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ABSTRACT
We have generalized a method for tandem mass spectra in-
terpretation, based on the parameterized Hausdorff distance
dHP . Instead of just peptides (short pieces of proteins), in
this paper we describe the interpretation of whole protein
sequences. For this purpose, we employ the recently intro-
duced NM-tree to index the database of hypothetical mass
spectra for exact or fast approximate search. The NM-tree
combines the M-tree with the TriGen algorithm in a way
that allows to dynamically control the retrieval precision at
query time. A scheme for protein sequences identification
using the NM-tree is proposed.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing—indexing methods

General Terms
Design, Performance

1. INTRODUCTION
Protein sequences are used in many fields of biological re-

search, while tandem mass spectrometry is a fast and mod-
ern method for determining the sequences from an ”in vitro”
sample. A mass spectrometer produces thousands of mass
spectra for a few proteins in the sample. The proteins are
split to many peptide ions, where a mass spectrum corre-
sponds to a peptide ion. More peptide ions correspond to a
peptide sequence. Multiple peptide sequences come from a
protein sequence.

A mass spectrum (Fig. 1) is a list of peaks correspond-
ing to peptide fragment ions. A peak is represented by the
pair

(
m
z
, I
)
, where m

z
is a mass-to-charge ratio and I is the

intensity of a fragment ion occurrence.
The successful methods for mass spectra interpretation

(i.e., matching the correct peptide sequences to the spectra)
are based on the similarity search in databases of already
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Figure 1: An example of a mass spectrum.

known or theoretically predicted protein sequences. For this
task, the non-metric parameterized Hausdorff distance dHP

(Eq. 2) and the technique for efficient search in a database
of mass spectra indexed under dHP were proposed [3], as

h(~x, ~y) =

∑
~xi∈~x

n

√
min~yj∈~y {max(0, |~xi − ~yj | − ξ)}

dim(~x)
(1)

dHP(~x, ~y) = max(h(~x, ~y), h(~y, ~x)) (2)

where ~x and ~y represent vectors of real numbers (m
z

ratios),
dim(~x) is the length of ~x and ξ is a mass error tolerance. The
technique employs the M-tree [1] for indexing hypothetical
mass spectra generated from peptide sequences and prior to
indexing the TriGen algorithm [4] is utilized to control the
metricity of dHP .

2. NM-TREE
The NM-tree (Non-Metric tree) [5] is a modification of

the M-tree which natively aggregates the TriGen algorithm
to support flexible approximate or exact search using an
arbitrary (non)metric distance function. The approximate
search is controlled by a modifier function f , e.g., the FP-
modifier (Eq. 3), while the TriGen determines an optimal
weight w for the specified T-error tolerance θ [4].

FP(δ, w) =

{
δ

1
1+w for w > 0
δ1−w for w ≤ 0

(3)

In the NM-tree, an input distance δ is supposed as a semi-
metric, while TriGen is applied before indexing in order to
turn δ into a metric δfM (i.e., θ = 0). Distances stored in the
NM-tree are always the metric ones (i.e., δfM (·, ·)). When
a query (e.g., k-NN or range) is performed and the approx-
imate search is required (i.e., θ > 0), the distance δfM is by
definition modified inversely by f−1

M and then another mod-

ifier f ′ is applied, i.e., f ′(f−1
M (δfM )) is computed. However,



only distances at the pre-leaf and leaf level are modified by
f−1
M and f ′ (Fig. 2). The upper levels are not modified be-

cause the NM-tree stores not only direct distances between
two objects (the to-parent distances) but also radii, which
consist of aggregations [5].

A computation of modified distances can be expensive and
it can degrade the overall NM-tree’s performance. Nev-
ertheless, this could be solved by a table of precomputed
modified distances. Moreover, computation of dHP

fM and
f−1
M (dHP

fM ) can be omitted for the purposes of mass spec-
tra interpretation, as dHP is already a metric distance.

Figure 2: Distances modified in NM-tree.

3. APPLICATION
The above described NM-tree can be used with advan-

tage in a scheme for protein sequences identification which
is shown in Fig. 4. Let Q be a query set of peptide mass
spectra coming from multiple protein sequences (e.g., 18 in
our experiments). The goal is to identify protein sequences
in Q using NM-tree with maximal θ minimizing the runtime.
kNN queries (for random uninterpreted peptide spectra from
Q) are performed using the NM-tree (Fig. 4a), while θ is be-
ing decreased (Fig. 4e) in order to improve the correctness.
For each query, the k returned hypothetical spectra (peptide
sequences) are matched to the original protein sequences
(Fig. 4b). After the number of matched peptide sequences
for a protein sequence exceeds a, the protein sequence is
split to peptide sequences (Fig. 4c), i.e., all possible peptide
sequences are generated. The generated peptide sequences
are compared with all uninterpreted spectra in Q, the query
spectrum becomes interpreted when a final ranking exceeds b
(Fig. 4d).

The following experimental results consider single kNN
queries (Fig. 4a), while the implementation of the rest of
scheme is the subject of our future work. We compared the
NM-tree with the set of M-trees for different T-error toler-
ances θ. We used kNN (k=1,000) queries, the database con-
taining 100,000 protein sequences (5.6 million peptide seq.)

Figure 3: A comparison of the NM-tree with the set
of M-trees for different T-error tolerances θ.

Figure 4: Scheme for protein seq. identification.

and the query set containing 1,941 mass spectra [3]. The
spectra in the query set come from 18 different proteins [2].

The average query time and distance computations ratio
(number of dHP calls w.r.t. sequential scan) for the NM-tree
are almost the same as for the set of M-trees (Fig. 3). The
NM-tree is 15.6× faster than the sequential scan (θ = 0.1).
The search is faster with increasing θ, while the correct-
ness of peptide sequences identification (or correctness of
mass spectra interpretation) w.r.t. sequential scan is lower
(Fig. 3c). However, low correctness of peptide sequences
identification does not have to decrease the correctness of
protein sequences identification because of more spectra for
a peptide sequence and because of more peptide sequences
in a protein sequence. The correctness of mass spectra in-
terpretation is better for the NM-tree than for the set of
M-trees with increasing θ.
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