Lemma 1

Let f be an increasing concave function, such that $f(0)=0$. Let's have $a, c \in \mathbb{R}^{+}$such that $a<c$. Then

$$
\frac{f(a)}{f(c)}>\frac{a}{c}
$$

Proof: Consider a linear function

$$
\begin{equation*}
g(x)=\frac{f(c)}{c} x \tag{1}
\end{equation*}
$$

According to this function, we get $g(a)$ which divides the interval $\langle 0, f(c)\rangle$ in the same proportion as a divides the interval $\langle 0, c\rangle$ (this is a direct consequence of $g(x)$'s linearity). By substitution of $x=a$ in (1) we get

$$
\begin{equation*}
\frac{g(a)}{f(c)}=\frac{a}{c} \tag{2}
\end{equation*}
$$

Because $f(x)$ is concave, $g(x)<f(x), \forall x \in(0, c)$ (by definition of concave functions), hence,

$$
\begin{equation*}
g(a)<f(a) \tag{3}
\end{equation*}
$$

Finally, by (2) and (3), it follows that

$$
\frac{f(a)}{f(c)}>\frac{a}{c}
$$

