-

ing 25,000 web-images with textual annotations, and the
ALOI database [12] comprising 72,000 images. The selected
databases are not very large but they provide a ground truth
for evaluating the search effectiveness.

We extracted feature signatures from the aforemen-
tioned databases, based on seven-dimensional features
(L, a, b, x, y, χ, η) ∈ F including color (L, a, b), position
(x, y), contrast χ, and coarseness η information. These fea-
tures were extracted for a randomly selected subset of pixels
for each image and then aggregated by applying an adap-
tive variant of the k-means clustering algorithm described
by Leow and Li [18]. Thus, we obtain one feature signature
for each single image. These signatures vary in size between
5 and 115 feature representatives. On average, a feature sig-
nature consists of 54 representatives (i.e., 432 numbers per
signature). The remaining settings in our experiments were
the same as those used by Beecks et al. [1]. The tests ran
on a workstation 2x Intel Xeon X5660 2.8 Ghz, 24GB RAM,
Windows Server 2008 R2 64bit (non-virtualized).

Label Description

Tri(n) PPT using triangle mode
Pto(n, U|B|N, κ) PPT using Ptolemaic mode

TriPto(n, U|B|N, κ) PPT using triangle+Ptolemaic mode
n is the number of pivots used
U|B|N stands for Unbalanced, Balanced

or Näıve heuristics
κ is the max. number of pivot pairs used

% of Tri(n) performance related to query realtime
achieved by Tri(n)

Table 1. Labels used in the figures.

In Table 1, we summarize the description of labels used
within the following figures. Note that Tri( · · · ) denotes
the original pivot tables used as a referential metric access
method, while the Pto( · · · ) and TriPto( · · · ) labels refer to
specific filtering modes of PPT (see Section 5.3).

6.2 The Results
We first present the SQFD properties in terms of intrin-

sic dimensionality (iDim) [9] and mean average precision
(MAP) values [19], as they indicate whether the SQFD al-
lows for efficient and effective indexing (see Figure 6). The
crucial parameter alpha (denoted α in Section 2) is applied
inside the Gaussian similarity function fs when computing
the SQFD matrix, and it has significant impact on iDim and
MAP. For more about tuning iDim and MAP using alpha,
see the paper by Beecks et al. [1].

Figure 6: intrinsic dim. vs. mean average precision.

Next, we study the increase in efficiency in terms of kNN
query response times. As the numbers of distance compu-
tations perfectly correlate with the real response times (be-
cause of SQFD’s computational cost), we present only the
real times in the figures. In general, a single SQFD com-
putation takes on average 0.65 ms for the ALOI database,
and 0.79 ms for the MIR Flickr database. The number of
distance computations could be reconstructed using these
values, as well as the real response times of the sequen-
tial scan. The query times were averaged for 100 different
queries, while the query signatures were not indexed.

Figure 7: kNN queries on the ALOI database.

See Figure 7 for the performance of kNN queries on the
ALOI database, 50 pivots, and alpha=0.32. The PPT is a
clear winner in all configurations, while the Balanced heuris-
tic always works best. Also note that the maximum relative
speed-up with respect to Tri(50) is achieved for k=10–50.

The impact of the maximum number of pivot pairs used in
the Ptolemaic bound computation is presented in Figure 8.
It shows that the Ptolemaic filtering is effective even for a
small number of pivot pairs (Pto), while it is further im-
proved when combined with the triangle filtering (TriPto).

Figure 9 shows the relative performance w.r.t. Tri(10) for
varying alpha. Note that for very small alpha also the iDim



Figure 8: Number of pivot pairs in PPT (ALOI).

Figure 9: Impact of varying alpha on the relative
performance.

is very small (≈ 2), so that the triangle filtering using 50
pivots is efficient enough and leaves a relatively smaller room
for improvement. On the other hand, large alpha leads to
high iDim (≈ 20), as well as smaller differences between
triangular and Ptolemaic filtering – the space is hard to
index, whichever filtering is used. Considering 50 pivots, the
best speed-up of PPT is achieved for alpha=0.4 and ALOI
(iDim ≈ 4), alpha=0.1 and MIR Flickr (iDim ≈ 3).

Figure 10: kNN queries on the MIR Flickr database.

The results for kNN queries on the MIR Flickr (see Fig-
ure 10) are similar to those for ALOI (see Figure 7), however,
the largest speed-up of PPT was achieved for 1NN queries.

The results showing the varying number of pivot pairs on
the MIR Flickr (see Figure 11) are also similar to those for
ALOI (see Figure 8). Note that for a large enough number
of pivot pairs (> 60) the Ptolemaic filtering works equally
well using only 10 pivots as does triangle filtering with 50
pivots.

Figure 11: Number of pivot pairs in PPT (MIR
Flickr).

6.3 Discussion
In summary, the PPT has proven to be a superior solution

for indexing SQFD, beating the state-of-the-art metric index
by responding almost four times as fast. When compared
to the sequential scan, the speed-up factor of almost 300 is
even more remarkable.

From another point of view, we have shown that the Ptole-
maic filtering in PPT achieves the same filtering power as
the triangle filtering in regular pivot tables using only 20%
of the pivots. This suggests that PPT can be used as an
economical solution that needs only small time and space
to construct an index, while achieving the same query effi-
ciency as a metric index that is five times as large and five
times as slow to construct.

Moreover, our method uses a two-pivot online pivot selec-
tion technique where the best pair of pivots is heuristically
chosen for every single query and database object pair. In
the metric indexing area this is the “holy grail” of pivot se-
lection techniques, as a good pivot should be either close to
the query or close to the database object. Instead of select-
ing pivots from the database like the offline techniques do,
the pivot pairs are picked from an pre-selected set of pivots.
It seems that the effort usually spent on the offline pivot se-
lection process does not play such an important role here, as
the main pivot pair selection procedure is performed online.
The number of candidate pairs grows quadratically with the
number of pivots, so even a pivot set that is bad from the
metric indexing point of view could provide good pivot pairs
for Ptolemaic filtering. However, additional analysis of this
hypothesis has to be done in the future.

7. CONCLUSIONS
In this paper we have applied the principles of Ptolemaic

indexing to the signature quadratic form distance (SQFD),
and found significant speed-up compared to the state-of-
the-art metric indexing approach. Overall, our results have
the immediate benefit of making similarity search more effi-
cient for applications using the SQFD, but they are also im-
portant for Ptolemaic indexing in general. At present, the
main family of Ptolemaic distances of practical importance
is quadratic form distances (QFDs) [15]. Because QFDs are
expensive to compute, the internal overhead of Ptolemaic
indexing is not an obstacle. However, as has been recently
shown [26], static QFDs can be mapped to Euclidean dis-
tance for the purpose of indexing, making Ptolemaic index-
ing seemingly unfeasible. In this paper we show that the



more expressive SQFDs are, in fact, equivalent to QFDs,
except that their dynamic nature precludes this form of pre-
processing. This, together with the increased performance
over metric indexing, means that the matching of Ptolemaic
indexing and SQFDs is a very natural and fruitful one.
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[11] K. Figueroa, E. Chávez, G. Navarro, and R. Paredes.
On the least cost for proximity searching in metric
spaces. In Proc. of WEA, LNCS 4007. Springer, 2006.

[12] J.-M. Geusebroek, G. J. Burghouts, and A. W. M.
Smeulders. The Amsterdam Library of Object Images.

International Journal of Computer Vision,
61(1):103–112, 2005.

[13] J. Hafner, H. S. Sawhney, W. Equitz, M. Flickner, and
W. Niblack. Efficient color histogram indexing for
quadratic form distance functions. IEEE Transactions
on Pattern Analysis and Machine Intelligence,
17:729–736, 1995.

[14] M. L. Hetland. The basic principles of metric
indexing. In C. A. C. Coello, S. Dehuri, and S. Ghosh,
editors, Swarm Intelligence for Multi-objective
Problems in Data Mining, volume 242 of Studies in
Computational Intelligence. Springer, 2009.

[15] M. L. Hetland. Ptolemaic indexing. arXiv:0911.4384
[cs.DS], 2009.
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quadratic form distance by metric access methods. In
Proc. Extending Database Technology (EDBT), ACM,
2011.

[27] E. Vidal. New formulation and improvements of the
nearest-neighbour approximating and eliminating
search algorithm (AESA). Pattern Recognition
Letters, 15(1):1–7, January 1994.

[28] P. Zezula, G. Amato, V. Dohnal, and M. Batko.
Similarity Search: The Metric Space Approach.
Springer, 2005.


