Electronic supplement for paper:
Tomas Skopal, David Hoksza:

Improving the Performance of M-tree Family by Nearest-Neighbor Graphs, AD-
BIS 2007, Varna, Bulgaria, LNCS XXXX, Springer, 2007

Listing 1 (k-NN query algorithm)

Node ChooseNode(PRQueue PR) {
let dimin (T(O])) = min{dmin(T(O;))}, considering all entries in PR
remove entry [ptr(T(O7)), dmin(T(O]))] from PR
return ptr(T(0}))

QueryResult kNNQuery(kNNQuery (Q, k), ordering heuristic) {
PR = {[ptr(root), co]}
for i =1 to k do
NN[i] = [—, o0] /*rq = NN[k].dmaes = 00 */
while PR is not empty do {
NextNode = ChooseNode(PR)
NodeSearch(NextNode, (Q, k), H)

return NN

The adaptation for M*-tree is presented in Listing 2, where an M*-tree node
is processed. In addition to the original processing of M-tree node, the NN-
graph filtering is inserted between the parent and basic filtering steps, however,
we additionally store the already used sacrifices and use them repeatedly for
filtering the same way as a new sacrifice is used (let us call this recycled NN-
graph filtering). The rationale for this is specific for kNN processing — a sacrifice
which was not successful in its first attempt could succeed after a sufficiently
large decrease of the dynamically improving query radius rg.

Listing 2 (k-NN query algorithm, the NodeSearch)

NodeSearch(Node N, kNNQuery (Q, k), ordering heuristic H) {
let P be the parent routing object of N
/* if N 1is root then §(O;, P)=§(P,Q)=0*/
let filtered be an array of boolean flags, size of filtered is |N|
set filtered[entry(O;)]=false, Ventry(O;) € N
let usedSacrifices = 0
let SQ be a queue filled with all entries of IV, ordered by H(N)
if NV is not a leaf then {
while SQ not empty
fetch rout(S;) from the beginning of SQ
/* parent filtering */
if |0(P,Q) —46(S;, P)| >rqg + rs, then
filtered[rout(S;)] = true;
if not filtered[rout(S;)] then {
compute §(S;, Q)
insert (S;,8(S;, Q)) into usedSacrifices
if diin(T(Si)) < rq then {
insert [ptr(T(S;)), dmin (T(S:))] to PR
/* basic filtering */
if dmax (T(Sl)) <rqQ then {
rg = NNUpdate([—, dmaz (T(S:))])
remove PR requests for which duin (T'(S;)) > 7@

}

b
/* NN-graph filtering */
N

for each S; in usedSacrifices do
NF = NF U FilterByNNGraph(N, (S;,5(S;,Q)), (Q,7rQ))
move all entries in QS N N F to the beginning of QS

}

}
}else { /* N is a leaf */
while SQ not empty
fetch grnd(S;) from the beginning of SQ
/* parent filtering */
if |6(P, Q) — (S, P)| > rg then
filtered[grnd(S;)] = true;
if not filtered[grnd(S;)] then {
compute §(S;, Q)
insert (S;,8(S;,Q)) into usedSacrifices
/* basic filtering */
if 6(5;,Q)) < rg then {
ro = NNUpdate([—, drmaz (T(S:))])
remove PR requests for which dpirn (T'(S;)) > 1@

}
/* NN-graph filtering */
NF =0
for each (S;,6(S;,Q)) in usedSacrifices do
NF = NF U FilterByNNGraph(N, (S;,6(S;,Q)), (Q,7rqQ))
move all entries in QS N N F to the beginning of QS

